

КООРДИНАЦИОННАЯ ХИМИЯ

Журнал представляет оригинальные статьи и обзоры по всем аспектам теоретической и экспериментальной координационной химии

СОДЕРЖАНИЕ

Том 50, номер 10, 2024

Номер посвящен 70-летию члена-корреспондента РАН Владимира Петровича Федина

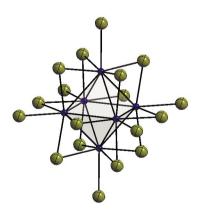
Октаэдрические галогенидные кластеры ниобия и тантала, содержащие кластерное ядро $\{M_6X_{12}\}$ <i>М. В. Шамшурин, М. Н. Соколов</i>	629
Синтез и строение комплексов марганца с N,N' -бис $[(2,4,6$ -триметилфенил)имино]аценафтеном $Ю.$ А. Ларичева, Ч. Гуань, Н. В. Куратьева, Н. Ф. Ромашев, А. Л. Гущин	648
Аддукты стерически затрудненного катехолата теллура с N-метилпирролидоном П. А. Петров, Е. А. Филиппова, Т. С. Сухих	661
Дилитиевые соли дитопного центросимметричного меркаптобензотиазола: от молекулярного комплекса к люминесцентным 1D-координационным полимерам А. Ф. Рогожин, В. А. Ильичев, Л. И. Силантьева, Е. А. Козлова, Г. К. Фукин, М. Н. Бочкарев	669
Особенности синтеза 1,3-иминофосфина с 2,1,3-бензотиадиазольным заместителем и комплекса Pt с ним <i>P. M. Хисамов, С. H. Конченко, Т. C. Сухих</i>	679
Соединения s -металлов со спин-меченным нитрофенолом $O.\ B.\ Кузнецова,\ \Gamma.\ B.\ Романенко,\ \Pi.\ A.\ Чернавин,\ Г.\ А.\ Летягин,\ А.\ С.\ Богомяков$	693
Слоистые координационные полимеры на основе кластерных комплексов $[\mathrm{Re}_6\mathrm{Q}_8(\mathrm{CN})_6]^{4-}$ (Q = S или Se) и димерных катионов $\{(\mathrm{Ag}(\mathrm{Dppe}))_2(\mu\mathrm{-Dppe})\}^{2+}$ Ю. М. Литвинова, Я. М. Гайфулин, Т. С. Сухих, К. А. Брылев, Ю. В. Миронов	708
Комплексы лантаноидов(III) на основе <i>трис</i> (2-пиридил)фосфиноксида: первые примеры Ю. А. Брылева, Л. А. Глинская, К. М. Ыжикова, А. В. Артемьев, М. И. Рахманова, А. Ю. Баранов	722

К 70-летию проф. В.П. Федина

УДК 546

ОКТАЭДРИЧЕСКИЕ ГАЛОГЕНИДНЫЕ КЛАСТЕРЫ НИОБИЯ И ТАНТАЛА, СОДЕРЖАЩИЕ КЛАСТЕРНОЕ ЯДРО {M₆X₁₂}

© 2024 г. М. В. Шамшурин¹, М. Н. Соколов^{1, *}


¹ Институт неорганической химии им. А.В. Николаева СО РАН, г. Новосибирск, Россия *e-mail: caesar@niic.nsc.ru

> Поступила в редакцию 18.03.2024 г. После доработки 04.05.2024 г. Принята к публикации 28.05.2024 г.

В обзоре рассмотрены методы синтеза, строение, электронная структура и реакционная способность семейства октаэдрических галогенидных кластеров ниобия и тантала, содержащих кластерное ядро $\{M_6X_{12}\}$. Рассмотрены также возможные области практического применения данного класса соединений.

Ключевые слова: ниобий, тантал, галогениды, кластеры **DOI**: 10.31857/S0132344X24100012, **EDN**: LQMAKJ

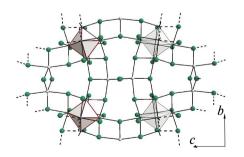
Ниобий и тантал в низких степенях окисления проявляют сильную тенденцию к образованию соединений со связями металл—металл (кластеров) [1]. Особенно многочисленно семейство октаэдрических галогенидных кластеров $\{M_6(\mu_2-X)_{12}\}^{n+}$ (M = Nb, Ta; X = F, Cl, Br, I; n=2,3,4). В них, помимо мостиковых атомов галогена, каждый атом металла кластерного ядра дополнительно координируется одним терминальным лигандом, что приводит к образованию кластерных комплексов типа [$\{M_6X_{12}\}L_6$] (рис. 1).

