Полосовые спектрально-временные параметры шумов форсированного выдоха при бронхиальной обструкции. Связь со свистящими звуками

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На экспериментальной выборке, включавшей больных с бронхиальной обструкцией (бронхиальная астма и ХОБЛ, n = 36) и здоровых бессимптомных лиц с нормальной функцией легких (n = 39), проведено сравнительное исследование полосовых спектрально-временных параметров трахеальных шумов форсированного выдоха (ФВ) и количественная оценка свистов ФВ. Цифровая обработка сигналов трахеальных шумов осуществлялась в программе MATLAB автоматически с помощью специально разработанного алгоритма. Анализируемые акустические полосовые параметры представляют собой временные и спектральные характеристики, в нескольких (от 2-х до 6) объединенных 200-герцовых полосах, с разделением на средне- (СЧ) (200–800 Гц) и высокочастотные (ВЧ) (800–2000 Гц) области в диапазоне 200–2000 Гц, а также их соотношения. Свисты ФВ распознавались опытным оператором на спектрограммах в аудиоредакторе SpectraPLUS. Выявлено существенное преобладание значений высокочастотных полосовых энергетических параметров трахеальных шумов и соотношений энергий и мощностей ВЧ- и СЧ-диапазонов у больных с обструктивными заболеваниями легких в сравнении со здоровым контролем. Количество свистящих звуков было бо́льшим у больных и умеренно коррелировало с акустическими параметрами. Перераспределение акустической энергии в область высоких частот вероятно связано с патофизиологическим базисом бронхиальной обструкции – сужением проводящих дыхательных путей и ростом сопротивления воздушному потоку.

Об авторах

И. А. Почекутова

ФГБУН Тихоокеанский океанологический институт имени В.И. Ильичева ДВО РАН

Автор, ответственный за переписку.
Email: i-poch@poi.dvo.ru
Владивосток, Россия

М. А. Сафронова

ФГБУН Тихоокеанский океанологический институт имени В.И. Ильичева ДВО РАН

Email: i-poch@poi.dvo.ru
Владивосток, Россия

Список литературы

  1. Bousquet J., Khaltaev N. Global surveillance, prevention and control of Chronic Respiratory Diseases. A Comprehensive Approach. World Health Organization. Geneva, 2007. 146 p.
  2. Antonelli A., Pellegrino G., Papa G.F.S., Pellegrino R. Pitfalls in spirometry: Clinical relevance // World J. Respirol. 2014. V. 4. № 3. P. 19.
  3. Kim Y., Hyon Y.K., Lee S. et al. The coming era of a new auscultation system for analyzing respiratory sounds // BMC Pulm. Med. 2022. V. 22. № 1. P. 119.
  4. Pramono R.X.A., Bowyer S., Rodriguez-Villegas E. Automatic adventitious respiratory sound analysis: A systematic review // PLoS One. 2017. V. 12. № 5. P. 1.
  5. Ram A., Jindal G., Bagal U., Nagare G. Approaches for respiratory sound analysis in identification of respiratory diseases // Front. Biomed. Technol. 2024. V. 11. № 2. P. 286.
  6. Muthusamy P.D., Sundaraj K., Manap N.A. Computerized acoustical techniques for respiratory flow‑sound analysis: a systematic review // Artif. Intell. Rev. 2020. V. 53. P. 3501.
  7. Rao A., Huynh E., Royston T. et al. Acoustic methods for pulmonary diagnosis // IEEE Rev. Biomed. Eng. 2019. V. 12. P. 221.
  8. Gavriely N., Cugell D.W. Breath sounds methodology. Boca Raton, FL: CRC Press, 1995. 203 p.
  9. Korenbaum V.I., Pochekutova I.A., Kostiv A.E. et al. Human forced expiratory noise. Origin, apparatus and possible diagnostic applications // J. Acoust. Soc. Am. 2020. V. 148. № 6. P. 3385.
  10. Forgacs P. The functional basis of pulmonary sounds // Chest. 1978. V. 73. № 3. P. 399.
  11. Brusasco V., Crapo R., Viegi G. ATS/ERS task force: Standartisation of lung function testing // Eur. Respir. J. 2005. V. 26. № 1–5. P. 319.
  12. Mussell M.J., Nakazono Y., Miyamoto Y. Effect of air flow and flow transducer on tracheal breath sounds // Med. Biol. Eng. Comput. 1990. V. 28. № 6. P. 550.
  13. Коренбаум В.И., Почекутова И.А. Акустико-биомеханические взаимосвязи в формировании шумов форсированного выдоха человека. Владивосток: Дальнаука, 2006. 148 с.
  14. Cegla U.H. Some aspects of pneumosonography // Prog. Resp. Res. 1979. V. 11. № 10. P. 235.
  15. Mead J., Turner J.M., Macklem P.T., Little J.B. Significance of the relationship between lung recoil and maximum expiratory flow // J. Appl. Physiol. 1967. V. 22. № 1. P. 95.
  16. Коренбаум В.И., Рассказова М.А., Почекутова И.А., Фершалов Ю.Я. Механизмы шумообразования свистящих звуков, наблюдаемых при форсированном выдохе здорового человека // Акустический журнал, вып. Медицинская акустика. 2009. Т. 55. № 4–5. C. 516.
  17. Olson D.E., Hammersley J.R. Mechanisms of lung sound generation // Semin. Respir. Crit. Care Med. 1985. V. 6. № 3. P. 171.
  18. Sohn K. Airflow velocities in the airways during expiration on different end-expiratory lung volumes: Computational study / Proceedings of the 28th IEEE EMBS Annual International Conference. New York City (USA), 2006. P. 5599.
  19. Fiz J.A., Jane R., Homs A. et al. Detection of wheezing during maximal forced exhalation in patients with obstructed airways // Chest. 2002. V. 122. № 1. P. 186.
  20. Fiz J.A., Jané R., Izquierdo J. et al. Analysis of forced wheezes in asthma patients // Respiration. 2006. V. 73. № 1. P. 55.
  21. Schreur H.J.W., Diamant Z., Vanderschoot J. et al. Lung sounds during allergen-induced asthmatic responses in patients with asthma // Am. J. Respir. Crit Care Med. 1996. V. 153. № 5. P. 1474.
  22. Pasterkamp H., Consunji-Araneta R., Oh Y., Holbrow J. Chest surface mapping of lung sounds during methacholine challenge // Pediatr. Pulmonol. 1997. V. 23. № 1. P. 21.
  23. Почекутова И.А., Коренбаум В.И. Продолжительность трахеальных шумов форсированного выдоха у молодых мужчин в норме и при бронхиальной обструкции // Физиология человека. 2014. Т. 40. № 2. С. 99.
  24. Serrurier A., Neuschaefer-Rube C., Röhrig R. Past and trends in cough sound acquisition, automatic detection and automatic classification: A comparative review // Sensors (Basel). 2022. V. 22. № 8. P. 2896.
  25. Hegde S., Sreeram S., Alter I.L. et al. Rameau Cough sounds in screening and diagnostics: a scoping review // Laryngoscope. 2024. V. 134. № 3. P. 1023.
  26. Knocikova J., Korpas J., Vrabec M., Javorka M. Wavelet analysis of voluntary cough sound in patients with respiratory diseases // J. Physiol. Pharmacol. 2008. V. 59 (Suppl 6). P. 331.
  27. Hardin J.C., Patterson J.L. Monitoring the state of the human airways by analysis of respiratory sound // Acta Astronaut. 1979. V. 6. № 9. P. 1137.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».