УЛК 541.49

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ 3*d*-МЕТАЛЛОВ С 2,4-ДИМЕТИЛПИРАЗОЛО[1,5-а]БЕНЗИМИДАЗОЛОМ: МАГНИТНЫЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА

© 2024 г. О. Г. Шакирова^{1, 2, *}, Т. А. Кузьменко³, Н. В. Куратьева¹, Л. С. Клюшова⁴, А. Н. Лавров¹, Л. Г. Лавренова^{1, **}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия
²Комсомольский-на-Амуре государственный университет, Комсомольск-на-Амуре, Россия
³Институт физической и органической химии Южного федерального университета, Ростов-на-Дону, Россия
⁴Институт молекулярной биологии и биофизики, Федеральный исследовательский центр фундаментальной и трансляционной медицины, Новосибирск, Россия

* e-mail: Shakirova_Olga@mail.ru **e-mail: ludm@niic.nsc.ru Поступила в редакцию 26.12.2023 г. После доработки 10.04.2024 г. Принята к публикации 22.04.2024 г.

Синтезированы и исследованы новые координационные соединения меди(I), меди (II), кобальта(II) и никеля(II) с 2,4-диметилпиразоло[1,5-а]бензимидазолом (L) состава [CuLCl] (I), [CuLBr] (II), [CuL_2Cl_2] (III), [CuL_2(NO_3)_2] · H_2O (IV), [CoL_2Cl_2] · 0,5H_2O (V), [CoL_2(NO_3)_2] · 0,5H_2O (VI), [NiL_2(NO_3)_2] · 0,5H_2O (VII). Соединения изучены методами ИК-спектроскопии, РФА и РСА (ССDС № 2321779 ([CuL_2Cl_2]), 2321780 ([CoL_2(NO_3)_2])). Полученные данные позволяют сделать вывод, что координационный полиэдр в исследуемых комплексах с 2,4-диметилпиразоло[1,5-а]бензимидазолом формируется за счет атомов азота монодентатно координированного лиганда и координированных анионов. На клеточной линии гепатоцеллюлярной карциномы HepG2 изучены цитотоксические и цитостатические свойства L и комплексов I—III.

Ключевые слова: синтез, координационные соединения, 3d-металлы; 2,4-диметилпиразоло[1,5-а]бензимидазол, $P\Phi A$, PCA, электронная и UK-спектроскопия, магнитная восприимчивость, исследование *in vitro*, HepG2

DOI: 10.31857/S0132344X24110033, EDN: LMVCGZ

Полиазотсодержащие гетероциклические соединения представляют собой перспективный класс лигандов для синтеза координационных соединений переходных металлов, обладающих биологической активностью [1-3]. Бензимидазол и его производные проявляют широкий спектр фармакологических свойств. Комплексообразование биологически важных органических соединений с ионами металлов позволяет значительно увеличить их эффективность в сравнении со свободным органическим лигандом. Координационные соединения переходных металлов с бензимидазолом и его производными оказывают антибактериальное, противопаразитарное, противовоспалительное, противовирусное и противоопухолевое действия [4-15]. Комплексы хлорида меди(II) с лигандами этого класса имитируют активность супероксиддисмутазы

(SOD), которая является одним из основных ферментов антиоксидантной системы. Металлоферменты, среди которых значительной активностью обладает Cu,Zn-SOD, катализируют реакцию диспропорционирования супероксидных анион-радикалов и уменьшают вероятность образования еще более активного синглетного кислорода [16, 17]. Кроме того, SOD играет важную роль в антивозрастных механизмах [18, 19].

Ранее в нашей группе получена серия комплексов галогенидов меди(II) с 4*H*-1,2,4-триазоло[1,5-а] бензимидазолом, 3-метил-1,2,4-триазоло[1,5-а] бензимидазолом, 4-метил-1,2,4-триазоло[1,5-а] бензимидазолом, 2,4-диметил-1,2,4-триазоло[1,5-а] бензимидазолом, 2-метил-1,2,4-триазоло[1,5-а] бензимидазолом и 2-(3,5-диметилпиразол-1-ил) бензимидазолом. Изучено цитотоксическое действие комплексов и лигандов на клеточную линию

Нер-2. Показано, что комплексообразование меди(II) с данными лигандами приводит к значительному усилению их цитотоксичности [20—24]. Полученный комплекс [CuLCl $_2$] с 2-(3,5-диметилпиразол-1-ил)бензимидазолом по цитотоксическому воздействию сопоставим с цисплатином [24]. Представлялось целесообразным продолжить исследования в этом направлении.

Цель настоящей работы — получение новых координационных соединений меди(II), кобальта(II) и никеля(II) и исследование их биологической и магнитной активности. В качестве лиганда для синтеза использовали 2,4-диметилпиразоло[1,5-а]бензимидазол (L, схема 1).

Схема 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза использовали коммерчески доступные реагенты и растворители без дополнительной очистки. 2,4-Диметилпиразоло[1,5-а] бензимидазол (L, $C_{11}H_{11}N_3$) получали по методике [25].

Синтез [CuLCl] (I). Навески $0.19 \, \Gamma \, (1.0 \, \text{ммоль})$ лиганда L и $0.17 \, \Gamma \, (1.0 \, \text{ммоль})$ CuCl $_2 \cdot 2H_2O$ растворяли отдельно в 5 мл этанола. Раствор соли прибавляли к раствору лиганда, при этом образовывался раствор фиолетового цвета, из которого быстро выпадал белый осадок. Осадок отфильтровывали, промывали несколько раз этанолом и высушивали на воздухе. Аналогично высушивали все полученные соединения. Выход $0.08 \, \Gamma \, (28\%)$.

Синтез [CuLBr] (II). Навески $CuBr_2$ 0.22 г (1.0 ммоль) и лиганда L 0.37 г (2.0 ммоль) растворяли отдельно в 5 мл этанола или ацетона. Затем к раствору лиганда приливали раствор $CuBr_2$ в этаноле или ацетоне (5 мл). При любом соотношении металл: лиганд и в обоих растворителях бурый раствор сразу обесцвечивался, и из него выпадал белый осадок, который отфильтровывали и промывали несколько раз соответствующим растворителем. Выход 0.30—0.32 г (91—97%) в этаноле, 0.18—0.20 г (55—61%) в ацетоне.

Синтез [CuL₂Cl₂] (III). Навеску лиганда L (0.09 г (0.5 ммоль) растворяли в ацетоне (5 мл). К раствору L приливали раствор 0.19 г (1.0 ммоль) CuCl₂ · $2H_2O$ в ацетоне (5 мл). Образовался раствор темно-красного цвета. Выпадал серо-черный осадок, когда объем раствора уменьшился вдвое при медленном упаривании ацетона. Осадок отфильтровывали, промывали несколько раз ацетоном (цвет осадка не менялся) и высушивали на воздухе. Выход 0.17 г (67%). В маточном растворе при стоянии в течение ночи образовались пригодные для PCA темно-красные кристаллы состава [CuL₂Cl₂] (III).

