Спортивное питание и восстановление: ключевые Нутриенты и добавки для эффективной регенерации
- Авторы: Шлыков С.Н.1, Сычева О.В.1, Омаров Р.С.1, Трубина И.А.1, Скорбина Е.А.1
-
Учреждения:
- ФГБОУ ВО «Ставропольский государственный аграрный университет»
- Выпуск: Том 51, № 2 (2025)
- Страницы: 155-174
- Раздел: ОБЗОРЫ
- URL: https://journal-vniispk.ru/0131-1646/article/view/304851
- DOI: https://doi.org/10.31857/S0131164625020122
- EDN: https://elibrary.ru/UCXMWD
- ID: 304851
Цитировать
Аннотация
Восстановление после физических тренировок является критически важным аспектом достижения спортивных результатов, позволяя организму адаптироваться к нагрузкам и предотвращая перетренированность. Цель исследования – обобщение и анализ научных данных, касающихся спортивного питания. Для систематического обзора были использованы руководства PRISMA 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Поиск литературы проводился по базам данных: PubMed, Scopus, Web of Science и Google Scholar. Ретроспектива поиска – 1990–2023 гг. Эффективное восстановление после фитнес-тренировок включает несколько физиологических процессов, таких как: восполнение гликогена, регенерация мышечной ткани, нормализация гормонального фона и восстановление электролитного баланса. Питание играет важную роль в поддержании и ускорении этих процессов, что делает его неотъемлемой частью программы восстановления. Обсуждаются механизмы, способствующие быстрому восстановлению, включая важность сочетания белков и углеводов в пропорции 3 : 1 или 4 : 1, а также значение гидратации и восполнения электролитов для предотвращения обезвоживания. Также рассматриваются добавки, такие как BCAA (аминокислоты с разветвленной цепью: лейцин, изолейцин и валин), EAA (незаменимые аминокислоты: лейцин, изолейцин, валин, лизин, метионин, треонин, фенилаланин, триптофан и гистидин) и креатин, которые способствуют улучшению восстановления и повышению силовых показателей. Витамины C и E, обладая мощными антиоксидантными свойствами, защищают клетки от окислительного стресса, что дополнительно ускоряет процесс восстановления. Данная обзорная статья анализирует современные научные данные о спортивном питании, обращая внимание на роль питательных компонентов – белков, углеводов, витаминов и минеральных веществ. Объединяя различные аспекты спортивного питания и добавок, статья подчеркивает их важность в эффективном восстановлении после тренировок.
Ключевые слова
Об авторах
С. Н. Шлыков
ФГБОУ ВО «Ставропольский государственный аграрный университет»
Email: olga-sycheva@mail.ru
Ставрополь, Россия
О. В. Сычева
ФГБОУ ВО «Ставропольский государственный аграрный университет»
Email: olga-sycheva@mail.ru
Ставрополь, Россия
Р. С. Омаров
ФГБОУ ВО «Ставропольский государственный аграрный университет»
Email: olga-sycheva@mail.ru
Ставрополь, Россия
И. А. Трубина
ФГБОУ ВО «Ставропольский государственный аграрный университет»
Email: olga-sycheva@mail.ru
Ставрополь, Россия
Е. А. Скорбина
ФГБОУ ВО «Ставропольский государственный аграрный университет»
Автор, ответственный за переписку.
Email: olga-sycheva@mail.ru
Ставрополь, Россия
Список литературы
- O’Connor E., Mündel T., Barnes M.J. Nutritional compounds to improve post-exercise recovery // Nutrients. 2022. V. 14. № 23. P. 5069.
- Beelen M., Burke L.M., Gibala M.J. et al. Nutritional strategies to promote postexercise recovery // Int. J. Sport Nutr. Exerc. Metab. 2010. V. 20. № 5. P. 515.
- Mielgo-Ayuso J., Fernández-Lázaro D. Nutrition and muscle recovery // Nutrients. 2021. V. 13. № 2. Р. 294.
- Waskiw-Ford M., Hannaian S., Duncan J. et al. Leucine-enriched essential amino acids improve recovery from post-exercise muscle damage independent of increases in integrated myofibrillar protein synthesis in young men // Nutrients. V. 12. № 4. Р. 1061.
- Volpi E., Kobayashi H., Sheffield-Moore M. et al. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults // Am. J. Clin. Nutr. 2003. V. 78. № 2. P. 250.
- Kurosaka M., Machida S. Exercise and skeletal muscle regeneration // J. Phys. Fitness Sports Med. 2012. V. 1. № 3. P. 537.
- Tipton K.D. Nutrition for acute exercise-induced injuries // Ann. Nutr. Metab. 2010. V. 57. P. 43.
- Tipton K.D., Elliott T.A., Cree M.G. et al. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise // Am. J. Physiol. Endocrinol. Metab. 2007. V. 292. № 1. P. E71.