Рис. 1. Кластерный анион $[Ta_6Br_{18}]^{4-}$ как пример координационного фрагмента $[\{M_6X_{12}\}L_6]$ (M=Ta (синий), X=L=Br (зеленый)).

Этот дополнительный лиганд L может быть как терминальным, так и мостиковым. Для того чтобы отразить обе возможности, Шефером был разработан особый способ записи химических формул таких соединений. За основу берется изолированный кластерный комплекс, например $[Ta_6(\mu_2-Cl)_{12}Cl_6]^{2-}$. Мостиковые лиганды в составе кластерного ядра помечаются символом «і» (от немецкого "inner" - «внутренний»), а концевые (терминальные) - символом «а» (от немецкого "auβer" - «внешний»). В случае изолированного комплекса $[Ta_6(\mu_2-Cl)_{12}Cl_6]^{2-}$ запишется следующим образом: формула $[Ta_6(\mu_2-Cl^i)_{12}Cl^a_{6}]^{2-}$. Запись усложняется при переходе к бинарным галогенидам, обладающих трехмерными структурами, например Nb₆Cl₁₄, который в символике Шефера записывается как [$\{Nb_6Cl_{10}^iCl_{2/2}^{i-a}\}Cl_{2/2}^{a-i}Cl_{2/2}^{a-a}]$ [2—6]. Двойные индексы указывают на то, что галогенид входит в состав кластерного ядра $\{Nb_6(\mu_2-Cl)_{12}\}$ и одновременно занимает позиции «а» в соседнем кластере. Такое же строение имеют галогениды тантала Ta_6Br_{14} и Ta_6I_{14} .

Структуры галогенидов со стехиометрией M_6X_{15} описываются формулой $[M_6X_{12}^iX^{a-a}_{6/2}]$ и делятся на два структурных подкласса: Nb_6F_{15} и Ta_6X_{15} (X=Cl,Br) [7, 8]. Трехмерный каркас $[M_6X_{12}^iX^{a-a}_{6/2}]$ можно как восстановить,

так и окислить с сопутствующей интеркаляцией катионов или анионов в подходящие пустоты. Именно такую структуру имеет бромид $Ta_6Br_{15}(TaBr_6)_{0.86}$, содержащий в качестве «гостей» анионы $[TaBr_6]^-$ [9]. Интересно, что по брутто-составу ($TaBr_{2.94}$) этот бромид приближается к низшему пределу области гомогенности для бромида $TaBr_{3-x}$, который был давно обнаружен на фазовой диаграмме системы Ta-Br, но долгое время оставался структурно не охарактеризованным [10].


ОСНОВНЫЕ МЕТОДЫ СИНТЕЗА КЛАСТЕРНЫХ ГАЛОГЕНИДОВ НИОБИЯ И ТАНТАЛА

Бинарные галогениды редко используются как стартовые соединения для получения дискретных комплексов $[\{M_6X_{12}\}L_6]$. Общим методом получения галогенидных кластеров служит востановление пентагалогенидов MX_5 (M=Nb, Ta; X=Hal) избытком соответствующего металла M в присутствии галогенида щелочного металла AX (A=Na, K, Rb; X=Cl, Br), протекающее при $600-700\ ^{\circ}C$ [11]:

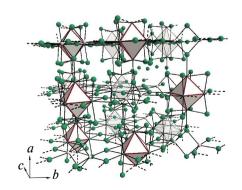
$$20AX + 16M + 14MX_5 = 5A_4[\{M_6X_{12}\}X_6].$$

В случае $K_4[M_6Br_{18}]$ (M=Nb, Ta) можно использовать бром вместо пентабромида металла с соблюдением общей стехиометрии [12]. Аналогично реакция Ta, Br_2 и LiBr приводит к образованию продукта состава $Li_4[Ta_6Br_{18}]$, экстракция которого диглимом на воздухе приводит, в результате окисления кластера, к кристаллизации комплекса состава [Li(диглим)₂], $[Ta_6Br_{18}]$ [13].

Помимо галогенидов щелочных металлов можно использовать металлы 13 группы (галлий, индий, таллий), способные входить в кристалли-



ческую решетку продукта в виде ионов М⁺. Реакция соответствует уравнению:


$$20$$
Ga(In, Tl) + 18 MCl₅ + 12 M = $=5$ Ga(In, Tl)₄[M₆Cl₁₈] ($700-800$ °C).