Синтез [CuL₂(NO₃)₂] · H₂O (IV), [CoL₂Cl₂] · 0,5H₂O (V), [CoL₂(NO₃)₂] · 0,5H₂O (VI), [NiL₂(NO₃)₂] · 0,5H₂O (VII). Навеску лиганда L 0.37 г (2.0 ммоль) растворяли в 5 мл ацетона. К полученному раствору L приливали раствор 0.24 г (1.0 моль) $CoCl_2 \cdot 6H_2O$ или 0.29 г $Co(NO_3)_2 \cdot 6H_2O$ или 0.29 г $Ni(NO_3)_2 \cdot 6H_2O$ или 0.24 г $Cu(NO_3)_2 \cdot 3H_2O$ в 5 мл ацетона. При этом образовывались растворы коричневого (IV), синего (V), сиреневого (VI) или светло-зеленого (VII) цвета, из которых быстро выпадали осадки, совпадающие с цветом раствора. Осадок отфильтровывали и промывали несколько раз этанолом. Выходы IV — 0.30 г (52%); V — 0.37 г (72%); VI — 0.33 г (59%); VII — 0.20 г (36%).

Элементный анализ на С, Н, N выполняли в аналитической лаборатории ИНХ СО РАН на приборе EURO EA 3000 фирмы EuroVector (Италия). Результаты анализа приведены в табл. 1.

PCA структур [CuL₂Cl₂] и [CoL₂(NO₃)₂] проведен по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius Х8Арех, оснащенном двухкоординатным ССD детектором, при температуре 150 К с использованием молибденового излучения ($\lambda = 0.71073 \text{ Å}$) и графитового монохроматора. Интенсивности отражений измерены методом φ- и ω-сканирования узких (0.5°) фреймов. Поглощение учтено эмпирически по программе SADABS [26]. Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELXTL [27]. Атомы водорода уточнены в приближении жесткого тела. Кристаллографические данные и параметры эксперимента приведены в табл. 2, основные межатомные расстояния и валентные углы — в табл. 3.

Кристаллографические параметры структур $[CuL_2Cl_2]$ и $[CoL_2(NO_3)_2]$ депонированы в Кембриджском банке структурных данных

Таблица 1. Результаты элементного анализа комплексов I–VII

Coommonio	Farmer de autore	Найдено/вычислено, %				
Соединение	Брутто-формула	C	Н	N		
[CuLCl] (I)	C ₁₁ H ₁₁ ClCuN ₃	46.1/46.5	3.8/3.9	14.5/14.8		
[CuLBr] (II)	$C_{11}H_{11}BrCuN_3$	40.7/40.2	3.4/3.4	12.4/12.8		
$[CuL_2Cl_2]$ (III)	$C_{22}H_{22}Cl_2CuN_6$	53.5/52.3	4.5/4.4	16.4/16.6		
$[CuL_2(NO_3)_2] \cdot H_2O$ (IV)	$C_{22}H_{24}CuN_8O_7$	46.4/45.9	4.0/4.2	19.3/19.5		
$[CoL_2Cl_2] \cdot 0.5H_2O(V)$	$C_{22}H_{23}Cl_2CoN_6O_{0.5}$	53.7/51.9	4.4/4.6	16.4/16.5		
$[CoL_2(NO_3)_2] \cdot 0.5H_2O(VI)$	$C_{22}H_{22}CoN_8O_{6.5}$	47.6/47.0	4.0/4.1	19.9/19.9		
$[NiL_2(NO_3)_2] \cdot 0.5H_2O \text{ (VII)}$	$C_{22}H_{22}NiN_8O_{6.5}$	48.6/47.0	4.1/4.1	19.7/19.9		

Таблица 2. Кристаллографические данные, параметры эксперимента и уточнения структуры комплексов $[CuL_2Cl_2]$ и $[CoL_2(NO_3)_2]$

	Значение			
Параметр	[CuL ₂ Cl ₂]	$[CoL_2(NO_3)_2]$		
Брутто-формула	$C_{22}H_{22}Cl_2CuN_6$	$C_{22}H_{22}CoN_8O_6$		
M	504.89	553.40		
Сингония	Моноклинная	Триклинная		
Пр. группа	C2/c	$P\overline{1}$		
a, Å b, Å c, Å α, β, γ	14.1769(8) 7.9398(4) 20.1106(14) 90 108.566(2) 90	7.8732(3) 10.6968(4) 15.1802(6) 87.907(2) 75.202(2) 68.805(1)		
Объем, Å ³	2145.9(2)	1150.22(8)		
Z	4	2		
ρ(выч.), г/см ³	1.563	1.598		
$\mu(MoK_{\alpha}), MM^{-1}$	1.290	0.805		
F(000)	1036	570		
Размер кристалла, мм	$0.42 \times 0.35 \times 0.08$	$0.30 \times 0.21 \times 0.09$		
Диапазон сбора данных по θ	2.137-26.363	1.390-26.420		
Диапазон индексов h, k, l	$ -17 \leqslant h \leqslant 17 -6 \leqslant k \leqslant 9 -25 \leqslant l \leqslant 25 $	$-9 \le h \le 9$ $-13 \le k \le 13$ $-18 \le l \le 18$		
Число измеренных рефлексов	7630	9166		
Число независимых рефлексов (R_{int})	2183 (0.0316)	4652 (0.0345)		
Полнота сбора данных по $\theta = 25.25^{\circ}$, %	99.6	98.9		
Число рефлексов/огр./параметров	2183/0/143	4652/0/339		
S -фактор по F^2	1.036	1.054		
R_1 , wR_2 $(I > 2\sigma(I))$	0.0469, 0.1172	0.0437, 0.0851		
R_1 , wR_2 (все данные)	0.0545, 0.1218	0.0562, 0.0889		
Остаточная электронная плотность (max/min), e/Å ³	1.475/-0.510	0.633/-0.421		

(№ CCDC2321779 и 2321780 соответственно; www.ccdc.cam.ac.uk/data_reguest/cif).

Дифрактометрическое исследование (РФА) поликристаллических соединений выполнено на дифрактометре Shimadzu XRD7000 (излучение CuK_{α} , Ni-фильтр, сцинтилляционный детектор) при комнатной температуре.

ИК-спектры поглощения снимали на спектрометрах ScimitarFTS2000 и Vertex 80 в области $4000-100~{\rm cm}^{-1}$. Образцы готовили в виде пасты в вазелиновом или фторированном маслах и полиэтилене при комнатной температуре.

Спектры диффузного отражения регистрировали на сканирующем спектрофотометре

[CuL₂Cl₂] $[CoL_2(NO_3)_2]$ d, Å d, Å Cu(1)-N(1)1.975(3) Co(1)-N(11)2.051(2) $Cu(1)-N(1)^{#1}$ 1.975(3) Co(1)-O(11)2.0525(19) Cu(1)-Cl(1)#1 2.2676(8) Co(1)-N(21)2.060(2)2.089(2) Cu(1)-Cl(1) 2.2676(8) Co(1)-O(22) Co(1)-O(21) 2.256(2) Co(1)-O(12) 2.308(2)

Таблица 3. Основные межатомные расстояния (d, Å) координационных узлов в структурах комплексов $[CuL_2Cl_2]$ и $[CoL_2(NO_3)_2]^*$

UV-3101 PC фирмы Shimadzu при комнатной температуре.

