К 70-летию проф. В.П. Федина

УДК 549.233:539.26

АДДУКТЫ СТЕРИЧЕСКИ ЗАТРУДНЕННОГО КАТЕХОЛАТА ТЕЛЛУРА С N-МЕТИЛПИРРОЛИДОНОМ

© 2024 г. П. А. Петров^{1, *}, Е. А. Филиппова¹, Т. С. Сухих¹

¹ Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия * e-mail: panah@niic.nsc.ru

Поступила в редакцию 12.03.2024 г. После доработки 04.04.2024 г. Принята к публикации 04.04.2024 г.

Изучено образование аддуктов 3,6-ди-*трет*-бутилкатехолата теллура(IV) ($Te(Cat^{36})_2$) с N-метилпирролидоном (NMP). Установлено, что кристаллизация из смеси CH_2Cl_2 –NMP—ароматический углеводород приводит к образованию димерных комплексов [{ $Te(Cat^{36})_2$ } $_2$ (μ -NMP)(μ -arene)] (arene = C_6H_6 , C_7H_8), тогда как из смеси CH_2Cl_2 –NMP—алкан — к моноядерному [$Te(Cat^{36})_2$ (NMP) $_2$]. Образование аддуктов с ароматическими углеводородами указывает на возможную перспективу использования комплексов теллура для разделения смесей углеводородов, в том числе промышленно важной смеси бензол—пиклогексан.

Ключевые слова: теллур, хиноны, ренттеноструктурный анализ, N-метилпирролидон, ЯМР

DOI: 10.31857/S0132344X24100033, **EDN:** LPWAYK

Химия комплексов непереходных элементов с редокс-активными лигандами, способными существовать в нескольких окислительных состояниях, активно изучается в последние десятилетия [1, 2]. Классическим примером таких лигандов являются производные 1,2-бензохинона (диоксолены), способные к ступенчатому восстановлению до *о*-семихинолятного анион-радикала и катехолатного дианиона (схема 1).

За счет координации редокс-активного лиганда комплексы непереходных элементов могут проявлять необычную реакционную способность (например, активировать малые молекулы [3—10]), проявлять нетривиальные каталитические [11—15], оптические [16—19] и магнитные [20—23] свойства. Комплексы халькогенов с редокс-активными лигандами гораздо более малочисленны, чем их аналоги с элементами 13—15 групп [24—29] и имеют важные отличия

Схема 1.

от последних. Во-первых, для теллура нехарактерно образование комплексов с анион-радикальной формой диоксоленового или иминоксоленового лиганда. Единственным известным на сегодняшний день исключением является комплекс теллура с тетрадентатным бис(амидофенолятом), при восстановлении которого удалось выделить устойчивое анион-радикальное производное, являющееся первым примером структурно охарактеризованного теллур-центрированного радикала [30]. Кроме того, для бискатехолатов теллура характерно увеличение координационной сферы не за счет ковалентного связывания дополнительных лигандов, а за счет невалентных контактов (халькогеновых связей [31]). Комплексы с халькогеновыми связями интенсивно изучаются в последние годы и рассматриваются в качестве сенсоров [32] и катализаторов [33]. Настоящая работа посвящена синтезу и исследованию аддуктов $\mathit{fuc}(3,6$ -ди- mpem -бутил)катехолата теллура(IV) с N-метилпирролидоном (NMP).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

 $Te(Cat^{36})_2$ получали по литературной методике [28]. Спектры ЯМР регистрировали на спектрометре Bruker Avance III 500 с рабочей частотой 500.03 МГц для ядер 1 Н и 150.76 МГц для ядер 125 Те. ИК-спектры в таблетках КВг записывали на приборе Simex FT-801. Элементный анализ выполняли в Аналитической лаборатории ИНХ CO PAH.

Синтез [{Te(Cat³⁶)₂}₂(μ -NMP)(μ -C₇H₈)] (I). Te(Cat³⁶)₂ (50 мг, 0.088 ммоль) растворяли в смеси 5 мл сухого CH₂Cl₂ и 2 мл толуола, после чего добавляли к раствору 2 капли N-метилпирролидона. Медленное упаривание раствора на воздухе привело к образованию желтых кристаллов I, пригодных для PCA. Выход 38 мг (65%).