- Moore D.R., Churchward-Venne T.A., Witard O. et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men // J. Gerontol. A Biol. Sci. Med. Sci. 2015. V. 70. № 1. P. 57.
- Russo I., Della Gatta P.A., Garnham A. et al. Assessing overall exercise recovery processes using carbohydrate and carbohydrate-protein containing recovery beverages // Front. Physiol. 2021. V. 12. P. 628863.
- Boirie Y., Dangin M., Gachon P. et al. Slow and fast dietary proteins differently modulate postprandial protein accretion // Proc. Natl. Acad. Sci. U.S.A. 1997. V. 94. № 26. P. 14930.
- Garthe I., Raastad T., Refsnes P.E., Sundgot-Borgen J. Effect of nutritional intervention on body composition and performance in elite athletes // Eur. J. Sport Sci. 2012. V. 13. № 3. P. 295.
- Shirreffs S.M., Sawka M.N., Stone M. Water and electrolyte needs for football training and match-play // J. Sports Sci. 2006. V. 24. № 7. P. 699.
- Alghannam A.F., Gonzalez J.T., Betts J.A. Restoration of muscle glycogen and functional capacity: Role of post-exercise carbohydrate and protein co-ingestion // Nutrients. 2018. V. 10. № 2. P. 253.
- Hearris M.A., Hammond K.M., Fell J.M. et al. Regulation of muscle glycogen metabolism during exercise: Implications for endurance performance and training adaptations // Nutrients. 2018. V. 10. № 3. P. 298.
- Ivy J.L., Katz A.L., Cutler C.L. et al. Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion // J. Appl. Physiol. (1985). 1988. V. 64. № 4. P. 1480.
- Mamerow M.M., Mettler J.A., English K.L. et al. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults // J. Nutr. 2014. V. 144. № 6. P. 876.
- Shirreffs S.M., Sawka M.N., Stone M. Water and electrolyte needs for football training and match-play // J. Sports Sci. 2006. V. 24. № 7. P. 699.
- Osmond A.D., Directo D.J., Elam M.L. et al. The effects of leucine-enriched branched-chain amino acid supplementation on recovery after high-intensity resistance exercise // Int. J. Sports Physiol. Perform. 2019. V. 14. № 8. P. 1081.
- Hartman J.W., Tang J.E., Wilkinson S.B. et al. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters // Am. J. Clin Nutr. 2007. V. 86. № 2. P. 373.
- Newsholme E.A., Blomstrand E. Branched-chain amino acids and central fatigue // J. Nutr. 2006. V. 136. № 1. P. 274S.
- Alcantara J.M.A., Sanchez-Delgado G., Martinez-Tellez B. et al. Impact of cow’s milk intake on exercise performance and recovery of muscle function: A systematic review // J. Int. Soc. Sports Nutr. 2019. V. 16. № 1. P. 22.
- Denysschen C.A., Burton H.W., Horvath P.J. et al. Resistance training with soy vs whey protein supplements in hyperlipidemic males // J. Int. Soc. Sports Nutr. 2009. V. 6. P. 8.
- Levenhagen D.K., Carr C., Carlson M.G. et al. Postexercise protein intake enhances recovery // Med. Sci. Sports Exerc. 2002. V. 34. № 5. P. 828.
- Naclerio F., Seijo M. Whey protein supplementation and muscle mass: current perspectives // Nutr. Diet. Suppl. 2019. V. 2019. № 11. P. 37.
- Volpi E., Kobayashi H., Sheffield-Moore M. et al. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults // Am. J. Clin. Nutr. 2003. V. 78. № 2. P. 250.
- Moro T., Brightwell C.R., Deer R.R. et al. Muscle protein anabolic resistance to essential amino acids does not occur in healthy older adults before or after resistance exercise training // J. Nutr. 2018. V. 148. № 6. P. 900.
- Zawadzki K.M., Yaspelkis B.B., Ivy J.L. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise // J. Appl. Physiol. 1992. V. 72. № 5. P. 1854.
- Burke L.M., Collier G.R., Hargreaves M. Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings // J. Appl. Physiol. (1985). 1993. V. 75. № 2. P. 1019.
- Little J.P., Chilibeck P.D., Ciona D. et al. Effect of low- and high-glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise // Int. J. Sport Nutr. Exerc. Metab. 2010. V. 20. № 6. P. 447.
- Hammond L.R.D., Barfett J., Baker A., McGlynn N.D. Gastric emptying of maltodextrin versus phytoglycogen carbohydrate solutions in healthy volunteers: A quasi-experimental study // Nutrients. 2022. V. 14. № 18. P. 3676.
- Saunders M.J., Kane M.D., Todd M.K. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage // Med. Sci. Sports Exerc. 2004. V. 36. № 7. P. 1233.