Измерения магнитных свойств проводили на SQUID-магнетометре MPMS-XL фирмы Quantum Design в интервале температур 1.77-300 K и магнитных полей H 0-10 к Θ . Для определения парамагнитной составляющей молярной магнитной восприимчивости ($\chi_n(T)$), из измеренных значений полной восприимчивости $\chi = M/H$ (M = намагниченность) вычитали вклады диамагнетизма χ_d и возможного ферромагнетизма микропримесей χ_{FM} . Температурно-независимый вклад χ_d вычисляли согласно аддитивной схеме Паскаля. Для определения ферромагнитного вклада х_{гм} проводили измерения полевых зависимостей M(H) и температурных зависимостей M(T) при различных значениях магнитного поля, после чего полная намагниченность образца разделялась на ферромагнитную и парамагнитную компоненты. Для исследованного образца ферромагнитный вклад в намагниченность при H = 10 к не превышал 0.01 и 2% при T = 1.77 и 300 K соответственно.

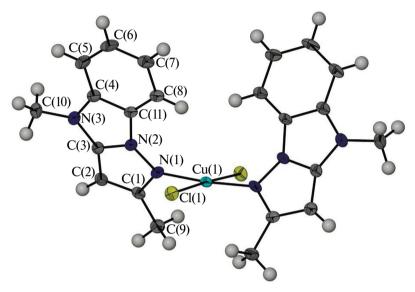
Цитотоксическую и цитостатическую активность синтезированных соединений оценивали на клеточной линии гепатоцеллюлярной карциномы человека HepG2 методом двойного окрашивания флуоресцентными красителями Hoechst 33342/ пропидий йодид (PI) [28]. Клетки высевали на 96-луночные планшеты по 5×10^3 клеток на лунку в питательной среде ІМОМ (Sigma-Aldrich, США) с 10%-ным содержанием эмбриональной бычьей сыворотки (HyClone, США) и культивировали 24 ч в стандартных условиях (влажная атмосфера, 5% CO₂, 37°C). Комплексы растворяли в этаноле с добавлением ДМСО и готовили рабочие растворы методом серийных разведений средой IMDM, конечная концентрация EtOH < 1%. Клетки обрабатывали соединениями $(1-50 \text{ мкмоль } \pi^{-1})$, инкубировали в течение 48 ч и окрашивали Hoechst 33342 (Sigma-Aldrich, Швейцария) и пропидием

йодидом (Invitrogen, США) в течение 30 мин при 37°С. Съемку проводили на приборе IN Cell Analyzer 2200 (GE Healthcare, UK) в автоматическом режиме по 4 поля на лунку. Полученные изображения анализировали с помощью программы In Cell Investigator (GE Healthcare, UK) для определения живых, мертвых и апоптотических клеток во всей популяции. Результат представлен в виде процентного содержания клеток из трех лунок ± среднеквадратическое отклонение.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Координационные соединения Cu(II), Co(II), Ni(II) I–VII получены при взаимодействии этанольных или ацетоновых растворов солей и L. В этанольной среде комплексообразование сопровождается процессом восстановления меди(II) до меди(I), что позволяет выделить комплексы [CuLCI] (I) и [CuLBr] (II).

Все полученные комплексы на воздухе и при комнатной температуре устойчивы в течение длительного времени и негигроскопичны. Они хорошо растворимы в ацетоне, хлористом метилене, значительно хуже — в этаноле и практически нерастворимы в воде.

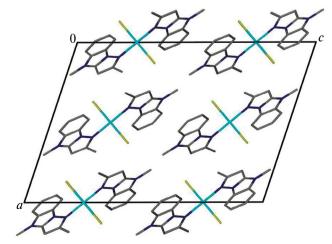

При соотношении Cu:L=1:2 из раствора выделен темно-серый осадок, который по результатам измерения магнитной восприимчивости содержит ионы как меди(I), так и меди (II). В процессе восстановления меди(II) некоторое количество лиганда окисляется и одновременно с этим претерпевает конденсацию с растворителем (схема 2) с образованием 1-(2,4-диметил-пиразоло[1,5-а]бензимидазол-3-ил)этанон) (L^* , $C_{13}H_{13}N_3O$).

После отфильтровывания полученного темно-серого осадка в маточном растворе при стоянии в течение суток образовались пригодные

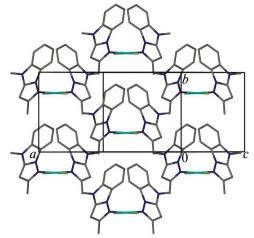
^{*}Оператор симметрии: $(x+1, y, -z + \frac{1}{2})$.

$$\begin{array}{c} \text{CH}_{3} \\ \text{+CuCl}_{2}, +\text{C}_{2}\text{H}_{5}\text{OH} \\ \text{-CuCl}, -\text{HCl} \end{array}$$

Схема 2. Превращение 2,4-диметилпиразоло[1,5-а]бензимидазола в 1-(2,4-диметилпиразоло[1,5-а]бензимидазол-3-ил)этанон).

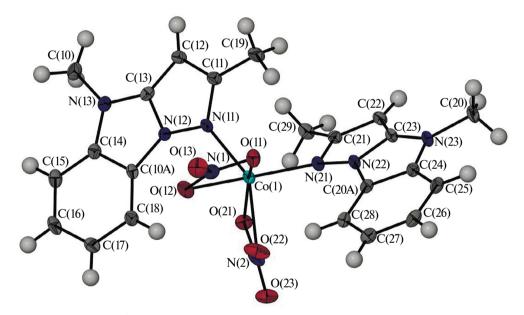

Рис. 1. Молекулярная структура комплекса [CuL_2Cl_2].

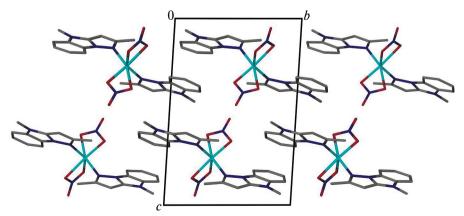
для PCA темно-красные кристаллы состава $[CuL_2Cl_2]$ (III) (см. табл. 1, рис. 1).


По данным РСА, комплекс III кристаллизуется в моноклинной сингонии (табл. 2). В независимой части ячейки присутствует половина молекулярного комплекса III, положение атома Си совпадает с осью 2 вдоль параметра b (рис. 2). Структура островная молекулярная. Нейтральный молекулярный комплекс [CuL₂Cl₂] содержит катион Cu²⁺, два координированных аниона Cl⁻ и две молекулы лиганда L, координированные к иону Cu²⁺ монодентатно атомом азота пиразольного кольца. Координационный полиэдр Cu²⁺ плоский искаженно-квадратный (рис. 1), преимущественно искажение обусловлено разной длиной контактов Cu—Cl и Cu—N (табл. 3), тогда как углы ClCuN близки к 90° .

Упаковку молекулярных комплексов можно представить как искаженную гексагональную шаровую упаковку типа ABAB вдоль параметра c (рис. 3). Расстояния Си...Си внутри такого псевдогексагонального слоя изменяются в диапазоне 7.940—8.124(1) Å, а углы CuCuCu

ближайших центров комплексных частиц — в диапазоне 58.5°—60.75°, что говорит о малом искажении упаковки согласно внешней форме частиц. В структуре также наблюдается согласование ориентации плоских частей органических

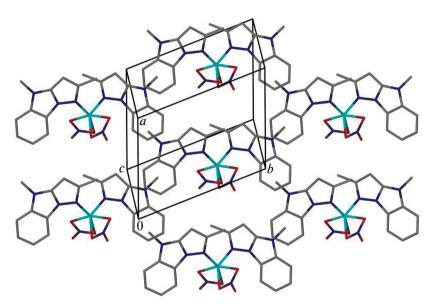

Рис. 2. Кристаллическое строение комплекса [CuL₂Cl₃].


