Application of Organic Fluorophores in the Development of Drug Delivery Systems Based on Synthetic and Natural Polymers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The application of fluorescent markers in the study of nanoparticle interaction with living matter cells has proven to be a highly effective method. Numerous studies have demonstrated the rapid and efficient uptake of nanoparticles by cells, with the use of fluorescent markers in microscopic observations playing a pivotal role. These methods facilitate not only the observation of qualitative changes in fluorescence intensity but also the quantitative assessment of changes occurring during the introduction of delivery systems into the body. Synthetic dyes can be integrated into the structure of a polymer (polylactide or modified hyaluronic acid) during the production of nanoparticles with a fluorescent marker, without the formation of new chemical bonds between the fluorophore and the nanoparticle. However, the tracking of such systems is often inefficient due to poor solubility and diffusion of the components in the biological environment. Conversely, the incorporation of fluorescent tags via chemical modification of the functional groups of polymers with dyes appears to be a far more promising alternative, as it allows the production of strong conjugates that serve as markers of the system itself. Furthermore, the covalent binding of fluorophores to the polymer addresses problems such as the inaccuracy of localization associated with the release of the tag from the nanoparticle and its further penetration into non-target cells and organelles.

This review presents a detailed critical evaluation of the methods of introduction and the classes of fluorescent markers used to modify polymers, based on lactic, glycolic and hyaluronic acids, for the purpose of drug delivery.

Full Text

Restricted Access

About the authors

D. Y. Yuriev

Mendeleev University of Chemical Technology of Russia

Author for correspondence.
Email: iurev.d.i@muctr.ru
Russian Federation, Miusskaya pl., 9, Moscow, 125047