- Ferguson-Stegall L., McCleave E.L., Ding Z. et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis // J. Strength Cond. Res. 2011. V. 25. № 5. P. 1210.
- Kerksick C.M., Stout J.R., Campbell B. et al. International Society of Sports Nutrition position stand: Nutrient timing // J. Int. Soc. Sports Nutr. 2008. V. 5. P. 17.
- Calder P.C. Omega-3 fatty acids and inflammatory processes // Nutrients. 2010. V. 2. № 3. P. 355.
- Simopoulos A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases // Exp. Biol. Med. (Maywood). 2008. V. 233. № 6. P. 674.
- Pendergast D.R., Horvath P.J., Leddy J.J., Venkatra-man J.T. The role of dietary fat on performance, metabolism, and health // Am. J. Sports Med. 1996. V. 24. № 6. Suppl. P. S53.
- Lytrivi M., Gomes Da Silveira Cauduro C., Kibanda J. et al. Impact of saturated compared with unsaturated dietary fat on insulin sensitivity, pancreatic β-cell function and glucose tolerance: A systematic review and meta-analysis of randomized, controlled trials // Am. J. Clin. Nutr. 2023. V. 118. № 4. P. 739.
- Lindsay D.B. Fatty acids as energy sources // Proc. Nutr. Soc. 1975. V. 34. № 3. P. 241.
- Balk E., Chung M., Lichtenstein A. et al. Effects of omega-3 fatty acids on cardiovascular risk factors and intermediate markers of cardiovascular disease // Evid. Rep. Technol. Assess. (Summ). 2004. V. 93. P. 1.
- Smith G.I., Atherton P., Reeds D.N. et al. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women // Clin. Sci. (Lond). 2011. V. 121. № 6. P. 267.
- Serhan C.N., Chiang N., Dalli J., Levy B.D. Lipid mediators in the resolution of inflammation // Cold Spring Harb. Perspect. Biol. 2014. V. 7. № 2. P. a016311.
- Calder P.C. n-3 PUFA and inflammation: From membrane to nucleus and from bench to bedside // Proc. Nutr. Soc. 2020. V. 79. № 4. P. 404.
- Sawka M.N., Burke L.M., Eichner E.R. et al. American College of Sports Medicine position stand. Exercise and fluid replacement // Med. Sci. Sports Exerc. 2007. V. 39. № 2. P. 377.
- Cheuvront S.N., Kenefick R.W. Dehydration: Physiology, assessment, and performance effects // Compr. Physiol. 2014. V. 4. № 1. P. 257.
- Noakes T. Hyponatremia in distance runners: Fluid and sodium balance during exercise // Curr. Sports Med. Rep. 2002. V. 1. № 4. P. 197.
- Bohl C.H., Volpe S.L. Magnesium and exercise // Crit. Rev. Food Sci. Nutr. 2002. V. 42. № 6. P. 533.
- Coyle E.F. Fluid and fuel intake during exercise // J. Sports Sci. 2004. V. 22. № 1. P. 39.
- Casa D.J., Armstrong L.E., Hillman S.K. et al. National Athletic Trainers' Association position statement: fluid replacement for athletes // J. Athl. Train. 2000. V. 35. № 2. P. 212.
- Galloway S.D.R., Maughan R.J. The effects of substrate and fluid provision on thermoregulatory and metabolic responses to prolonged exercise in a hot environment // J. Sports Sci. 2000. V. 18. № 5. P. 339.
- Convertino V.A., Armstrong L.E., Coyle E.F. et al. American College of Sports Medicine position stand: Exercise and fluid replacement // Med. Sci. Sports Exerc. 1996. V. 28. № 1. P. i.
- Lambert C.P., Frank L.L., Evans W.J. Macronutrient considerations for the sport of bodybuilding // Sports Med. 2004. V. 34. № 5. P. 317.
- Blomstrand E., Eliasson J., Karlsson H.K., Köhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise // J. Nutr. 2006. V. 136. № 1. P. 269S.
- Shimomura Y., Honda T., Shiraki M. et al. Branched-chain amino acid catabolism in exercise and liver disease // J. Nutr. 2006. V. 136. № 1. P. 250S.
- Gualano A.B., Bozza T., Lopes De Campos P. et al. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion // J. Sports Med. Phys. Fitness. 2011. V. 51. № 1. P. 82.
- Shimomura Y., Inaguma A., Watanabe S. et al. Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness // Int. J. Sport Nutr. Exerc. Metab. 2010. V. 20. № 3. P. 236.
- Tipton K.D., Ferrando A.A., Phillips S.M. et al. Postexercise net protein synthesis in human muscle from orally administered amino acids // Am. J. Physiol. 1999. V. 276. № 4. P. E628.