Восстановлением NbCl₅ металлическим Nb в присутствии InCl₃ или TlCl₃ при 720°C были получены фазы состава ANb₆Cl₁₅ (A = In⁺, Tl⁺) [14]. Структура In[Nb₆Cl₁₅] базируется на трехмерном каркасе, образованном октаэдрами $\{Nb_6Cl_{12}\}^{2^+}$, связанными мостиковыми атомами Cl^a по всем трем направлениям. Катионы In⁺ заполняют пустоты (рис. 2).

Нагреванием смеси Nb, NbCl₅ и LiCl при 700 °C получена фаза состава $\text{Li}_2[\text{Nb}_6\text{Cl}_{16}]$ (рис. 3). В ее структуре присутствуют анионные слои $[\text{Nb}_6\text{Cl}^i_{\ 12}\text{Cl}^{\text{a-a}}_{\ 4/2}\text{Cl}^{\text{a}}_{\ 2}]^{2^-}$, в плоскости которых расположены катионы лития [15]. Интересно, что экстракция литиевой соли ацетоном в атмос-

Рис. 2. Фронтальная проекция структуры $In[Nb_6Cl_{15}]$: в виде октаэдров представлены кластерные ядра Nb_6 , связанные мостиковыми атомами Cl; одиночные атомы — $In^+[14]$.

Рис. 3. Структура $\text{Li}_2[\text{Nb}_6\text{Cl}_{16}]$: показаны слой (слева) и трехмерный каркас с участием ионов лития (серые шарики, справа).

фере аргона приводит, как утверждается, к «щадящему окислению» (за счет ацетона?) кластерного ядра $\{Nb_6Cl_{12}\}^{2+}$ до состояния $\{Nb_6Cl_{12}\}^{3+}$. После добавления краун-эфиров (12-краун-4, 15-краун-5, 18-краун-6) были выделены соответствующие соли, содержащие кластерный анион $[Nb_6Cl_{18}]^{3-}$ [16].

Схожее превращение в присутствии хлорида индия протекает по уравнению:

$$2InCl_3 + 2LiCl + 2NbCl_5 + 4Nb = In_2Li_2[Nb_6Cl_{18}].$$

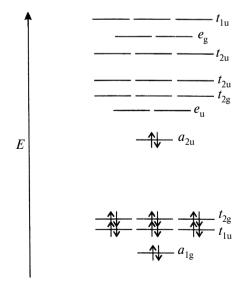

Структура $In_2Li_2[Nb_6Cl_{18}]$ состоит из дискретных кластеров $[Nb_6Cl_{18}]^{4-}$ в катионном окружении из Li^+ и In^+ [17]. Сообщается и о $Tl_4[Nb_6Br_{18}]$, метод получения которого схож с приведенным выше для $Ga(In, Tl)_4[Ta_6Cl_{18}]$ [18]. $K_4[Ta_6X_{18}]$ (X=Cl,Br) можно получить в относительно мягких условиях, восстанавливая пентагалогенид тантала Ga или Ga_2Cl_4 [19]. Оригинальный способ восстановления пентагалогенидов предложили британские ученые A. Уиттакер и \mathcal{I} . Мингос, которые использовали микроволновое излучение в качестве активатора реакции MCl_5 (M=Nb, Ta) с Al, причем использовалась бытовая микроволновая печь мощностью 200 ватт (режим «размораживание») [20].

Катионная часть солей на основе $[Nb_6Cl_{18}]^{4-}$ может включать в себя также однозарядные катионы Cu⁺, двухзарядные Ba²⁺, Pb²⁺, Eu²⁺, Mn²⁺, V^{2+} и трехзарядные Ti^{3+} , Gd^{3+} , Lu^{3+} , Er^{3+} . Haпример, получены фазы со смешанным катионным составом: $Rb_2Cu_2[Nb_6Cl_{18}]$, $K_2Mn[Nb_6Cl_{18}]$, $ATi[Nb_6Cl_{18}]$ (A = K, Rb, Cs, In, Tl) u $A_2V[Nb_6Cl_{18}]$ (A' = Tl, In, Rb) [21–24]. Для бромидов описаны $CsLn[Nb_6Br_{18}]$ (A = K-Cs, $Ln = La-Lu^{3+}$ и $A_2Ln[Ta_6Br_{18}$] (A = Rb, Cs, Tl, Ln = Eu²⁺, Yb²⁺) [25, 26]. Серия бромотанталатов представлена фазами A_2 Ln[Ta_6Br_{18}] (A = K-Cs, Ln = Eu^{2+} , Yb^{2+}), $ALn[Ta_6Br_{18}]$ (A = K-Cs, Ln = La-Lu³⁺, Y³⁺). Окисленный анион $[Ta_6Br_{18}]^{3-}$ присутствует в структуре $Ln[Ta_6Br_{18}]$ (Ln = Nd-Tm). Все эти фазы получены нагреванием стехиометрических количеств ABr, REBr₃, MBr₅ и М в кварцевых трубках при 600-750°С в течение суток [27].