Рис. 3. Гексагональный мотив упаковки молекулярных комплексов [CuL_2Cl_2], показанный в плоскости ab (атомы H опущены для ясности).

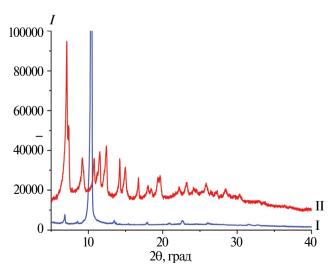
лигандов соседних молекулярных комплексов, но полноценного стекинга не наблюдается из-за значительного смещения ароматических систем друг относительно друга.

При перекристаллизации $[CoL_2(NO_3)_2]$ · 0,5 H_2O (VI) из ацетона удалось получить монокристаллы безводного комплекса, пригодные для рентгеноструктурного анализа. По данным PCA, комплекс $[CoL_2(NO_3)_2]$ кристаллизуется в триклинной сингонии (табл. 2). В независимой части ячейки присутствует полная молекула комплекса, находящаяся в общем положении пространственной группы (рис. 4). Структура также является островной молекулярной, как и в случае комплекса III (рис. 5). Псевдооктаэдрический координационный узел CoN_2O_4 формируется двумя молекулами лиганда L,

Рис 4. Молекулярное строение комплекса [$CoL_2(NO_3)_2$].


Рис. 5. Кристаллическое строение комплекса [$CoL_2(NO_3)_2$].

координированными к иону Co²⁺ монодентатно атомом азота пиразольного кольца и двумя бидентатно связанными нитрат-ионами (рис. 4).


Упаковку молекулярных фрагментов также можно описать как сильно искаженную гексагональную вдоль параметра *c*, но в данном случае типа AAAA (рис. 6), с расстояниями между центрами молекулярных комплексов 7.873—10.748 Å. Стекинг в данном случае также затруднен из-за значительного смещения ароматических фрагментов соседних молекулярных комплексов и наличия неплоских метильных заместителей именно со стороны возможного стекинга.

Анализ данных РФА свидетельствует о том, что все комплексы кристаллические (рис. 7, 8). Вместе с тем, комплексы с одинаковым числом лигандов состава [CuLA] ($A = Cl^-, Br^-$) и [ML₂A₂] ($M = Co, Ni, Cu; A = Cl^-, NO_3^-$) не изоструктурны.

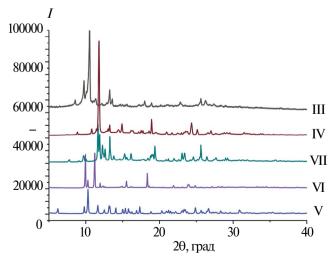

В ИК-спектре L присутствуют полосы валентных колебаний ν (C–H) в диапазоне 3200—2800 см⁻¹ и чувствительных к координации колебаний пиразоло[1,5-а]бензимидазольного остова при 1690—1400 см⁻¹. В спектрах синтезированных комплексов хлоридов меди валентные колебания пиразольного и имидазольного колец смещены на ~30 см⁻¹ в высокочастотную область относительно валентных колебаний в молекуле L,

Рис. 6. Гексагональный мотив упаковки молекулярных комплексов $[CoL_2(NO_3)_2]$, показанный в плоскости ab (атомы H опущены для ясности).

Рис. 7. Дифрактограммы комплексов состава [CuLHal].

Рис. 8. Дифрактограммы комплексов состава $[ML_2A_3]$.

что свидетельствует о координации атомов азота пиразольного кольца к металлу [29] (табл. 4). Следует отметить, что полосы колебаний нитратиона (v_5 в интервале 1620-1490 см $^{-1}$, v_1 в интервале 1290-1160 см $^{-1}$, v_2 в интервале 1040-990см $^{-1}$) полностью перекрываются полосами колебаний гетероциклов R и $\delta(C-H)$, что не позволяет, по данным ИК-спектроскопии, сделать вывод о способе координации этого аниона.

В спектре L в низкочастотном диапазоне $(400-100~{\rm cm^{-1}})$ проявляются полосы деформационных колебаний лиганда $\delta(C-H)$ (429, 363, 322, 288, 238, 194, 142, 110 cm⁻¹), которые в спектрах комплексов I–III смещаются весьма незначительно (~3–5 cm⁻¹). Кроме того, в спектрах комплексов I–III присутствуют малоинтенсивные полосы, соответствующие колебаниям связей $\nu(Cu-N)$ при 400 cm⁻¹ (для I и III) или при 394 см⁻¹ (для II); $\delta(Cu-N)$ при 247 см⁻¹ (для I и III) или при 248 см⁻¹ (для III); а также полосы валентных колебаний концевых связей

что свидетельствует о координации атомов азо- Cu—Cl при 280 (I) или 282 см $^{-1}$ (III) и Cu—Br при та пиразольного кольца к металлу [29] (табл. 4). 223 см $^{-1}$ (II).

В электронных спектрах диффузного отражения комплексов V–VII (табл. 5) в диапазоне 200—1000 нм наблюдаются широкие полосы поглощения, положение которых характерно для спектров комплексов кобальта(II) и никеля(II) с азотсодержащими лигандами [30].

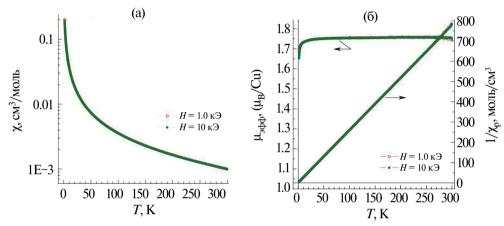
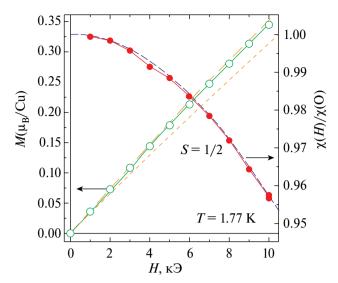

Полученные данные позволяют сделать вывод о том, что комплекс V имеет тетраэдрическое строение, а комплексы нитратов Co(II) иNi(II) — искаженно-октаэдрическое строение координационного полиэдра. Для этих комплексов рассчитаны параметры расщепления в кристаллическом поле. Для комплекса V оценка проводилась с использованием Приложения V из монографии [30] (таблица V.1); получены значения $B = 830 \text{ см}^{-1}$ и $10\text{Dq} = 7473 \text{ см}^{-1}$. Для VI значение 10Dq рассчитано из условия $v_1 = 8.8\text{Dq}$ и составляет 12153 см^{-1} , для VII значение $10\text{Dq} = v_1 = 10846 \text{ см}^{-1}$. Величины параметров Dq

Таблица 4. Волновые числа (частоты, см⁻¹) максимумов полос поглощения в ИК-спектрах L и комплексов I–VII