ЯМР ¹H (CDCl₃; δ , м.д.) 1.26 (c, 72H, CH₃ (Cat)), 2.01 (м, 2H, C⁴H₂ (NMP)), 2.36 (c, 3H, CH₃ (толуол)), 2.40 (м, 2H, C³H₂ (NMP)), 2.84 (c, 3H, CH₃ (NMP)), 3.38 (м, 2H, C²H₂ (NMP)), 6.67 (c, 8H, CH (Cat)), 7.19–7.40 (м, 5H, CH (толуол)). ЯМР 125 Те (CH₂Cl₂): δ 1611.9.

ИК-спектр (КВг; v, см⁻¹): 3083, 2951, 2909, 2867, 1656, 1623, 1508, 1491, 1466, 1396, 1384, 1357, 1307, 1272, 1203, 1144, 1028, 970, 938, 922, 808, 738, 715, 688, 647, 604.

Найдено, %: С 61.45; Н 7.05; N, 1.05. Для $C_{68}H_{97}NO_{9}Te_{2}$ вычислено, %: С 61.28; Н 7.34; N, 1.05.

Синтез [{Te(Cat³⁶)₂}₂(μ -NMP)(μ -C₆H₆)] (II). Te(Cat³⁶)₂ (50 мг, 0.088 ммоль) растворяли в смеси 5 мл сухого CH₂Cl₂ и 2 мл бензола, после чего добавляли к раствору 2 капли N-метилпирролидона. Медленное упаривание раствора на воздухе привело к образованию желтых кристаллов II, пригодных для PCA. Выход 40 мг (69%).

ЯМР 1 H (CDCl₃; δ , м.д.) 1.26 (c, 72H, CH₃ (Cat)), 2.05 (м, 2H, C 4 H₂ (NMP)), 2.50 (м, 2H, C 3 H₂ (NMP)), 2.89 (c, 3H, CH₃ (NMP)), 3.42 (м, 2H, C 2 H₂ (NMP)), 6.68 (c, 8H, CH (Cat)), 7.36 (c, 6H, CH (бензол)). ЯМР 125 Te (CH₂Cl₂): δ 1611.6.

ИК-спектр (КВг; v, см⁻¹): 3085, 3032, 2951, 2909, 2867, 1621, 1507, 1492, 1467, 1398, 1384, 1357, 1307, 1233, 1204, 1144, 1028, 970, 938, 922, 808, 715, 689, 647, 604.

Найдено, %: С 60.85; Н 7.20; N, 0.95. Для $C_{67}H_{95}NO_9Te_2$ вычислено, %: С 61.02; Н 7.27; N, 1.06.

Синтез [Te(Cat³⁶)₂(NMP)₂] · 2NMP (III · 2NMP). Те(Cat³⁶)₂ (53 мг, 0.093 ммоль) растворяли в смеси 5 мл сухого CH_2Cl_2 и 2 мл циклогексана, после чего добавляли к раствору 2 капли N-метилпирролидона. Медленное упаривание раствора на воздухе привело к образованию порошка III · 2NMP. Монокристаллы III отбирали из реакционной смеси. Выход 65 мг (72%).

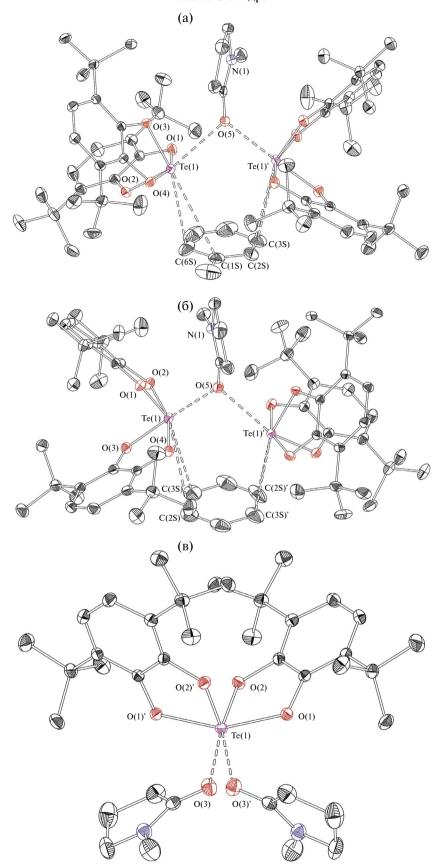
ЯМР 1 H (CDCl₃; δ, м.д.) 1.24 (c, 36H, CH₃ (Cat)), 2.01 (м, 8H, C 4 H₂ (NMP)), 2.38 (м, 8H, C 3 H₂ (NMP)), 2.84 (c, 12H, CH₃ (NMP)), 3.38 (м, 8H, C 2 H₂ (NMP)), 6.65 (c, 4H, CH (Cat). ЯМР 125 Те (CH₂Cl₂): δ 1606.4.