- Hultman E., Söderlund K., Timmons J.A. et al. Muscle creatine loading in men // J. Appl. Physiol. (1985). 1996. V. 81. № 1. P. 232.
- Greenhaff P.L., Casey A., Short A.H. et al. Influence of oral creatine supplementation on muscle torque during repeated bouts of maximal voluntary exercise in man // Clin. Sci. (Lond). 1993. V. 84. № 5. P. 565.
- Rawson E.S., Volek J.S. Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance // J. Strength Cond. Res. 2003. V. 17. № 4. P. 822.
- Santos R.V., Bassit R.A., Caperuto E.C., Costa Rosa L.F. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race // Life Sci. 2004. V. 75. № 16. P. 1917.
- Bemben M.G., Bemben D.A., Loftiss D.D., Knehans A.W. Creatine supplementation during resistance training in college football athletes // Med. Sci. Sports Exerc. 2001. V. 33. № 10. P. 1667.
- Buford T.W., Kreider R.B., Stout J.R. et al. International Society of Sports Nutrition position stand: Creatine supplementation and exercise // J. Int. Soc. Sports Nutr. 2007. V. 4. P. 6.
- Poortmans J.R., Francaux M. Long-term oral creatine supplementation does not impair renal function in healthy athletes // Med. Sci. Sports Exerc. 1999. V. 31. № 8. P. 1108.
- Harris R.C., Tallon M.J., Dunnett M. et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis // Amino Acids. 2006. V. 30. № 3. P. 279.
- Derave W., Everaert I., Beeckman S., Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training // Sports Med. 2010. V. 40. № 3. P. 247.
- Hobson R.M., Saunders B., Ball G. et al. Effects of β-alanine supplementation on exercise performance: A meta-analysis // Amino Acids. 2012. V. 43. № 1. P. 25.
- Baguet A., Bourgois J., Vanhee L. et al. Important role of muscle carnosine in rowing performance // J. Appl. Physiol. (1985). 2010. V. 109. № 4. P. 1096.
- Bailey S.J., Winyard P., Vanhatalo A. et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans // J. Appl. Physiol. (1985). 2009. V. 107. № 4. P. 1144.
- Pérez-Guisado J., Jakeman P.M. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness // J. Strength Cond. Res. 2010. V. 24. № 5. P. 1215.
- Suzuki T., Morita M., Kobayashi Y. et al. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study // J. Int. Soc. Sports Nutr. 2016. V. 13. P. 6.
- Hill C.A., Harris R.C., Kim H.J. et al. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity // Amino Acids. 2007. V. 32. № 2. P. 225.
- Wax B., Kavazis A.N., Weldon K., Sperlak J. Effects of Supplemental Citrulline Malate Ingestion During Repeated Bouts of Lower-Body Exercise in Advanced Weightlifters // J. Strength Cond. Res. 2015. V. 29. № 3. P. 786.
- Décombaz J., Beaumont M., Vuichoud J. et al. Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia // Amino Acids. 2012. V. 43. № 1. P. 67.
- Sureda A., Córdova A., Ferrer M.D. et al. L-citrulline-malate influence over branched chain amino acid utilization during exercise // Eur. J. Appl. Physiol. 2010. V. 110. № 2. P. 341.
- Powers S.K., Jackson M.J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production // Physiol. Rev. 2008. V. 88. № 4. P. 1243.
- Carr A., Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? // FASEB J. 1999. V. 13. № 9. P. 1007.
- Thompson D., Williams C., Garcia-Roves P. et al. Post-exercise vitamin C supplementation and recovery from demanding exercise // Eur. J. Appl. Physiol. 2003. V. 89. № 3–4. P. 393.
- Nieman D.C., Wentz L.M. The compelling link between physical activity and the body's defense system // J. Sport Health Sci. 2019. V. 8. № 3. P. 201.
- Ji L.L. Antioxidants and oxidative stress in exercise // Proc. Soc. Exp. Biol. Med. 1999. V. 222. № 3. P. 283.
- Meydani M., Evans W.J., Handelman G. et al. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults // Am. J. Physiol. 1993. V. 264. № 5. Pt. 2. P. R992.
- Mastaloudis A., Leonard S.W., Traber M.G. Oxidative stress in athletes during extreme endurance exercise // Free Radic. Biol. Med. 2001. V. 31. № 7. P. 911.
- Packer L. Protective role of vitamin E in biological systems // Am. J. Clin. Nutr. 1991. V. 53. № 4. P. 1050S.
- Traber M.G., Stevens J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective // Free Radic. Biol. Med. 2011. V. 51. № 5. P. 1000.
- Torre M.F., Martinez-Ferran M., Vallecillo N. et al. Supplementation with vitamins C and E and exercise-induced delayed-onset muscle soreness: A systematic review // Antioxidants. 2021. V. 10. № 2. P. 279.
Дополнительные файлы