Отнесение	L	I	II	III	IV	V	VI	VII
ν (O–H)					3415	3445	3437	3437
$v(C_{ring}-H)$	3125, 3019	3125, 3017	3125, 3061	3076, 3017	3142, 3057	3175	3180	3175
v_{as} (CH ₃)	2924	2905	2906	2914	2940	2926	2923	2922
$\overline{v_{s}\left(\mathrm{CH}_{3}\right) }$	2854	2848	2851	2841	2820	2854	2853	2851
ν (C–H)	2726, 2675	2716, 2648	2718, 2658	2712, 2635	2749, 2714, 2637	2726, 2672	2726, 2676	2725, 2675
R(bz)	1622	1620	1626	1623	1655, 1603	1622	1625	1621
R(pz)	1558	1585	1591, 1558	1595, 1585	1587	1598	1592	1595
R(im)	1464	1471	1468	1470, 1454	1485, 1477, 1469	1483	1478	1484
δ(C-H) плоскостное ножничное (scissoring)	1377, 1304, 1265	1352	1377, 1350, 1321, 1279, 1240, 1207	1373, 1339, 1321, 1277, 1236	1362, 1346, 1269	1377, 1320	1377, 1305	1377, 1304, 1265
δ (C-H) внеплоскостное крутильное (twisting)	1143, 1100, 1073	1128	1169, 1124, 1078, 1061, 1017	1163, 1126, 1045	1169, 1128, 1064, 1042, 1013	1162	1154	1153
δ (С–Н) внеплоскостные маятниковые	966, 920, 880	918	949, 912	968	920, 868	969		969
δ (C-H) плоскостные маятниковые (rocking)	722, 611	735, 610	725	727	739, 685, 644, 607	722	722	722

Соединение	λ, нм	ν, cm ⁻¹	Отнесение
$\boxed{\left[\text{CoL}_{2}\text{Cl}_{2}\right]\cdot0.5\text{H}_{2}\text{O (V)}}$	446	$v_3 = 22420$	$^{4}A_{2}^{\rightarrow 4}T_{1}(P)$
	807	$v_2 = 12390$	${}^{4}A_{2} \rightarrow {}^{4}T_{1}(F)$
$\overline{\left[\text{CoL}_{2}(\text{NO}_{3})_{2}\right]\cdot0.5\text{H}_{2}\text{O (VI)}}$	433	$v_3 = 23095$	${}^4T_{1g}(F) \rightarrow {}^4T_{1g}(P)$
	660	$v_2 = 15150$	$^4T_{1g}(F) \rightarrow ^4A_{2g}$
	935	$v_1 = 10695$	$^4T_{1g}(F) \rightarrow ^4T_{2g}$
$\overline{\left[\text{NiL}_{2}(\text{NO}_{3})_{2}\right]\cdot0.5\text{H}_{2}\text{O (VII)}}$	395	$v_4 = 25316$	$^{3}\text{A}_{2g} \rightarrow ^{3}T_{1g}(P)$
	510	$v_3 = 19610$	$^{3}\text{A}_{2g} \rightarrow ^{3}T_{1g}$
	665	$v_2 = 15038$	$^{3}\text{A}_{2\text{g}}^{\rightarrow 1}E_{\text{g}}$
	922	$v_1 = 10846$	$^{3}\mathbf{A}_{2} \rightarrow ^{3}T_{2}$

Таблица 5. Параметры спектров диффузного отражения комплексов V–VII


Рис. 9. Температурные зависимости магнитной восприимчивости образца III, измеренные в магнитных полях H=1, 10 k Θ (a); температурные зависимости обратной восприимчивости $1/\chi_p$ и эффективного магнитного момента μ_{eff} , рассчитанного в приближении невзаимодействующих ионов ($\theta=0$) (б).

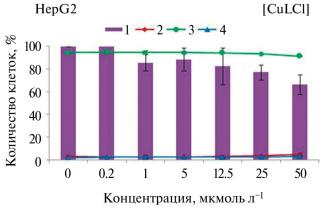
указывают на то, что в координационные узлы VI, VII входят как атомы азота, так и атомы кислорода. Это подтверждается данными PCA для комплекса [$CoL_2(NO_3)_2$].

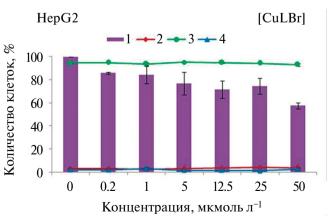
Магнетохимическое исследование образца III демонстрирует парамагнитное поведение во всем исследованном диапазоне температур 1.77—300 К (рис. 9). В интервале T=20—300 К, температурная зависимость магнитной восприимчивости, измеренная в полях H=1, 10 кЭ, хорошо описывается формулой Кюри—Вейсса $\chi_p(T)=N_A$ $\mu^2_{\rm эфф}/3k_{\rm B}(T-\theta)$ с эффективным магнитным моментом $\mu_{\rm эфф}\approx 1.76$ $\mu_{\rm B}$ и константой Вейсса $\theta\approx -0.4$ К. Полученная величина $\mu_{\rm эфф}$ близка к теоретическому чисто спиновому значению $\mu_{\rm эфф}$ (Cu²+) ≈ 1.73 $\mu_{\rm B}$ для ионов меди Cu²+ (S=1/2), а значение константы Вейсса соответствует слабому антиферромагнитному ($\mathbf{A}\mathbf{\Phi}\mathbf{M}$) обменному взаимодействию J между ионами меди Cu²+. В модели среднего поля для изотропного обменного взаимодействия величина θ описывается выражением $\vartheta=zJ\frac{2S(S+1)}{3k_{\rm B}}$,

где z — число ближайших соседей в магнитной подрешетке, $k_{\rm B}$ — константа Больцмана. Соответственно, в этом приближении значение $zJ/k_{\rm B}\approx 0.8~{\rm K}.$

Детальный анализ данных $\chi_p(T)$ в области низких температур показывает, что при $T \le 20 \text{ K}$ магнитная восприимчивость отклоняется от зависимости Кюри-Вейсса в сторону больших значений, что обычно указывает на одномерный цепочечный характер обменных взаимодействий [31]. Действительно, кривая $\chi_{n}(T)$ в широком диапазоне 1.77-300 К температур лучше согласуется не с зависимостью Кюри-Вейсса, а с выражением Бонне-Фишера [32] для антиферромагнитных S = 1/2 цепочек, описываемых гамильтонианом $H = J_{ch} \sum \vec{S}_i \cdot \vec{S}_{i+1},$ с параметром $J_{\rm ch}/k_{\rm B}\approx 0.5~{
m K},$ характеризующим обменное взаимодействие между ионами Cu²⁺ внутри цепочки. Такое магнитное поведение может указывать на особенность упаковки молекул комплекса в решетке кристалла, при которой

Рис. 10. Полевые зависимости намагниченности M и нормированной восприимчивости $\chi(H)/\chi(0)$ образца III. Штриховыми линиями показана аппроксимация данных теоретической зависимостью для системы парамагнитных центров ($S=1/2,\,g=2.1$) с изотропным АФМ взаимодействием $zJ/k_{\rm B}=0.30$ К. Для сравнения пунктирной линией показана теоретическая намагниченность системы таких же парамагнитных центров с $zJ/k_{\rm B}=0.8$ К ($\theta\approx-0.4$ K).


обменное взаимодействие между ионами Cu²⁺ осуществляется преимущественно лишь вдоль одного кристаллографического направления.