ИК-спектр (КВг; v, см⁻¹): 3081, 2950, 2908, 1667, 1650, 1505, 1491, 1476, 1401, 1384, 1359, 1307, 1273, 1237, 1201, 1144, 1111, 1029, 972, 940, 924, 808, 795, 714, 687, 647, 615, 597.

Найдено, %: С 60.65; Н 8.00; N, 5.65. Для $C_{48}H_{76}N_4O_8Te$ вычислено, %: С 60.85; H 7.93; N, 5.80.

РСА монокристаллов (I, II, III · 2NMP) проведен в ЦКП ИНХ СО РАН на дифрактометре Bruker D8 Venture с детектором СМОЅ РНОТОN III и микрофокусным источником IµЅ 3.0 (Мо K_{α} -излучение $\lambda = 0.71073$ Å, фокусирующие зеркала Монтеля) при 150 К. Интегрирование и учет поглощения проведены в пакете программ APEX3 [34]. Структуры расшифрованы с использованием программы SHELXT [35] и уточнены с использованием программы SHELXL [36]

в анизотропном приближении для неводородных атомов с использованием программной оболочки Olex2 [37]. Атомы водорода локализованы геометрически и уточнены в приближении жесткого тела. В структурах комплексов I и II молекулы N-метилпирролидона и толуола разупорядочены по двум позициям каждая с заселенностью 0.5. Уточнение этих молекул проводилось с ограничениями DFIX, SADI, FLAT, RIGU и ISOR. Кристаллографические характеристики комплексов и детали дифракционного эксперимента приведены в табл. 1.


Кристаллографические параметры комплексов депонированы в Кембриджском банке структурных данных (ССDС № 2208717—2208719) и могут быть получены по адресу: http://www.ccdc.cam.ac.uk.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Упаривание раствора $Te(Cat^{36})_2$ в смеси CH_2Cl_2 —толуол (5 : 2) в присутствии NMP привело к образованию комплекса [{ $Te(Cat^{36})_2$ } $_2$ (μ -NMP)(μ -C $_7H_8$)] (I) (рис. 1a). Данный комплекс

Таблица 1. Кристаллографические данные и параметры уточнения структур I-III

	Значение		
Параметр	I	II	III
Брутто-формула	C ₆₈ H ₉₇ NO ₉ Te ₂	C ₆₇ H ₉₅ NO ₉ Te ₂	$C_{38}H_{58}N_2O_6Te$
M	1327.66	1313.63	766.46
Сингония	Моноклинная	Моноклинная	Моноклинная
Пр. группа	C2/c	C2/c	C2/c
a, Å	18.9849(3)	18.7903(6)	22.6078(5)
<i>b</i> , Å	12.0993(2)	12.1239(4)	15.6929(4)
c, Å	30.1877(7)	30.1586(9)	11.2267(2)
α, град	90	90	90
β, град	107.071(1)	107.405(1)	106.433(1)
ү, град	90	90	90
<i>V</i> , Å ³	6628.7(2)	6555.9(4)	3820.33(15)
Z	4	4	4
μ, мм ⁻¹	0.934	0.943	0.824
F(000)	2752.0	2720.0	1600.0
Размер кристалла, мм	0.12×0.1×0.09	0.15×0.1×0.1	0.2×0.1×0.09
Область сбора данных 20, град	4.496-58.56	4.54-55.854	4.534-54.284
Диапазон индексов h, k, l	$-25 \le h \le 25,$ $-16 \le k \le 16,$ $-39 \le l \le 41$	$ \begin{array}{c} -24 \leqslant h \leqslant 24, \\ -15 \leqslant k \leqslant 15, \\ -39 \leqslant l \leqslant 39 \end{array} $	$ \begin{array}{c} -28 \leqslant h \leqslant 28, \\ -20 \leqslant k \leqslant 20, \\ -14 \leqslant l \leqslant 14 \end{array} $
Число измеренных, независимых и наблюдаемых ($I > 2\sigma(I)$) отражений	48372, 8540, 6931	58633, 7833, 7155	33033, 4228, 4053
R _{int}	0.0442	0.0423	0.0315
Число уточняемых параметров	434	397	220
Число ограничений	175	45	0
GOOF	1.024	1.056	1.063
R_1 , wR_2 $(I > 2\sigma(I))$	0.0281, 0.0565	0.0255, 0.0571	0.0194, 0.0471
R_1 , wR_2 (все отражения)	0.0416, 0.0601	0.0289, 0.0588	0.0206, 0.0481
$\Delta \rho_{max} / \Delta \rho_{min}$, e Å ⁻³	0.39/-0.53	0.53/-0.66	0.46/-0.31