S. V. Tkachenko

Mendeleev University of Chemical Technology of Russia

Email: iurev.d.i@muctr.ru
Russian Federation, Miusskaya pl., 9, Moscow, 125047

A. G. Polivanova

Mendeleev University of Chemical Technology of Russia

Email: iurev.d.i@muctr.ru
Russian Federation, Miusskaya pl., 9, Moscow, 125047

Y. K. Kryschenko

Mendeleev University of Chemical Technology of Russia

Email: iurev.d.i@muctr.ru
Russian Federation, Miusskaya pl., 9, Moscow, 125047

M. S. Oshchepkov

Mendeleev University of Chemical Technology of Russia

Email: iurev.d.i@muctr.ru
Russian Federation, Miusskaya pl., 9, Moscow, 125047

References

  1. Zhou J., Ren T.-B., Yuan L. // Chin. Chem. Lett. 2024. V. 123. P. 110644–110655. https://doi.org/10.1016/j.cclet.2024.110644
  2. Zhang M., Jin L., Zhu Y., Kou J., Liu B., Chen J., Zhong X., Wu X., Zhang J., Ren W. // Chin. Chem. Lett. 2024. V. 34. P.110772–110780. https://doi.org/10.1016/j.cclet.2024.110772
  3. Wu P., Zuo J., Han Z., Peng X., He Z., Yin W., Feng H., Zhu E., Rao Y., Qian Z. // Biosens. Bioelectron. 2025. V. 271. P. 117039–117050. https://doi.org/10.1016/j.bios.2024.117039
  4. Mei Y., Pan X., Pan J., Zhang M., Shen H. // J. Mol. Struct. 2022. V. 1248. P. 131358–131370. https://doi.org/10.1016/j.molstruc.2021.131358
  5. Oshchepkov M., Tkachenko S., Popov K., Semyonkin A., Yuriev D., Solovieva I., Melnikov P., Malinovskaya J.A., Oshchepkov A., 2024. V. 231. P. 112386– 112397. https://doi.org/10.1016/j.dyepig.2024.112386
  6. Li X. // ACS Nano. 2022. V. 16. P. 5778–5794. https://doi.org/10.1021/acsnano.1c10892
  7. Xie Q. // ACS Appl. Bio Mater. 2022. V. 5. P. 711–722. https://doi.org/10.1021/acsabm.1c01139
  8. Yue Y., Zhao T., Wang Y., Ma. K. // Chemical Science. 2022. V. 1. P. 218–224. https://doi.org/10.1039/D1SC05484H
  9. Patterson K.N., Romero-Reyes M.A., Heemstra J.M. // ACS Omega. 2022. V. 7. P. 33046–33053. https://doi.org/10.1021/acsomega.2c03085
  10. Sharick J.T., Atieh A.J., Gooch K.J., Leigh J.K. // J. Biomed. Material. 2023. V. 111. P. 389–403. https://doi.org/10.1002/jbm.a.37460
  11. Khan M.I. // ACS Appl. Bio Mater. 2022. V. 5. P. 971– 1012. https://doi.org/10.1021/acsabm.2c00002
  12. Liu R. // Chin. Chem. Lett. 2023. V. 34. P. 107518– 107530. https://doi.org/10.1016/j.cclet.2022.05.032
  13. Liu P., Chen G., Zhang J. // Molecules. 2022. V. 27. P. 1372–1385. https://doi.org/10.3390/molecules27041372
  14. Pardeshi S.R., Nikam A., Chandak P., Mandale V., Naik J.B. // Int. J. Polymer. Mat. Polymer. Biomat. 2023. V. 72. P. 49–78. https://doi.org/10.1080/00914037.2021.1985495
  15. Makalew B.A., Abrori S.A. // OpenNano. 2025. V. 21. P. 100225–100241. https://doi.org/10.1016/j.onano.2024.100225
  16. Hou R., Zeng J., Sun H. // Allergy Med. 2025. V. 3. P. 100028–10050. https://doi.org/10.1016/j.allmed.2024.100028
  17. Sun B., Li R., Ji N., Liu H., Wang H., Chen C., Bai L., Su J., Chen J. // Mater. Today Bio. 2025. V. 30. P. 101443–101457. https://doi.org/10.1016/j.mtbio.2025.101443
  18. Malinovskaya J. // Int. J. Mol. Sci. 2023. V. 24. P. 627–651. https://doi.org/10.3390/ijms24010627
  19. El-Hammadi M.M., Arias J.L. // Nanomaterials. 2022. V. 12. P. 354–370. https://doi.org/10.3390/nano12030354
  20. Zashikhina N. // Polymers. 2022. V. 14. P. 1677– 1690. https://doi.org/10.3390/polym14091677
  21. Zielińska A. // Molecules. 2020. V. 25. P. 3731–3746. https://doi.org/10.3390/molecules25163731
  22. Kaffashi B., Davoodi S., Oliaei E. // Int. J. Pharm. 2016. V. 508. P. 10–21. https://doi.org/10.1016/j.ijpharm.2016.05.009
  23. J. Bujdák. // Springer. 2017. P. 419–465
  24. Oshchepkov A. // Adv. Opt. Mater. 2021. V. 9. P. 2001913. https://doi.org/10.1002/adom.202001913
  25. Oshchepkov M. // Mendeleev Commun. 2020. V. 30. P. 747–749. https://doi.org/10.1016/j.mencom.2020.11.019
  26. Teska P.J., Qutaishat S. // Am. J. Infect. Control. 2014. V. 42. S46. https://doi.org/10.1016/j.ajic.2014.03.120
  27. Wang C. // Proc. Natl. Acad. Sci. USA. 2019. V. 116. P. 15817–15822. https://doi.org/10.1073/pnas.1905924116
  28. Lakowicz J.R. // Boston, MA: Springer US. 2006. P. 27–61.
  29. Robin M., O’Reilly R. // Polym. Int. 2014. V. 64. P. 174–182. https://doi.org/10.1002/pi.4842
  30. Mchedlov-Petrossyan N., Cheipesh T., Roshal A. // J. Physical Chem. 2019. V. 123. P. 88860–8870. https://doi.org/10.1021/acs.jpca.9b05812
  31. Russin T., Altinoglu E., Adair J. // J. Phys. Conden. Matter. 2010. V. 22. P. 334217–33429. https://doi.org/10.1088/0953-8984/22/33/334217
  32. Klehs K., Spahn C., Endesfelder U. // Chemphyschem. 2014. V. 15. P. 637–741. https://doi.org/10.1002/cphc.201300874
  33. Ulrich G., Ziessel R. // Angewandte Chem. Internat. Ed. 2008. V. 47. P. 1184–1201. https://doi.org/10.1002/anie.200702070
  34. Zhou Q., Zhou M., Wei Y. // Physical Chem. Chem. Physics. 2017. V. 2. P. 1516–1525. https://doi.org/10.1039/C6CP06897A
  35. Geng J. // Small Weinh. Bergstr. Ger. 2013. V. 9. P. 2012–2019. https://doi.org/10.1002/smll.201202505
  36. Li K., Qin W., Ding D. // Sci. Rep. 2013. V. 3. P. 115001164. https://doi.org/10.1038/srep01150
  37. Zheng Q., Lavis L.D. // Curr. Opin. Chem. Biol. 2017. V. 39. P. 32–38. https://doi.org/10.1016/j.cbpa.2017.04.017
