A new technology of walking regulation in children with cerebral palsy
- Autores: Moshonkina Т.R.1, Shamantseva N.D.1, Ananiev S.S.1, Lyakhovetsky V.A.1, Savenkova A.A.2, Ignatova T.S.2, Gerasimenko Y.P.1
-
Afiliações:
- Pavlov Institute of Physiology
- Saint Petersburg Municipal Budgetary Institution City Hospital № 40
- Edição: Volume 51, Nº 1 (2025)
- Páginas: 27-40
- Seção: Articles
- URL: https://journal-vniispk.ru/0131-1646/article/view/285996
- DOI: https://doi.org/10.31857/S0131164625010035
- EDN: https://elibrary.ru/VNEMUA
- ID: 285996
Citar
Resumo
It is known that neural networks of the human spinal cord can initiate the stepping pattern and control posture in the absence and with impaired supraspinal input. In the rehabilitation of children with spastic diplegia due to cerebral palsy, a new technology based on electrical transcutaneous spinal cord stimulation (tSCS) was used. Continuous and rhythmic tSCS was performed during walking. Continuous tSCS was performed at the level of C5-C6 and T11-T12 vertebrae. Rhythmic stimulation of the dorsal roots of the spinal cord was performed at the level of the T12 and L2 vertebrae to activate the motor pools of the flexor/extensor leg muscles in the swing and stance phases, respectively. Fourteen children with spastic diplegia, age 13 ± 2 years, participated in the study. Patients in the study were able to stand and walk independently with the help of a cane/walker or with the assistance of an adult. All patients received standard therapy and locomotor training (20 min per day, 10 days). During locomotor training, tSCS -based technology was used in patients in one group and no tSCS was used in patients in the other group. The effect of tSCS on the parameters of walking over flat surface (acute effect) was determined in all patients before the course. Before and after the course all patients were examined using clinical tests, kinematic characteristics of walking were analyzed. The acute effect of stimulation is manifested in a reduction in the duration of the stance phase, in an increase in the range of motion in the knee joint. After the course in the main group the scores on the motor function change assessment scale (GMFM-88) increased, spasticity decreased, and the distance passed in the 6-minute walk test increased.
Palavras-chave
Texto integral

Sobre autores
Т. Moshonkina
Pavlov Institute of Physiology
Autor responsável pela correspondência
Email: moshonkina@infran.ru
Rússia, St. Petersburg
N. Shamantseva
Pavlov Institute of Physiology
Email: moshonkina@infran.ru
Rússia, St. Petersburg
S. Ananiev
Pavlov Institute of Physiology
Email: moshonkina@infran.ru
Rússia, St. Petersburg
V. Lyakhovetsky
Pavlov Institute of Physiology
Email: moshonkina@infran.ru
Rússia, St. Petersburg
A. Savenkova
Saint Petersburg Municipal Budgetary Institution City Hospital № 40
Email: moshonkina@infran.ru
Rússia, St. Petersburg
T. Ignatova
Saint Petersburg Municipal Budgetary Institution City Hospital № 40
Email: moshonkina@infran.ru
Rússia, St. Petersburg
Y. Gerasimenko
Pavlov Institute of Physiology
Email: moshonkina@infran.ru
Rússia, St. Petersburg
Bibliografia
- Vitrikas K., Dalton H., Breish D. Cerebral palsy: an overview // Am. Fam. Physician. 2020. V. 101. № 4. P. 213.
- Papageorgiou E., Simon-Martinez C., Molenaers G. et al. Are spasticity, weakness, selectivity, and passive range of motion related to gait deviations in children with spastic cerebral palsy? A statistical parametric mapping study // PLoS One. 2019. V. 14. № 10. P. e0223363.
- Zhou J., Butler E.E., Rose J. Neurologic correlates of gait abnormalities in cerebral palsy: implications for treatment // Front. Hum. Neurosci. 2017. V. 11. P. 103.
- Gerasimenko Y., Roy R.R., Edgerton V.R. Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans // Exp. Neurol. 2008. V. 209. № 2. P. 417.
- Gerasimenko Y., Gorodnichev R., Moshonkina T. et al. Transcutaneous electrical spinal cord stimulation in humans // Ann. Phys. Rehabil. Med. 2015. V. 58. № 4. P. 225.
- Gorodnichev R.M., Pivovarova E.A., Puhov A. et al. Transcutaneous electrical stimulation of the spinal cord: a noninvasive tool for the activation of stepping pattern generators in humans // Human Physiology. 2012. V. 38. № 2. P. 158.
- Singh G., Lucas K., Keller A. et al. Transcutaneous spinal stimulation from adults to children: a review // Top Spinal Cord Inj. Rehabil. 2023. V. 29. № 1. P. 16.
- Hastings S., Zhong H., Feinstein R. et al. A pilot study combining noninvasive spinal neuromodulation and activity-based neurorehabilitation therapy in children with cerebral palsy // Nat. Commun. 2022. V. 13. № 1. P. 5660.