Рис. 1. Молекулярные структуры комплексов I (а), II (б), III (в) (тепловые эллипсоиды 30%-ной вероятности; атомы H не показаны).

является крайне редким примером координации NMP к неметаллу — ранее был описан единственный комплекс бора $[(TsC(PPh_2))_2B(NMP)]^+$ (Ts = тозил) [38]. Комплекс I кристаллизуется в моноклинной пространственной группе C2/c, атом О N-метилпирролидона лежит на кристаллографической оси 2 порядка. Лиганд NMP является мостиковым и соединяет два фрагмента $\{Te(Cat^{36})_2\}$, из которых лишь один является кристаллографически независимым. Длина связи $Te-O_{NMP}$ равна 2.6431(12) Å, что существенно больше, чем в описанном ранее аддукте с ДМФА (2.4815(10) Å) [28]. Это различие относится, скорее, не к разнице донорных чисел ДМФА и NMP (26.6 и 27.3 соответственно [39]), а к различному способу координации (терминальному для ДМФА и мостиковому для NMP). Двугранный угол между хелатными циклами равен 81°. Помимо мостикового N-метилпирролидона, два фрагмента связаны мостиковой молекулой толуола, координированной по η^2 -типу к каждому атому Те. Молекула толуола, как и молекула NMP, разупорядочена по двум позициям. Расстояния Te-C (Te(1)-C(1S), 3.827(5) Å; Te(1)-C(6S), 3.509(15) Å; Te(1)'-C(2S) 3.588(14) Å, Te(1)'-C(3S) 3.527(5) Å) сравнимы с таковыми в аддук-TE [Te(Cat³⁶)₂(Py)(η^6 -C₇H₈)] (3.500(3)-3.755(2) Å), однако несколько больше расстояний Те-С в димерном 3,5-ди-трет-бутилкатехолате теллура $[Te(Cat^{35})_2]_2$ (3.192(1)—3.601(2) Å), в котором также присутствуют контакты $Te-(\eta^6-C_6)$ [27].

Упаривание раствора $Te(Cat^{36})_2$ в смеси CH_2CI_2 —бензол (5 : 2) в присутствии NMP привело к образованию комплекса [{ $Te(Cat^{36})_2$ } $_2$ (μ -NMP)(μ -C₆H₆)] (II). Комплексы I и II изоструктурны, их геометрические характеристики близки (табл. 2). В структуре II разупорядоченной является лишь молекула NMP. Длина связи

Те- O_{NMP} (2.6061(12) Å) несколько меньше, чем в комплексе I. Расстояния Те-C равны 3.552(3) и 3.722(3) Å. Несмотря на то что контакты Те- $(\eta^6$ - C_6) описывалась ранее [27, 28, 40], координация ароматического цикла к атому Те по η^2 -типу, насколько нам известно, ранее не фиксировалась. Очевидно, контакт Те-(C=C) можно описать как взаимодействие σ-дырки связи Те- O_{cat} и π -системы ароматического углеводорода. Соответствующие углы $OTeC_2$ (C_2 — центр связи C=C) находятся в интервале 155.2°— 166.8° (табл. 2).