 ${
m Ta}_6{
m I}_{14}$ впервые был получен в 1965 году восстановлением ${
m TaI}_5$ металлическим ${
m Ta}$: 14 ${
m TaI}_5$ + 16 ${
m Ta}$ = ${
m 5Ta}_6{
m I}_{14}$ [28] .

При этом использовалась трехзонная схема: иодид тантала нагревается до $510\,^{\circ}$ С, металлический тантал — до $665\,^{\circ}$ С, а кристаллический

продукт собирался в зоне, нагретой до 528° С. Альтернативно он может быть получен восстановлением пентаиодида тантала алюминием в градиенте температур $475-300^{\circ}$ С. Недавно была предложена простая методика синтеза Ta_6I_{14} из простых веществ, не предполагающая использование TaI_5 [29]. Строение Ta_6I_{14} показано на рис. 4. Нагревание его с избытком иода в запаянной ампуле при 350° С переводит Ta_6I_{14} в TaI_5 . При более низких температурах (жидкий иод под давлением, $\leq 250^{\circ}$ С) образуется фаза с мольным соотношением I/Ta = 4,6, которой приписывается строение [$(Ta_6I_{12})I_{18}$] с полииодидными мостиками между кластерами $\{Ta_6I_{12}\}^{2+}$ [30].


Рис. 4. Строение $Ta_6I_{14}([Ta_6I^i_{10}I^{i-a}_{2/2}]I^{a-i}_{2/2}I^{a-a}_{2/2}])$.

Утверждается, что иодидный кластер Ta_6I_{15} образуется при разложении пентаиодида тантала в токе азота при 100-200°C в виде черных кристаллов кубической сингонии (a = 11.02 Å). На основе сходства порошковых дифрактограмм для него принимается строение, аналогичное ${
m Nb}_6{
m F}_{15}$ ([(${
m M}_6{
m X}^{
m i}_{12}$) ${
m X}^{
m a}_{6/2}$]) [30]. Комплексы с кластерным ядром { ${
m Nb}_6{
m I}_{12}$ } неизвестны, однако в соединении состава ${}^{N}b_{6}Cl_{10.8}I_{3.3}$ присутствуют кластерные ядра ${}^{N}b_{6}Cl_{11}I_{2}^{2+}$. Кристаллическая структура другого смешанного галогенида, $Nb_6Cl_{12}I_2$, описывается Шеферовской формулой $\{Nb_6^{l_1^{l_1^{\prime}}}2^{l_{a-a-a}}_{l_{a-a}^{\prime}}\}$, согласно которой кластерные ядра $\{Nb_6^{l_1^{\prime}}Cl_{12}^{l_2^{\prime}}\}^{2+}$ связаны иодидными мостиками [31]. Что касается фторидов, то Nb_6F_{15} остается единственным примером октаэдрического кластера с ядром $\{M_{6}F^{i}_{12}\}$, хотя известны смешанные фторидгалогениды $CsNb_6Cl_8F_7$ и $KNbf_6Cl_{10}F_5$ [32], $Na_2Nb_6Cl_8F_7(NbF_6)$ [33], $Na_2Nb_6Cl_8F_7(NbF_6)$ и Nb₆Br₈F₇ [34], Cs₂Nb₆Br₅F₁₂ [35], Cs₄Nb₆I₉ ₅F₈ ₅ [36].