- Solopova I.A., Sukhotina I.A., Zhvansky D.S. et al. Effects of spinal cord stimulation on motor functions in children with cerebral palsy // Neurosci. Lett. 2017. V. 639. P. 192.
- Grishin A.A., Bobrova E.V., Reshetnikova V.V. et al. A system for detecting stepping cycle phases and spinal cord stimulation as a tool for controlling human locomotion // Biomed. Eng. 2021. V. 54. № 5. P. 312.
- Gorodnichev R.M., Pukhov A.M., Moiseev S. et al. Regulation of gait cycle phases during noninvasive electrical stimulation of the spinal cord // Human Physiology. 2021. V. 47. № 1. P. 60.
- Moshonkina T.R., Zharova E.N., Ananev S.S. et al. A new technology for recovery of locomotion in patients after a stroke // Dokl. Biochem. Biophys. 2022. V. 507. № 1. P. 353.
- Skvortsov D.V., Bogacheva I.N., Shcherbakova N.A. et al. Effects of single noninvasive spinal cord stimulation in patients with post-stroke motor disorders // Human Physiology. 2023. V. 49. № 4. P. 384.
- Nelson K.B., Lynch J.K. Stroke in newborn infants // Lancet Neurol. 2004. V. 3. № 3. P. 150.
- Aisen M.L., Kerkovich D., Mast J. et al. Cerebral palsy: clinical care and neurological rehabilitation // Lancet Neurol. 2011. V. 10. № 9. P. 844.
- Amirthalingam J., Paidi G., Alshowaikh K. et al. Virtual reality intervention to help improve motor function in patients undergoing rehabilitation for cerebral palsy, Parkinson’s disease, or stroke: a systematic review of randomized controlled trials // Cureus. 2021. V. 13. № 7. P. e16763.
- Piscitelli D., Ferrarello F., Ugolini A. et al. Measurement properties of the gross motor function classification system, gross motor function classification system‐expanded & revised, manual ability classification system, and communication function classification system in cerebral palsy: a systematic review with meta‐analysis // Dev. Med. Child Neurol. 2021. V. 63. № 11. P. 1251.
- Harvey A.R. The gross motor function measure (GMFM) // J. Physiother. 2017. V. 63. № 3. P. 187.
- Bohannon R.W., Smith M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity // Phys. Ther. 1987. V. 67. № 2. P. 206.
- Graham H.K., Harvey A., Rodda J. et al. The functional mobility scale (FMS) // J. Pediatr. Orthop. 2004. V. 24. № 5. P. 514.
- Maher C.A., Williams M.T., Olds T.S. The six-minute walk test for children with cerebral palsy // Int. J. Rehabil. Res. 2008. V. 31. № 2. P. 185.
- Verschuren O., Zwinkels M., Ketelaar M. et al. Reproducibility and validity of the 10-meter shuttle ride test in wheelchair-using children and adolescents with cerebral palsy // Phys. Ther. 2013. V. 93. № 7. P. 967.
- Stang A., Poole C., Kuss O. The ongoing tyranny of statistical significance testing in biomedical research // Eur. J. Epidemiol. 2010. V. 25. № 4. P. 225.
- Gad P., Hastings H., Zhong H. et al. Transcutaneous spinal neuromodulation reorganizes neural networks in patients with cerebral palsy // Neurotherapeutics. 2021. V. 18. № 3. P. 1953.
- Alton F., Baldey L., Caplan S., Morrissey M.C. A kinematic comparison of overground and treadmill walking // Clin. Biomech. 1998. V. 13. № 6. P. 434.
- Semaan M.B., Wallard L., Ruiz V. et al. Is treadmill walking biomechanically comparable to overground walking? A systematic review // Gait Posture. 2022. V. 92. P. 249.
- Moshonkina T., Grishin A., Bogacheva I. et al. Novel non-invasive strategy for spinal neuromodulation to control human locomotion // Front. Hum. Neurosci. 2021. V. 14. P. 622533.
- Trevarrow M.P., Baker S.E., Wilson T.W., Kurz M.J. Microstructural changes in the spinal cord of adults with cerebral palsy // Dev. Med. Child Neurol. 2021. V. 63. № 8. P. 998.
- Noble J. Musculoskeletal and spinal cord imaging / Thesis abstract. King’s College London. London, 2014. 219 p.
- Sachdeva R., Girshin K., Shirkhani Y. et al. Combining spinal neuromodulation and activity based neurorehabilitation therapy improves sensorimotor function in cerebral palsy // Front. Rehabil. Sci. 2023. V. 4. P. 1216281.
- Wells G., Beaton D., Shea B. et al. Minimal clinically important differences: review of methods // J. Rheumatol. 2001. V. 28. № 2. P. 406.
- Storm F.A., Petrarca M., Beretta M. et al. Minimum clinically important difference of gross motor function and gait endurance in children with motor impairment: a comparison of distribution-based approaches // BioMed Res. Int. 2020. V. 2020. P. 2794036.
Arquivos suplementares