Попытки получения аналогов комплекса I, содержащие иодбензол и нитробензол, успехом не увенчались. Также была предпринята попытка получить аналог комплекса II с циклогексаном, однако упаривание раствора $Te(Cat^{36})_2$ в смеси СН₂СІ₂-циклогексан (5 : 2) в присутствии NMP привело к образованию мономерного комплекса $[Te(Cat^{36})_2(NMP)_2]$ (III). Таким образом, можно сделать вывод, что взаимодействия между атомом Те и ароматическим углеводородом, несмотря на свою слабость, вносят свой вклад в стабилизацию структур I и II. Комплекс III также образуется при кристаллизации Te(Cat³⁶)₂ из смеси CH_2Cl_2 -гептан (5 : 2) в присутствии NMP. Мономерный комплекс III кристаллизуется в моноклинной сингонии, атом Те находится в частной позиции на оси 2 порядка, кристаллографически независимыми являются один катехолатный лиганд и одна молекула NMP. Двугранный угол между плоскостями металлоциклов TeOCCO равен 83.4°, угол между плоскостями N-метилпирролидоновых лигандов — 81.3°. Расстояние $Te-O_{NMP}$ равно 2.7270(11) Å. Как и в комплексах I и II, а также ранее описанных аддуктах $Te(Cat^{36})_2$ связи $Te-O_{cat}$ неэквивалентны: одна из них на ~0.08 Å длиннее другой.

Таблица 2. Основные геометрические характеристики аддуктов I—III

-	I	II	III			
Связь		d, Å				
Te-O _{cat}	1.9441(13), 2.0099(13), 1.9469(12), 2.0424(13)	1.9518(12), 2.0168(12), 1.9491(12), 2.0091(13)	1.9560(10), 2.0314(10)			
Te···O _{NMP}	2.6431(12)	2.6061(12)	2.7270(11)			
Te···C	3.509(15)-3.827(17)	3.552(3)-3.722(3)				
Угол	ω, град					
$O_{cat}TeO_{cat}$	83.34(5), 79.71(5)	80.60(5), 81.27(5)	80.39(4)			
O _{cat} TeC ₂ *	160.1, 166.8	155.2				

^{*} C_2 — центр связи C=C углеводорода.

Атомы кислорода NMP находятся приблизительно в *транс*-положении по отношению к более коротким связям $Te-O_{cat}$, что отмечалось для аддуктов $Te(Cat^{36})_2$ и ранее [28, 29]. Расстояния C-C и C-O в металлоциклах комплексов I-III однозначно указывают на дианионное (катехолатное) состояние диоксоленовых лигандов. Длина связи C=O(1.229(2)-1.265(4) Å) в комплексах I-III лишь незначительно отличается от среднего значения для некоординированных молекул NMP, найденного в E

Данные ¹Н ЯМР-спектроскопии подтверждают состав аддуктов I-III. Химический сдвиг молекулы C_6H_6 в спектре II (7.36 м.д.) в точности совпадает с химическим сдвигом бензола в CDCl₃ [41]. То же относится к комплексу I (хим. сдвиг метильной группы толуола 2.36 м.д.). Это указывает на то, что структура комплексов I и II не сохраняется в растворе. Несмотря на упомянутую близость донорных чисел для ДМФА и NMP $(26.6 \text{ и } 27.3, \text{ соответственно}), \text{ сигнал } \delta(^{125}\text{Te})$ для раствора $Te(Cat^{36})$, в чистом N-метилпирролидоне (1607.9 м.д.) сдвинут в слабое поле по сравнению с сигналом в ДМФА (1597.7 м.д.). Хим. сдвиг $\delta(^{125}\text{Te})$ комплекса III в CH₂Cl₂ (1606.4 м.д.) близок к значению для чистого NMP. Хим. сдвиги комплексов I и II практически совпадают (1611.9) и 1611.6 м.д.) и находятся в еще более слабом поле, что можно объяснить соотношением Te: NMP в них (2:1).