ОБЩИЕ СВОЙСТВА ОКТАЭДРИЧЕСКИХ КЛАСТЕРОВ

Поскольку и галогенид- и халькогенид-ионы не являются π -акцепторными лигандами силь-

ного поля, правило 18 электронов и связанные с ним правила Уэйда-Мингоса не применимы для определения «магического числа» электронов, необходимых для стабильности кластера. Для существования устойчивых кластеров $[M_6X_{12}^iY_6^a]^n$ достаточно уже 14 кластерных скелетных электронов с возможностью дополнительного обратимого восстановления в 15- и 16-электронные кластеры. Этим числам отвечают кластерные ядра $\{M_6X_{12}^i\}^{4+}$, $\{M_6X_{12}^i\}^{3+}$ и $\{M_6X_{12}^i\}^{2+}$ соответственно. Такая «электронная емкость», подразумевающая возможность сохранения структуры при потере или присоединении нескольких электронов за счет небольшого изменения геометрических параметров, позволяет рассматривать октаэдрические кластеры как «электронные резервуары». Начиная с 1960-х гг. проводились экспериментальные исследования (ЭПР, электронные спектры поглощения, магнитные измерения) и квантово-химические расчеты электронной структуры кластеров с ядром $\{M_6(\mu_2-X)_{12}\}^{n+}$ [37–40]. Было показано, что граничные орбитали (ВЗМО и НВМО) являются металл-центрированными, и их заполнение влияет на связывание металл-металл в кластере. Кластеры $\{M_6X_{12}\}^{4+}$ (14 кластерных скелетных электронов) и $\{M_6X_{12}\}^{2+}$ (16 кластерных скелетных электронов) диамагнитны. Почти чисто спиновые магнитные моменты для 15-электронного $(M_6 X_{12})^{3+}$ свидетельствует о том, что при восстановлении $\{M_6X_{12}\}^{4+}$ электроны занимают невырожденную молекулярную орбиталь a_{211} (рис. 5). Связывающий характер a_{2u} -орбитали подтверждается заметным удлинением расстоя-

Рис. 5. Диаграмма МО $\{M_6(\mu_2-X)_{12}\}^{2+}$ [1].

ния M-M (около 0,1 Å) при удалении с нее электронов.

Недавние расчеты, выполненные на современном уровне теории функционала плотности (базисный набор Def2-TZVPP, B3LYP) для серии комплексов $[M_6X_{12}^iX_6^a]^{4-}$ (X = Cl, Br) подтверждают наличие 8 МО, ответственных за связыванием металл-металл. Орбитали ВЗМО, ВЗМО-1 и ВЗМО-2 действительно отвечают орбиталям a_{2u} , t_{1u} и t_{2g} , соответственно (причем уровень $t_{1\mathrm{u}}$ лежит выше, а не ниже по энергии, чем t_{2g} , как следовало из классической схемы). Орбиталь a_{1g} является самой низколежащей и может опускаться даже ниже МО, отвечающих неподеленным парам галогенидных лигандов. Примечательно наличие π-связывания между металлом и терминальным галогенидом, которому отвечает глубоколежащий набор t_{2g} (HOMO-7) [41].

ЭПР, зарегистрированный $(Bu_4N)_3[Nb_6Cl_{12}Br_6]$ $(\{Nb_6Cl_{12}\}^{3+}\}$, показал, что неспаренный электрон делокализован на шести эквивалентных атомах ниобия. Были измерены величины магнитной восприимчивости и спектры магнитного кругового дихроизма, подтвердившие парамагнетизм 15-электронных кластеров, при этом было показано, что магнитное поведение комплексов $[M_6X_{12}X_6]^{3-}$ подчиняются закону Кюри [42–45]. Изучены электронные спектры поглощения (ЭСП) для $[M_6X_{12}(H_2O)_6]^{n+}$ (X = Cl, Br: n = 2-4) в водных растворах. Близкое сходство ЭСП для ниобия и тантала показывает отсутствие заметного влияния спин-орбитального взаимодействия на энергию молекулярных орбиталей [46, 47].

Химические свойства кластеров $[\{M_6X_{12}\}L_6]$ определяются двумя факторами. Во-первых, в реакциях замещения лигандов мостиковый лиганд X, как правило, инертен, в то время как терминальные лиганды лабильны. Во-вторых, кластеры вступают в обратимые реакции одноэлектронного окисления/восстановления. Ситуация может осложняться тем, что лигандный обмен может сопровождаться изменением состояния окисления кластерного ядра. В кислых растворах кластеры $\{M_6X_{12}\}^{2+}$ медленно окисляются кислородом воздуха с образованием $\{M_6X_{12}\}^{3+}$ и $\{M_6X_{12}\}^{4+}$ [19, 42, 48]. Особенно легко окисляются анионные комплексы $[\{M_6X_{12}\}X_6]^{4-}$, а галогенидные комплексы $[\{M_6X_{12}\}X_6]^{2-}$ являются, напротив, наиболее стабильными среди 14-электронных кластеров с ядром $\{M_6X_{12}\}^{4+}$. В неводных средах окисленные состояния +3

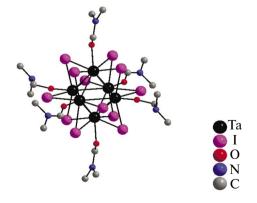
и +4 стабильнее, чем в водных [43]. Природа терминального лиганда оказывает влияние на относительную стабильность 14-, 15- и 16-электронных кластеров [44, 45].