  38. Berlier J. E., Rothe A., Buller G. // J. Histochem. Cytochem. 2003. V. 51. P. 1699–1712. https://doi.org/10.1177/002215540305101214
  39. Surya N., Bhattacharyya S. // Pharmacy & Pharmacol. 2021. V. 9. P. 334–345. https://doi.org/10.19163/2307-9266-2021-9-5-334-345
  40. Zambaux M.F. // J. Control. Release Off. J. Control. Release Soc. 1998. V. 50. P. 31–40. https://doi.org/10.1016/s0168-3659(97)00106-5
  41. Gentile P., Chiono V., Carmagnola I., Hatton P.V. // Int. J. Mol. Sci. 2014. V. 15. P. 3640–3659. https://doi.org/10.3390/ijms15033640
  42. Lü J.-M. // Exp. Rev. Mol. Diagn. 2009. V. 9. P. 325–341. https://doi.org/10.1586/erm.09.15
  43. Li S., Johnson J., Peck A., Xie Q. // J. Transl. Med. 2017. V. 15. P. 561–673. https://doi.org/10.1186/s12967-016-1115-2
  44. Palao-Suay R. // Acta Biomater. 2017. V. 57. P. 70– 84. https://doi.org/10.1016/j.actbio.2017.05.028
  45. Yuan A. // Biomaterials. 2015. V. 51. P. 184–193. https://doi.org/10.1016/j.biomaterials.2015.01.069
  46. Xu P. // Mol. Pharm. 2009. V. 6. P. 190–201. https://doi.org/10.1021/mp800137z
  47. Freichels H., Danhier F., Préat V., Lecomte P., Jérôme C. // Int. J. Artif. Organs. 2011. V. 34. P. 152–160. https://doi.org/10.5301/ijao.2011.6420
  48. Bou S., Klymchenko A.S., Collot M. // Mater. Adv. 2021. V. 2. P. 3213–3233. https://doi.org/10.1039/D1MA00110H
  49. Mendoza G. // Nanoscale. 2018. V. 10. P. 2970–2982. https://doi.org/10.1039/C7NR07345C
  50. Reul R. // Polym. Chem. 2012. V. 3. P. 694–702. https://doi.org/10.1039/C2PY00520D
  51. Lin, W. // Int. J. Nanomedicine. 2021. V. 16. P. 2775– 2787. https://doi.org/10.2147/IJN.S301552
  52. Zhu W., Li H., Wan A., Liu L. // J. Fluoresc. 2017. V. 27. P. 287–292. https://doi.org/10.1007/s10895-016-1956-3
  53. Alwattar A. // Polym. Int. 2019. V. 68. P. 360–368. https://doi.org/10.1002/pi.5712
  54. Hohrenk L.L. // Anal. Chem. 2020. V. 92. P. 1898–1907. https://doi.org/10.1021/acs.analchem.9b04095
  55. Thomsen T., Ayoub A.B., Psaltis D., Klok H.-A. // Biomacromolecules. 2021. V. 22. P. 190–200. https://doi.org/10.1021/acs.biomac.0c00969
  56. Choi K.Y., Saravanakumar G., Park J.H., Park K. // Colloids Surf. B Biointerfaces. 2012. V. 99. P. 82–94. https://doi.org/10.1016/j.colsurfb.2011.10.029
  57. Ossipov D.A. // Exp. Opin. Drug Deliv. 2010. V. 7. P. 681–703. https://doi.org/10.1517/17425241003730399
  58. Saravanakumar G. // J. Control. Release. 2009. V. 140. P. 210–217. https://doi.org/10.1016/j.jconrel.2009.06.015
  59. Sun P., Zhang Y., Shi L., Gan Z. // Macromol. Biosci. 2010. V. 10. P. 621–631. https://doi.org/10.1002/mabi.200900434
  60. Toole B.P. // Clin. Cancer Res. 2009. V. 15. P. 7462– 7468. https://doi.org/10.1158/1078-0432.CCR-09-0479
  61. Misra S. // FEBS J. 2011. V. 278. P. 1429–1443. https://doi.org/10.1111/j.1742-4658.2011.08071.x
  62. McBride W.H., Bard J.B. // J. Exp. Med. 1979. V. 149. P. 507–515. https://doi.org/10.1084/jem.149.2.507
  63. Cerroni B., Chiessi E., Margheritelli S., Oddo L., Paradossi G. // Biomacromolecules. 2011. V. 12. P. 593–601. https://doi.org/10.1084/jem.149.2.507
  64. Qhattal H.S.S., Liu X. // Mol. Pharm. 2011. V. 8. P. 1233–1246. https://doi.org/10.1021/mp2000428
  65. Achbergerová E. // Carbohydr. Polym. 2018. V. 198. P. 339–347. https://doi.org/10.1016/j.carbpol.2018.06.082
  66. Choi K.Y. // Biomaterials. 2010. V. 31. P. 106–114. https://doi.org/10.1016/j.biomaterials.2009.09.030
  67. Kelkar S.S., Hill T.K., Marini F.C., Mohs A.M. // Acta Biomater. 2016. V. 36. P. 112–121. https://doi.org/10.1016/j.actbio.2016.03.024
  68. Cho H.-J. // Biomaterials. 2011. V. 32. P. 7181– 7190. https://doi.org/10.1016/j.biomaterials.2011.06.028
  69. Zhao L. // J. Pharm. Biomed. Anal. 2009. V. 49. P. 989–996. https://doi.org/10.1016/j.jpba.2009.01.016
  70. Huang Y. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 21529–21537. https://doi.org/10.1021/acsami.5b06799
  71. Zhao X., Jia X., Liu L. // Biomacromolecules. 2016. V. 17. P. 1496–1505. https://doi.org/10.1021/acs.biomac.6b00102
  72. Li S., Zhang J., Deng C. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 21155–21162. https://doi.org/10.1021/acsami.6b05775
  73. Shi H. // J. Mater. Chem B. 2015. V. 4. P. 113–120. https://doi.org/10.1039/C5TB02041G
  74. Beldman T.J. // ACS Nano. 2017. V. 11. P. 5785–5799. https://doi.org/10.1021/acsnano.7b01385
  75. Wang H. // Talanta. 2017. V. 171. P. 8–15. https://doi.org/10.1016/j.talanta.2017.04.046
  76. Qi B. // Theranostics. 2020. V. 10. P. 3413–3429. https://doi.org/10.7150/thno.40688
  77. Lin C.-J. // Biomaterials. 2016. V. 90. P. 12–26. https://doi.org/10.1016/j.biomaterials.2016.03.005
  78. Li K. // Biomaterials. 2015. V. 39. P. 131–144. https://doi.org/10.1016/j.biomaterials.2014.10.073
  79. Quagliariello V. // Mater. Sci. Eng. C. 2021. V. 131. P. 112475. https://doi.org/10.1016/j.msec.2021.112475
  80. Yan K., Feng Y., Gao K., Shi X. // J. Colloid Interface Sci. Academic Press. 2022. V. 606. P. 1586–1596. https://doi.org/10.1016/j.jcis.2021.08.129
  81. Zheng Z., Long X., Chen H. // Sec. Nanobiotechnology. 2022. V. 9. P. 151–160. https://doi.org/10.3389/fmolb.2022.845179