Таким образом, получены и охарактеризованы методами РСА и спектроскопии ЯМР аддукты стерически затрудненного $\mathit{fuc}(3,6$ -ди- mpem -бутил) катехолата теллура (IV) с N-метилпирролидоном. Установлено, что ароматические углеводороды (бензол и толуол) входят в состав комплексов за счет слабых взаимодействий атома Те с π -системой арена. Отметим, что комплексы теллура могут быть потенциально интересными предшественниками систем разделения ароматических и алифатических углеводородов, в том числе промышленно важной смеси бензол—циклогексан.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Авторы благодарны Н.Б. Компанькову за регистрацию спектров ЯМР.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (проект № 121031700313-8).

СПИСОК ЛИТЕРАТУРЫ

- 1. Poddel'sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291.
- 2. Kaim W. // Inorg. Chem. 2011. V. 50. P. 9752.
- 3. Abakumov G.A., Poddelsky A.I., Grunova E.V. et al. // Angew. Chem., Int. Ed. 2005. V. 44. P. 2767.
- 4. Cherkasov V.K., Abakumov G.A., Grunova E.V. et al. // Chem. Eur. J. 2006. V. 12. P. 3916.
- 5. *Poddel'sky A.I.*, *Kurskii Yu.A.*, *Piskunov A.V. et al.* // Appl. Organomet. Chem. 2011. V. 25. P. 180.
- Ilyakina E.V., Poddel'sky A.I., Cherkasov V.K., Abakumov G.A. // Mendeleev Commun. 2012. V. 22. P. 208.
- 7. Ладо А.В., Пискунов А.В., Черкасов В.К. и др. // Коорд. химия. 2006. Т. 32. № 3. С. 181 (*Lado A.V., Piskunov, A.V., Cherkasov, V.K. et al* // Russ. J. Coord. Chem. 2006. V. 32. P. 173). doi: 10.1134/S1070328406030031
- 8. Piskunov A.V., Ershova I.V., Fukin G.K., Shavyrin A.S. // Inorg. Chem. Commun. 2013. V. 38. P. 127.
- 9. Piskunov A.V., Meshcheryakova I.N., Fukin G.K. et al. // Dalton Trans. 2013. V. 42. P. 10533.
- 10. *Thorwart T., Hartman D., Greb L.* // Chem. Eur. J. 2022. V. 23. Art. e202202273.
- 11. *Thorwart T., Roth D., Greb L.* // Chem. Eur. J. 2021. V. 21. P. 10422.
- 12. *Hartmann D., Braner S., Greb L.* // Chem. Commun. 2021. V. 57. P. 8572.
- 13. *Ansmann N., Thorwart T., Greb L.* // Angew. Chem. Int. Ed. 2022. V. 61. Art. e202210132.
- 14. Arsenyeva K.V., Pashanova K.I., Trofimova O.Yu. et al. // New J. Chem. 2021. V. 45. P. 11758.
- 15. Arsenyeva K.V., Klimashevskaya A.V., Pashanova, K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. Art. e6593.
- Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83.
- 17. *Климашевская А.В., Арсеньева К.В., Черкасов А.В. и др.* // Журн. структур. химии. 2023. Т. 64. № 12. С. 118910 (*Klimashevskaya A.V., Arsenyeva K.V., Cherkasov A.V. et al.* // J. Struct. Chem. 2023. V. 64. P. 2271). doi: 10.1134/S0022476623120016
- 18. Klimashevskaya A.V., Arsenyeva, K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. Art. e202300540.
- 19. Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mendeleev Commun. 2023. V. 33. P. 733.

- 20. *Ershova I.V., Piskunov A.V., Cherkasov V.K.* // Russ. Chem. Rev. 2020. V. 89. P. 1157.
- 21. Chegerev M.G., Starikova A.A., Piskunov A.V., Cherkasov V. K. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 252.
- 22. *Chegerev M.G., Piskunov A.V., Starikova A.A. et al.* // Eur. J. Inorg. Chem. 2018. V. 2018. P. 1087.
- 23. Greb L. // Eur. J. Inorg. Chem. 2022. V. 2022. Art. e202100871.
- 24. *Antikainen P.J.*, *Mälkönen P.J.* // Z. Anorg. Allg. Chem. 1959. V. 299. P. 292.
- 25. Lindqvist O. // Acta Chem. Scand. 1967. V. 21. P. 1473.
- 26. *Annan T.A.*, *Ozarowski A.*, *Tian Z.*, *Tuck D.G.* // Dalton Trans. 1992. P. 2931.
- Kieser J.M., Jones L.O., Lin N.J. et al. // Inorg. Chem. 2021. V. 60. P. 3460.
- 28. *Petrov P.A.*, *Filippova E.A.*, *Sukhikh T.S. et al.* // Inorg. Chem. 2022. V. 61. P. 9184.
- 29. *Петров П.А.* // Коорд. химия. 2023. Т. 49. № 6. С. 354 (*Petrov P.A.* // Russ. J. Coord. Chem. 2023. V. 49. P. 357). doi: 10.1134/S1070328423600262
- 30. *Petrov P.A., Kadilenko E.M., Sukhikh T.S. et al.* // Chem. Eur. J. 2020. V. 26. P. 14688.