16-ЭЛЕКТРОННЫЕ КЛАСТЕРЫ $\{M_6X_{17}\}^{2+}$

Как сами бинарные галогениды М₆Х₁₄, так и соли $A_4[M_6X_{18}]$ растворимы в воде. Из водных растворов, в зависимости от условий кристаллизации, выделяются гидраты $[(M_6X_{12})(H_2O)_4X_2]$ · nH_2O (n=3 или 4), по традиции записывающиеся как M_7X_{14} · (7-8) H_9O . Следует отметить, что в большинстве работ точный состав используемого гидрата, используемого в дальнейших синтезах (тригидрат vs. тетрагидрат), не уточнялся. Восстановление смеси пентабромидов ниобия и тантала кадмием с последующей акватацией привело к выделению смешанных кластеров (Nb,Ta)₆Br₁₄·8H₂O [46]. Гидраты могут быть переведены в соли $[M_6Cl_{18}]^{4-}$ с органическими катионами — производными тетраалкиламмония — экстракцией подходящим растворителем в аппарате Сокслета в присутствии R₄NCl в инертной атмосфере [49]. Попытки провести аналогичный обмен на воздухе приводят к окисленным комплексам $[M_6X_{18}]^{2-}$ [50].

Для бромидного кластера тантала установлено строение как три-, так и тетрагидрата, причем в обоих случаях строение координационной сферы кластера описывается формулой *транс* [(Ta_6Br_{12})($H_2O)_4Br_2$]. Тетрагидрат полностью теряет кристаллизационную воду при нагревании до 125°C [50]. Дальнейшая дегидратация аквакомплексов была изучена на примере [(Nb_6Cl_{12})($H_2O)_4Cl_2$]. Она сопровождается отщеплением HCl с образованием гидроксида [(Nb_6Cl_{12})($H_2O)_2(OH)_2$] и, возможно, [(Nb_6Cl_{12})($H_2O)_3(O)$], для которого может образоваться скелетная пе-

регруппировка с переходом кислорода в одну из 12 мостиковых позиций [51]. Гидраты гидроксокомплексов [(Nb $_6$ Cl $_1$ 2)(H $_2$ O) $_2$ (OH) $_2$] · 6H $_2$ O и [(Ta $_6$ Cl $_1$ 2)(H $_2$ O) $_2$ (OH) $_2$] · 6H $_2$ O могут быть выделены из растворов [36].


Можно добиться полной акватации кластерного ядра $\{M_6X_{12}\}^{2+}$ с образованием аквакомплексов $[(M_6X_{12})(H_2O)_6]^{2+}$ (рис. 6) Среди структурно охарактеризованных производных аквакомплексов можно упомянуть соли $[M_6Br_{12}(H_2O)_6][HgBr_4] \cdot 12H_2O$ [40, 41], $Cs[(Ta_6Br_{12})(H_2O)_6]Br_3 \times 6H_2O$, $[(Ta_6Br_{12})(H_2O)_6]Cl_2 \times 8H_2O$, $[(Ta_6Br_{12})(H_2O)_6]SO_4 \times 8.5H_2O$ [42], а также тетрафенилбораты $[Ta_6I_{12}(H_2O)_6](BPh_4)_2 \cdot H_2O$ и $[Ta_6Br_{12}(H_2O)_6](BPh_4)_2 \cdot 4H_2O$ (рис. 7).

Аквакомплексы способны входить в полость ү-циклодекстрина (ү-СD). Образование супрамолекулярного комплекса «гость-хозяин» $\{[Nb_6Cl_{12}(H_2O)_6]@\gamma-CD\}^{2+}$ со стехиометрией 1: 1 изучено методами ЯМР, изотермического калориметрического титрования и масс-спектрометрии. Константа устойчивости аддукта составляет $2.2 \times 10^3 \text{ M}^{-1}$. Стехиометрия 1 : 1 сохраняется в растворе в большом интервале соотношений реагентов, но кристаллизация приводит к продукту состава $[Nb_6Cl_{12}(H_2O)_6@(\gamma-CD)_2]$ $Cl_2 \cdot 20H_2O$, в структуре которого кластер связан с двумя молекулами ү-СО. Для моделирования взаимодействия между хозяином и гостем выполнены квантово-химические расчеты [52]. Аналогичный комплекс тантала отличается большей устойчивостью ($K = 1.5 \times 10^5 \text{ M}^{-1}$, причем, в отличие от ниобия, в растворе зафиксировано образование аддукта с двумя молекулами циклодекстрина с $K = 1.3 \times 10^5 \,\mathrm{M}^{-2}$ [53].