Дополнительную информацию о магнитном состоянии ионов меди в образце III можно получить из полевой зависимости намагниченности (рис. 10). Полученные данные M(H) и нормированной восприимчивости $\chi(H)/\chi(0)$ соответствуют поведению ионов Cu^{2+} со слабым антиферромагнитным взаимодействием между ними и могут быть хорошо описаны (штриховые линии) теоретической зависимостью для системы парамагнитных центров (S=1/2,

g = 2.1) с изотропным АФМ-взаимодействием $zJ/k_{\rm R} = 0.30$ К. Следует отметить, что при аппроксимации высокотемпературных данных зависимостью Кюри-Вейсса было получено значение $zJ/k_{\rm B} = 0.80$ K, при использовании которого модель изотропного АФМ-обмена дала бы значительно заниженные значения намагниченности (пунктирная линия на рис. 10). Таким образом, измеренная полевая зависимость намагниченности также свидетельствует о существенном (более чем в 2.5 раза) уменьшении эффективного значения J при низкой температуре, что подтверждает преимущественно одномерный характер обменного взаимодействия в кристалле III. Анизотропия обменного взаимодействия в кристалле III может быть связана с частичным стекингом плоских частей органических лигандов соседних молекул, но измеренная величина Jслишком мала, чтобы исключить другие возможности и сделать достоверные выводы о механизме АФМ-взаимодействия.

Изучение влияния соединений на жизнеспособность клеток гепатоцеллюлярной карциномы HepG2 после 48 ч воздействия показало, что лиганд и комплексы $[CuL_2Cl_2]$ (кристаллы) и [CuLCl] (порошок) не проявляют цитотоксической активности, однако при воздействии максимальной исследуемой концентрации 50 мкмоль/л лиганда и хлоридов меди(I) и меди(II) количество клеток после инкубации с соелинениями снижено на ≅30% по сравнению с контролем, что свидетельствует о наличии цитостатического эффекта (рис. 11). Для комплекса [CuLBr] цитостатический эффект наблюдался для минимальной исследованной концентрации 0.2 мкмоль/л, количество клеток снижено на ≅10% по сравнению с контролем.

В аналогичных условиях эксперимента классические препараты карбоплатин и цисплатин

Рис. 11. Влияние исследуемых соединений на жизнеспособность клеток HepG2: 1 — количество клеток, 2 — мертвые клетки, 3 — живые клетки, 4 — апоптотические клетки.

оказывают существенное влияние на клетки HepG2 по сравнению с новыми комплексами. Значения LC₅₀ (концентрация препарата, при воздействии которой количество живых клеток снижено на 50% по сравнению с контролем) и ІС₅₀ (концентрация препарата, при воздействии которой общее количество клеток снижено на 50% по сравнению с контролем) равны для карбоплатина 32 ± 2 мкмоль/л и 3.6 ± 0.2 мкмоль/л соответственно, и для цисплатина 33 \pm 5 мкмоль/л и 3.6 \pm 0.2 мкмоль/л соответственно [28]. Поскольку клеточная линия НерG2 является опухолевой, то экспрессия и активность некоторых ферментов, таких как СҮР2С9, СҮР2С19 и СҮР3А4, участвующих в метаболизме ксенобиотиков, в этих клетках значительно ниже по сравнению с экспрессией и активностью этих ферментов из неопухолевых образцов печени человека [33-36]. Однако клетки HepG2 часто используют для оценки in vitro потенциальной гепатотоксичности новых молекул на этапах первичного скрининга [37]. В некоторых случаях препараты карбоплатин [38] и цисплатин [39] демонстрируют гепатотоксичность, поэтому результаты данного исследования могут свидетельствовать об отсутствии потенциальной гепатотоксичности новых комплексов.

Таким образом, синтезированы и охарактеризованы новые комплексы меди(I), меди(II), кобальта(II) и никеля(II) с 2,4-диметилпиразоло[1,5-а]бензимидазолом. На клетках HepG2 показано, что в диапазоне концентраций от 0,2 до 50 мкмоль/л лиганд и комплексы хлорида и бромида меди(I) и меди(II) не проявляют цитотоксическую активность, но оказывают цитостатический эффект на клетки. Наиболее выраженным цитостатическим эффектом обладает комплекс [CuLBr].

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Авторы благодарят А.А. Шаповалову за съемку ИК-спектров и И.В. Юшину за съемку спектров диффузного отражения. Работа по изучению цитотоксических и цитостатических свойств соединений выполнена с использованием оборудования ЦКП "Протеомный анализ" на базе ФИЦ ФТМ.

ФИНАНСИРОВАНИЕ

Работа поддержана Министерством науки и высшего образования Российской Федерации

(проекты № 121031700313-8 и 121031700314-5). Работа по исследованию биологической активности выполнена по государственному заданию ФИЦ ФТМ по теме НИР, номер государственной регистрации 122032200236-1.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Селиванова Г.А.*, *Третьяков Е.В.* // *Изв.* АН. Сер. хим. 2020. № 5. С. 838. https://doi.org/10.1007/s11172-020-2842-3 (*Selivanova G.A.*, *Tretyakov E.V.* // Russ. Chem. Bull. 2020. V. 69. № 5. P. 838). https://doi.org/10.1007/s11172-020-2842-3
- 2. Прошин А.Н., Трофимова Т.П., Зефирова О.Н. и др. // Изв. АН. Сер. хим. 2021. № 3. С. 510). https://doi.org/10.1007/s11172-021-3116-4 (*Proshin A. N., Trofimova T.P., Zefirova O.N. et al.* // Russ. Chem. Bull. 2021. V. 70. № 3. P. 51). https://doi.org/10.1007/s11172-021-3116-4]
- 3. Кокорекин В.А., Ходонов В.М., Неверов С.В. и др. // Изв. АН. Сер. хим. 2021. № 3. С. 600). https://doi.org/10.1007/s11172-021-3131-5 (Kokorekin V.A., Khodonov V.M., S.V. Neverov S.V. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. С. 600). https://doi.org/10.1007/s11172-021-3131-5
- 4. *Sadaf H.*, *Fettouhi M.*, *Fazal A. et al.* // Polyhedron. 2019. V. 70. P. 537. https://doi.org/10.1016/j.poly.2019.06.025
- 5. Muñoz-Patiño N., Sanchez-Eguia B.N., Araiza-Olivera D. et al. // J. Inorg. Biochem. 2020. V. 211. P. 111198). https://doi.org/10.1016/j.jinorgbio.2020.111198
- ChkirateK., KarrouchiK., DedeN. et al. // New J. Chem. 2020. V. 44. P. 2210. https://doi.org/10.1039/C9NJ05913J
- 7. Masaryk L., Tesarova B., Choquesillo-Lazarte D. et al. // J. Inorg. Biochem. 2021. V. 217. P. 111395). https://doi.org/10.1016/j.jinorgbio.2021.111395
- 8. *Aragón-Muriel A., Liscano Y., Upegui Y. et al.* // Antibiotics. 2021. V. 1. № 6. P. 728). https://doi.org/10.3390/antibiotics10060728
- 9. *Alterhoni E., Tavman A., Hacioglu M. et al.* // J. Mol. Struct. 2021. V. 1229. P. 129498). https://doi.org/10.1016/j.molstruc.2020.129498
- 10. *Raducka A.*, Świątkowski *M.*, *Korona-Głowniak I. et al.* // Int. J. Mol. Sci. 2022. V. 23. № 12. P. 6595). https://doi.org/10.3390/ijms23126595
- 11. Üstün *E., Şahin N.*, Ö*zdemir* İ. et al. // Arch. Pharm. 2023. Art. e2300302). https://doi.org/10.1002/ardp.202300302
- 12. *Elkanzi N.A.*, *Ali A.M.*, *Albqmi M. et al.* // J. Organomet. Chem. 2022. V. 36. № 11. Art. e6868). https://doi.org/10.1002/aoc.6868
- 13. *Šindelář Z., Kopel P. // Inorganics*. 2023. V. 11. № 3. P. 113. https://doi.org/10.3390/inorganics11030113