- 31. Mahmudov K.T., Kopylovich M.N., Guedes da Silva M.F.C., Pombeiro A.J.L. // Dalton Trans. 2017. V. 46. P. 10121.
- 32. Fourmigué M., Dhaka A. // Coord. Chem. Rev. 2020. V. 403. P. 213084.
- 33. *Pale P., Mamane V.* // Chem. Eur. J. 2023. V. 29. Art. e202302755.
- 34. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
- 35. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 36. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 37. *Dolomanov O.V., Bourhis L.J., Gildea R.J. et al.* // J. Appl. Cryst. 2009. V. 42. P. 339.
- 38. *Scherpf T., Feichtner K.-S., Gessner V.H.* // Angew. Chem. Int. Ed. 2017. V. 56. P. 3275.
- 39. Schmid R. // J. Solution Chem. 1983. V. 12. P. 135.
- 40. *O'Quinn G.K., Rudd M.D., Kautz J.A.* // Phosphorus, Sulfur, Silicon Relat. Elem. 2002. V. 177. P. 853.
- 41. Fulmer G.R., Miller A.J., Sherden N.H. et al. // Organometallics. 2020. V. 29. P. 2176.

Adducts of Sterically Hindered Tellurium Catecholate with N-Methylpyrrolidone P. A. Petrov^{a, *}, E. A. Filippova^a, and T. S. Sukhikh^a

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia *e-mail: panah@niic.nsc.ru

The formation of adducts of tellurium(IV) 3,6-di-*tert*-butyl catecholate (Te(Cat³6)₂) with N-methylpyrrolidone (NMP) is studied. The crystallization from a CH₂Cl₂-NMP-aromatic hydrocarbon mixture is found to result in the formation of dimeric complexes [{Te(Cat³6)₂}₂,(μ -NMP)(μ -arene)] (arene = C₆H₆, C₇H₈), whereas mononuclear [Te(Cat³6)₂(NMP)₂] is formed from a CH₂Cl₂-NMP-alkane mixture. The formation of the adducts with aromatic hydrocarbons indicates a possibility of using the tellurium complexes for the separation of hydrocarbon mixtures, including an industrially important benzene—cyclohexane mixture.

Keywords: tellurium, quinones, XRD, N-methylpyrrolidone, NMR

REFERENCES

- 1. Poddel'sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291.
- 2. *Kaim W.* // Inorg. Chem. 2011. V. 50. P. 9752.
- 3. Abakumov G.A., Poddelsky A.I., Grunova E.V. et al. // Angew. Chem., Int. Ed. 2005. V. 44. P. 2767.
- 4. *Cherkasov V.K.*, *Abakumov G.A.*, *Grunova E.V. et al.* // Chem. Eur. J. 2006. V. 12. P. 3916.
- 5. *Poddel'sky A.I.*, *Kurskii Yu.A.*, *Piskunov A.V. et al.* // Appl. Organomet. Chem. 2011. V. 25. P. 180.
- 6. *Ilyakina E.V., Poddel'sky A.I., Cherkasov V.K., Abakumov G.A.* // Mendeleev Commun. 2012. V. 22. P. 208.