Гидраты $M_6 X_{14} \cdot 8 H_2 O$ хорошо растворимы в спиртах, при этом из растворов могут быть

Рис. 6. Кластерный катион $[(Ta_6Br_{12})(H_2O)_6]^{2+}$.

Рис. 7. Строение кластера $[Ta_6I_{12}(DMF)_6]^{2+}$.

выделены продукты состава $[M_6X_{12}(ROH)_6]X_2$ (M = Nb, Ta; X = Br, Cl; R = CH₃, C₂H₅, *i*-C₃H₇, *i*-C₄H₉). Комплексы $[M_6X_{12}(C_2H_5OH)_6]X_2$ служат стартовыми соединениями для получения галогенидных кластерных комплексов с различными лигандами в безводных растворителях, например $[M_6X_{12}(DMF)_6]X_2$ (M = Nb, Ta; X = Cl, Br) [54]. Экстракция Ta_6I_{14} диметилформамидом приводит к образованию зеленого раствора, из которого удалось выделить $[Ta_6I_{12}(DMF)_6]I_2$ (рис. 7) [29].

Титрование метанольного раствора аквакомплексов тантала щелочью в отсутствии кислорода воздуха дает метоксидные ком- $[Ta_{2}Cl_{12}(OCH_{2})_{2}(CH_{2}OH)_{4}]$ [55]. можно вхождение в координационную сферу большего числа алкоксидных лигандов, о чем свидетельствует выделение $[Na(222-crypt)]_2$ $[Na(CH_3OH)_4]_2[Nb_6Cl_{12}(OCH_3)_6] \cdot 7CH_3OH [56].$ В случае тантала при доступе кислорода воздуха выделены окисленные метилатные комплексы $A_2[Ta_6Cl_{12}(OCH_3)_6]$ · 6CH₃OH (A = Li — Rb) [57]. В жестких условиях (115°C) реакции $A_4[Nb_6Cl_{18}]$ с алкоголятами (CH₃ONa, C_2H_5ONa) в соответствующих спиртах приводят полному замещению мостиковых галогенидов на алкоксидные с сохранением общей структуры кластерного ядра $\{Nb6(\mu-OR)_{12}\}^{4+}$. В результате выделены и структурно охарактеризованы кластерные плексы состава $[K(CH_3OH)_4]_2[Nb_6(OCH_3)_{18}]$ и $[Na(18-crown-6)(C_2H_5OH)_2]_2[Nb_6(OC_2H_5)_{12}$ $(NCS)_6$ [58]. Позднее были получены $A_2[Nb_6(OC_2H_5)_{12}I_6]$ (A = Ph₄P, PPN) [59], a Takже $[Mg(CH_3OH)_6][Ta_6(CH_3O)_{18}]$ 6CH₃OH $\mu A_2[Nb_6(OC_2H_5)_{12}I_6]$ (A = Ph₄P, PPN) [60].

Реакции лигандного обмена $A_4[M_6X_{18}]$, Nb_6Cl_{14} и [(Nb_6Cl_{12}) $Cl_2(H_2O)_4$] $Cl_2 \cdot 4H_2O$ с тиоцианатами, азидами или цианидами приводят к кластерам состава $A_4[Nb_6X_{12}X_6]$ (A = щелочной металл, $X = Cl^-$, Br^- ; $X' = NCS^-$, N_3^- , CN^-), но из-за медленной кинетики замещения протекание этих реакций при комнатной температуре требует длительного времени (иногда до недели) [61, 62]. Отмечается, что кристаллы азидного комплекса $Rb_4[Nb_6Br_{12}(N_3)_6] \cdot 2H_2O$ взрываются при механическом воздействии или нагревании [63]. В недавней работе описано превращение $K_4[Nb_6Cl_{18}]$ в $(BMIm)_4[Nb_6Cl_{12}(NCS)_6]$ по реакции с ионной жидкостью (BMIm)NCS (BMIm = 1-бутил-3-метилимидазолий) в ацетонитриле в сольвентотермальных условиях (110°C); и в этих условиях реакция требует нагревания в течение 3 дней. На основе $(BMIm)_4[N-b_6Cl_{12}(NCS)_6]$ был получен координационный полимер состава $(BMIm)_2(Cu(CH_3CN)_2)_2[N-b_6Cl_{12}(NCS)_6] \cdot 2CH_3CN$. В нем образуется трехмерный каркас за счет координации роданидного лиганда по мостиковому типу атомом азота к Nb и атомом серы к Cu^+ [64].