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Copolymerization of PLGA by the cycle opening method.

Download (75KB)
3. Fig. 2. Structural formulas of compounds mentioned in the review.

Download (430KB)
4. 3. Covalent modification of PLGA with 1,8-naphthalimide derivatives.

Download (135KB)
5. 4. Confocal visualization of 4T1 cells after incubation with PLGA-III nanoparticles. (a) – Combined image; (b) – PLGA-III nanoparticles; (c) – lysosomes stained with LysoTracker Red DND-99.

Download (629KB)
6. Fig. 5. Methods of covalent modification of HA structure by fluorescent markers.

Download (165KB)
7. 6. (a) is the conjugation process of HA with 5b–cholanic acid and Cy5.5 dye (Cy5.5 HA); (b) is the conjugation process of hydrophobic 5b-cholanic acid of HA with Su7.5 dye.

Download (658KB)
8. Fig. 7. Modification of GC by ceramide.

Download (552KB)
9. 8. Scheme of synthesis of HA conjugate with fluorescent polymer (PFA).

Download (241KB)
10. Fig. 9. Scheme of modification of folic acid and fluorescent marker with ethylenediamine, and their introduction into HA.

Download (376KB)
11. Fig. 10. Scheme of GC modification for cytochrome C delivery.

Download (265KB)
12. Fig. 11. Synthesis scheme of GC containing diiodostyrene-BODIPY.

Download (215KB)
13. Fig. 12. Modified HA with cholanic acid (CA).

Download (262KB)
14. 13. Scheme of synthesis of HA modified with cyclodextrin (CD) and amantadine-modified agents (Gd–DOTA and cyanine dye Cy7).

Download (404KB)
15. 14. Scheme of synthesis of HA modified with oleic acid and cypate.

Download (584KB)
16. Fig. 15. Scheme of synthesis of HA conjugates with fluorescent dyes C u 7.5 and IRDye800.

Download (538KB)
17. 16. Scheme of synthesis of HA nanoparticles with peptide and doxorubicin.

Download (515KB)
18. 17. Preparation of borated fluorescently labeled HA derivative for controlled quercetin delivery.

Download (553KB)
19. 18. Preparation of a glutathione-sensitive fluorescently labeled HA derivative.

Download (291KB)
20. Fig. 19. (a) – A general scheme for the production of glutathione-sensitive fluorescent nanoparticles based on derivatives of hyaluronic acid, dye Su5.5 and rifampicin for the diagnosis and treatment of tuberculosis. (b) is a UV-induced click reaction between hyaluronic acid derivatives during the formation of composite nanoparticles.

Download (319KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».