- 14. Rogala P., Jabłońska-Wawrzycka A., Czerwonka G. et al. // Molecules. 2022. V. 28. № 1. P. 40). https://doi.org/10.3390/molecules28010040
- 15. *Helaly A., Sahyon H., Kiwan H. et al.* // Biointerface Res. Appl. Chem. 2023. V. 13. № 4. P. 365). https://doi.org/10.33263/BRIAC134.365
- 16. *Sączewski F., Dziemidowicz-Borys E.J., Bednarski P.J. et al.* // J. Inorg. Biochem. 2006. V. 100. № 8. P. 1389). https://doi.org/10.1016/j.jinorgbio.2006.04.002
- 17. *Волыхина В.Е., Шафрановская Е.В.* // Вестник Витебск. гос. мед. ун-та. 2009. Т. 8. № 4. С. 6).
- 18. *Farmer K.J.*, *Sohal R. S.* // Free Radic. Biol. Med. 1989. V. 7. № 1. P. 23. https://doi.org/10.1016/0891-5849(89)90096-8
- 19. *Rusting R.L.* // Sci. Am. 1992. V.2 67. № 6. P. 130. https://www.jstor.org/stable/24939339
- 20. Lavrenova L.G., Kuz'menko T.A., Ivanova A.D. et al. // New J. Chem. 2017. 41. № 11. P. 4341. https://doi.org/10.1039/c7nj00533d
- 21. *Dyukova I.I., Lavrenova L.G., Kuz'menko T.A. et al.* // Inorg. Chim. Acta. 2019. V. 486. P. 406. https://doi.org/10.1016/j.ica.2018.10.064
- 22. Дюкова И.И., Кузьменко Т.А., Комаров В.Ю. и др. // Коорд. химия. 2018. Т. 44. № 6. С. 393. https://doi.org/(0.1134/S0132344X18060142 (Dyukova I.I., Kuz'menko T.A., Komarov V.Yu. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 12. P. 755). https://doi.org/10.1134/s107032841812014x
- 23. Иванова А.Д., Кузьменко Т.А., Смоленцев А.И. и др. // Коорд. химия. 2021.Т. 47. № 11. С. 689). https://doi.org/10.31857/S0132344X21110025 (Ivanova A.D., Kuz'menko T.A., Smolentsev A.I. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 11. P. 751). https://doi.org/10.1134/S1070328421110026
- 24. Иванова А.Д., Кузьменко Т.А., Комаров В.Ю. и др. // Изв. АН. Сер. хим. 2021. № 8. С. 1550). https://doi.org/10.1007/s11172-021-3251-y (*Ivanova A.D., Komarov V.Y., Glinskaya L.A. et al.* // Russ. Chem. Bull. 2021. V. 70. № 8. P. 1550). https://doi.org/10.1007/s11172-021-3251-y
- 25. *Кузьменко В.В., Комиссаров В.Н., Симонов А.М.* // Химия гетероцикл. соед. 1980. № 6. С. 814). https://doi.org/10.1007/pl00020455 (*Kuz'menko V.V., Komissarov V.N., Simonov A.M.* // Chem. Heterocycl. Comp. 1980. V. 16. № 6. P. 34). https://doi.org/10.1007/pl00020455
- APEX2 (version 2012.2-0), SAINT (version 8.18c), and SADABS (version 2008/1) In Bruker Advanced X-ray

- Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.
- 27. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 28. *Клюшова Л.С., Голубева Ю.А., Вавилин В.А., Гришанова А.Ю.* // Acta Biomed. Sci. 2022. V. 7. 5—2. P. 31. https://doi.org/10.29413/ABS.2022-7.5-2.4
- 29. *Накамото К.* ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир., 1991. 536 с. (*Nakamoto K.* Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York (NY, USA): J. Wiley & Sons Inc., 1986.
- 30. Ливер Э. Электронная спектроскопия неорганических соединений. Т. 2. М.: Мир, 1987, 445 с (*Lever A. B.P.* Inorganic Electronic Spectroscopy. Amsterdam (The Netherlands): Elsevier, 1985.
- 31. *Lavrenova L.G., Ivanova A.I., Glinskaya L.A. et al.* // Chem. Asian J. 2023. V. 18. Art. e202201200. https://doi.org/10.1002/asia.202201200
- 32. *Bonner J.C., Fisher M.E.* // Phys. Rev. 1964. V. 135. № 3A. A640. https://doi.org/10.1103/PhysRev.135.A640
- 33. *Wilkening S., Stahl F., Bader A.* // Drug. Metab. Dispos. 2003. V. 31. № 8. P. 1035. https://doi.org/10.1124/dmd.31.8.1035
- 34. *Donato M.T., Tolosa L., Gómez-Lechó M.J.* // Methods Mol. Biol. 2015. № 1250. P. 77. https://doi.org/10.1007/978-1-4939-2074-7_5
- 35. *Nekvindova J., Mrkvicova A., Zubanova V. et al.* // Biochem. Pharmacol. 2020. V. 177. No 113912. https://doi.org/10.1016/j.bcp.2020.113912
- 36. *Shen H., Wu H., Sun F. et al.* // Bioengineered. 2021. V. 12. № 1. P. 240. https://doi.org/10.1080/21655979.2020.1866303
- 37. *Donato M.T., Jover R., Gómez-Lechón M.J.* // Curr. Drug. Metab. 2013. V. 14. № 9. P. 946. https://doi.org/10.2174/1389200211314090002
- 38. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Carboplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548565/
- 39. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Cisplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548160/

Coordination Compounds of 3d Metals with 2,4-Dimethylpyrazolo[1,5-a] benzimidazole: Magnetic and Biological Properties

O. G. Shakirova^{a, b, *}, T. A. Kuz'menko^c, N. V. Kurat'eva^a, L. S. Klyushova^d, A. N. Lavrov^a, and L. G. Lavrenova^{a, **}

a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia b Komsomolsk-on-Amur State University, Komsomolsk-on-Amur, Russia Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia

*e-mail: Shakirova_Olga@mail.ru

**e-mail: ludm@niic.nsc.ru

New coordination compounds of copper(I), copper(II), cobalt(II), and nickel(II) with 2,4-dimethylpyrazolo[1,5-a]benzimidazole (L) were synthesized and studied. The complexes [CuLCl] (I), [CuLBr] (II), [CuL_2Cl_2] (III), [CuL_2(NO_3)_2] \cdot H₂O (IV), [CoL₂Cl₂] \cdot 0,5H₂O (VI), and [NiL₂(NO₃)₂] \cdot 0,5H₂O (VII) were studied by IR spectroscopy and powder and single crystal X-ray diffraction (CCDC nos. 2321779 ([CuL₂Cl₂]), 2321780 ([CoL₂(NO₃)₂])). The results indicate that the coordination polyhedron in 2,4-dimethylpyrazolo[1,5-a]benzimidazole complexes is formed by the nitrogen atoms of the monodentate ligand and the coordinated anion. The cytotoxic and cytostatic properties of L and complexes I–III were studied in relation to the HepG2 hepatocellular carcinoma cells.