- 7. *Lado A.V., Piskunov, A.V., Cherkasov, V.K. et al //* Russ. J. Coord. Chem. 2006. V. 32. P. 173. doi: 10.1134/S1070328406030031
- 8. Piskunov A.V., Ershova I.V., Fukin G.K., Shavy-rin A.S. // Inorg. Chem. Commun. 2013. V. 38. P. 127.
- 9. Piskunov A.V., Meshcheryakova I.N., Fukin G.K. et al. // Dalton Trans. 2013. V. 42. P. 10533.
- Thorwart T., Hartman D., Greb L. // Chem. Eur. J. 2022. V. 23. Art. e202202273.
- 11. *Thorwart T., Roth D., Greb L.* // Chem. Eur. J. 2021. V. 21. P. 10422.
- 12. *Hartmann D., Braner S., Greb L.* // Chem. Commun. 2021. V. 57. P. 8572.

- Ansmann N., Thorwart T., Greb L. // Angew. Chem. Int. Ed. 2022, V. 61, Art. e202210132.
- 14. Arsenyeva K.V., Pashanova K.I., Trofimova O.Yu. et al. // New J. Chem. 2021. V. 45. P. 11758.
- Arsenyeva K.V., Klimashevskaya A.V., Pashanova, K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. Art. e6593.
- 16. Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83.
- Klimashevskaya A.V., Arsenyeva K.V., Cherkasov A.V. et al. // J. Struct. Chem. 2023. V. 64. P. 2271. doi: 10.1134/S0022476623120016
- 18. Klimashevskaya A. V., Arsenyeva, K. V., Maleeva A. V. et al. // Eur. J. Inorg. Chem. 2023. Art. e202300540.
- 19. Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mendeleev Commun. 2023. V. 33. P. 733.
- Ershova I.V., Piskunov A.V., Cherkasov V.K. // Russ. Chem. Rev. 2020. V. 89. P. 1157.
- 21. Chegerev M.G., Starikova A.A., Piskunov A.V., Cherkasov V.K. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 252.
- 22. *Chegerev M.G., Piskunov A.V., Starikova A.A. et al.* // Eur. J. Inorg. Chem. 2018. V. 2018. P. 1087.
- 23. Greb L. // Eur. J. Inorg. Chem. 2022. V. 2022. Art. e202100871.
- 24. *Antikainen P.J.*, *Mälkönen P.J.* // Z. Anorg. Allg. Chem. 1959. V. 299. P. 292.
- 25. Lindavist O. // Acta Chem. Scand. 1967. V. 21. P. 1473.
- 26. *Annan T.A.*, *Ozarowski A.*, *Tian Z.*, *Tuck D.G.* // Dalton Trans. 1992. P. 2931.

- Kieser J.M., Jones L.O., Lin N.J. et al. // Inorg. Chem. 2021. V. 60. P. 3460.
- 28. Petrov P.A., Filippova E.A., Sukhikh T.S. et al. // Inorg. Chem. 2022. V. 61. P. 9184.
- Petrov P.A. // Russ. J. Coord. Chem. 2023. V. 49.
 P. 357. doi: 10.1134/S1070328423600262
- 30. *Petrov P.A.*, *Kadilenko E.M.*, *Sukhikh T.S. et al.* // Chem. Eur. J. 2020. V. 26. P. 14688.
- 31. Mahmudov K.T., Kopylovich M.N., Guedes da Silva M.F.C., Pombeiro A.J.L. // Dalton Trans. 2017. V. 46. P. 10121.
- 32. *Fourmigué M., Dhaka A.* // Coord. Chem. Rev. 2020. V. 403. P. 213084.
- 33. *Pale P., Mamane V.* // Chem. Eur. J. 2023. V. 29. Art. e202302755.
- 34. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
- 35. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 37. *Dolomanov O.V., Bourhis L.J., Gildea R.J. et al.* // J. Appl. Cryst. 2009. V. 42. P. 339.
- 38. *Scherpf T., Feichtner K.-S., Gessner V.H.* // Angew. Chem. Int. Ed. 2017. V. 56. P. 3275.
- 39. Schmid R. // J. Solution Chem. 1983. V. 12. P. 135.
- 40. *O'Quinn G.K., Rudd M.D., Kautz J.A.* // Phosphorus, Sulfur, Silicon Relat. Elem. 2002. V. 177. P. 853.
- 41. Fulmer G.R., Miller A.J., Sherden N.H. et al. // Organometallics. 2020. V. 29. P. 2176.