Keywords: synthesis, coordination compounds, 3d metals, 2,4-dimethylpyrazolo[1,5-a]benzimidazole, powder and single crystal X-ray diffraction, UV/Vis and IR spectroscopy, magnetic susceptibility, in vitro assay, HepG2

REFERENCES

- 1. *Selivanova G.A., Tretyakov E.V.* // Russ. Chem. Bull. 2020. V. 69. № 5. P. 838. https://doi.org/10.1007/s11172-020-2842-3
- 2. *Proshin A.N., Trofimova T.P., Zefirova O.N. et al.* // Russ. Chem. Bull. 2021. V. 70. № 3. P. 51. https://doi.org/10.1007/s11172-021-3116-4]
- 3. *Kokorekin V.A., Khodonov V.M., S. V. Neverov S.V. et al.* // Russ. Chem. Bull. 2021. V. 70. № 3. C. 600. https://doi.org/10.1007/s11172-021-3131-5
- Sadaf H., Fettouhi M., Fazal A. et al. // Polyhedron. 2019. V. 70. P. 537. https://doi.org/10.1016/j.poly.2019.06.025
- Muñoz-Patiño N., Sanchez-Eguia B.N., Araiza-Olivera D. et al. // J. Inorg. Biochem. 2020. V. 211.
 P. 111198).
 https://doi.org/10.1016/j.jinorgbio.2020.111198
- Chkirate K., Karrouchi K., Dede N. et al. // New J. Che m. 2020. V. 44. P. 2210. https://doi.org/10.1039/C9NJ05913J
- 7. *Masaryk L., Tesarova B., Choquesillo-Lazarte D. et al.* // J. Inorg. Biochem. 2021. V. 217. P. 111395). https://doi.org/10.1016/j.jinorgbio.2021.111395
- 8. *Aragón-Muriel A., Liscano Y., Upegui Y. et al.* // Antibiotics. 2021. V. 1. № 6. P. 728). https://doi.org/10.3390/antibiotics10060728

- 9. *Alterhoni E., Tavman A., Hacioglu M. et al.* // J. Mol. Struct. 2021. V. 1229. P. 129498). https://doi.org/10.1016/j.molstruc.2020.129498
- 10. *Raducka A., Świątkowski M., Korona-Głowniak I. et al.* // Int. J. Mol. Sci. 2022. V. 23. № 12. P. 6595). https://doi.org/10.3390/ijms23126595
- 11. *Üstün E., Şahin N., Özdemir İ. et al.* // Arch. Pharm. 2023. Art. e2300302). https://doi.org/10.1002/ardp.202300302
- 12. *Elkanzi N.A.*, *Ali A.M.*, *Albqmi M. et al.* // J. Organomet. Chem. 2022. V. 36. № 11. Art. e6868). https://doi.org/10.1002/aoc.6868
- 13. *Šindelář Z., Kopel P. // Inorganics*. 2023. V. 11. № 3. P. 113. https://doi.org/10.3390/inorganics11030113
- 14. Rogala P., Jabłońska-Wawrzycka A., Czerwonka G. et al. // Molecules. 2022. V. 28. № 1. P. 40). https://doi.org/10.3390/molecules28010040
- 15. *Helaly A., Sahyon H., Kiwan H. et al.* // Biointerface Res. Appl. Chem. 2023. V. 13. № 4. P. 365). https://doi.org/10.33263/BRIAC134.365
- 16. *Sączewski F., Dziemidowicz-Borys E.J., Bednarski P.J. et al.* // J. Inorg. Biochem. 2006. V. 100. № 8. P. 1389). https://doi.org/10.1016/j.jinorgbio.2006.04.002
- 17. *Volykhina V.E.*, *Shafranovskaya E.V.* Vestn. Vitebsk. Gos. Med. Un-ta, 2009, vol. 8, no. 4, p. 6.
- 18. *Farmer K.J., Sohal R.S.* // Free Radic. Biol. Med. 1989. V. 7. № 1. P. 23. https://doi.org/10.1016/0891-5849(89)90096-8

- 19. Rusting R.L. // Sci. Am. 1992. V. 2 67. № 6. P. 130. 30. Lever A.B.P. Inorganic Electronic Spectroscopy. https://www.jstor.org/stable/24939339
- 20. Lavrenova L.G., Kuz'menko T.A., Ivanova A.D. et al. // New J. Chem. 2017. 41. № 11. P. 4341. https://doi.org/10.1039/c7nj00533d
- 21. Dvukova I.I., Lavrenova L.G., Kuz'menko T.A. et al. // Inorg. Chim. Acta. 2019. V. 486. P. 406. https://doi.org/10.1016/j.ica.2018.10.064
- 22. Dvukova I.I., Kuz'menko T.A., Komarov V.Yu. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 12. P. 755. https://doi.org/10.1134/s107032841812014x
- 23. Ivanova A.D., Kuz'menko T.A., Smolentsev A.I. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 11. P. 751. https://doi.org/10.1134/S1070328421110026
- 24. Ivanova A.D., Komarov V.Y., Glinskaya L.A. et al. // Russ. Chem. Bull. 2021. V. 70. № 8. P. 1550. https://doi.org/10.1007/s11172-021-3251-y
- 25. Kuz'menko V.V., Komissarov V.N., Simonov A.M. // Chem. Heterocycl. Comp. 1980. V. 16. № 6. P. 34. https://doi.org/10.1007/pl00020455
- 26. APEX2 (version 2012.2–0), SAINT (version 8.18c), and SADABS (version 2008/1) In Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000-2012.
- 27. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 28. Klyushova L.S., Golubeva Yu.A., Vavilin V.A., Grishanova A. Yu. Acta Biomed. Sci., 2022, vol. 7, no. 5-2, p. 31. https://doi.org/10.29413/ABS.2022-7.5-2.4
- 29. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York (NY, USA): J. Wiley & Sons Inc., 1986.

- Amsterdam (The Netherlands): Elsevier, 1985.
- 31. Lavrenova L.G., Ivanova A.I., Glinskaya L.A. et al. // Chem. Asian J. 2023. V. 18. Art. e202201200. https://doi.org/10.1002/asia.202201200
- 32. Bonner J.C., Fisher M.E. // Phys. Rev. 1964. V. 135. № 3A. A640. https://doi.org/10.1103/PhysRev.135.A640
- 33. Wilkening S., Stahl F., Bader A. // Drug. Metab. Dispos. 2003. V. 31. № 8. P. 1035. https://doi.org/10.1124/dmd.31.8.1035
- 34. Donato M.T., Tolosa L., Gómez-Lechó M.J. // Methods Mol. Biol. 2015. № 1250. P. 77. https://doi.org/10.1007/978-1-4939-2074-7 5
- 35. Nekvindova J., Mrkvicova A., Zubanova V. et al. // Biochem. Pharmacol. 2020. V. 177. No 113912. https://doi.org/10.1016/j.bcp.2020.113912
- 36. Shen H., Wu H., Sun F. et al. // Bioengineered. 2021. V. 12. № 1. P. 240. https://doi.org/10.1080/21655979.2020.1866303
- 37. Donato M.T., Jover R., Gómez-Lechón M.J. // Curr. Drug. Metab. 2013. V. 14. № 9. P. 946. https://doi.org/10.2174/1389200211314090002
- 38. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Carboplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548565/
- 39. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Cisplatin. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. https://www.ncbi.nlm.nih.gov/books/NBK548160/