Совсем недавно были разработаны простые подходы для получения всей серии цианидных комплексов $[Nb_6X_{12}(CN)_6]^{4-}$ (X = Cl, Br) и $[Ta_6X_{12}]^{4-}$ $(CN)_6$ ⁴⁻ (X = Cl, Br, I) [65] (стоит не по порядку). Цианиды могут служить для создания координационных полимеров. Например, получен аналог «берлинской лазури» состава $(Me_4N)_2[MnNb_6Cl_{12}(CN)_6]$, в структуре которой роль анионов $[Fe(CN)_6]^{3-}$ играют топологически сходные анионы $[Nb_6Cl_{12}(CN)_6]^{4-}$ [66]. На основе $[Nb_6Cl_{12}(CN)_6]^{4-}$, $[Mn(salen)]^+$ (salen — N,N'этилен-бис(салицилиден)иминат) дерных цианидных комплексов ($[Fe(CN)_6]^{4-}$, $[Cr(CN)_6]^{3-}$, $[Ni(CN)_4]^{2-}$, $[Fe(CN)_5(NO)]^{2-}$ noлучена серия трехмерных координационных полимеров с кубической гранецентрированной решеткой. Они могут быть описаны как аналоги берлинской лазури, в узлах которой находятся чередующиеся кластерные и моноядерные цианидные комплексы, разделенные дитопическими катионами $[Mn(salen)]^+$ [67].

Принудительная сольватация кластерных ядер $\{M_6X_{12}\}^{2+}$ донорными растворителями может быть достигнута растворением $A_4[M_6X_{18}]$ в присутствии сильных кислот Льюиса. Описано получение $[Nb_6Cl_{12}(Py)_6][AlCl_4]_2$ и $[Nb_6Cl_{12}(NMP)_6][GaCl_4]_2$ по двухстадийной методике, включающей реакцию $A_4[Nb_6Cl_{18}]$ (A=K,Rb) с $AlCl_3$ или $Alcl_3$ в ацетонитриле с последующем добавлением в раствор растворителя с более высоким донорным числом ($Alcl_3$), пиридина). Очевидно, реакция протекает через промежуточное образование $Alcl_3$ 0 ($Alcl_3$ 1), $Alcl_3$ 2 ($Alcl_3$ 1), пиридина).

Взаимодействие гидратов M_6Cl_{14} · $(7-8)H_2O$ с триалкилфосфинами приводит к замещению молекул воды на фосфиновые лиганды с образованием (в случае тантала) смесей *цис*и *транс*-изомеров $[Ta_6Cl_{12}Cl_2(PR_3)_4]$ ($R=C_2H_5$, $n-C_3H_7$, $n-C_4H_9$), которые разделяют с помощью хроматографии, в то время как для ниобиевых кластеров выделен только *транс*-изомер [69, 70]. В публикациях почти полувековой давности описан ряд структурно не охарактеризованных комплексов с нейтральными лигандами

типа $[(M_6X_{12})X_2L_4]$ (L = ДМСО, ДМФА, Ph₃PO, Ph_3AsO , PyNO (Py = пиридин), $P(OR)_3$) [71, 72]. Рациональный подход к синтезу таких аддуктов из аквакомплексов базируется на использовании дегидратирующих агентов, таких как уксусный или пивалевый ангидрид в присутствии лиганда в подходящем растворителе. Таким путем была получена серия $[(Nb_6Cl_{12})Cl_2L_4]$, где L — пиримидин, N-метилимидазол, изобутиронитрил, изопропанол, Рһ, РО, ДМСО. В структурах, по данным РСА, присутствуют исключительно транс-изомеры. С учетом того, что выходы продуктов не достигают количественных, не исключено присутствие иис-изомера в маточных растворах. Лиганд ДМСО координирован через атомы кислорода [73].

Недавно был предложен новый подход к замещению лигандов в аквакомплексах, основанный на реакциях гидратов $M_6 X_{14} \cdot (7-8) H_2 O$ с ионными жидкостями. Обработка $Nb_6 Cl_{14} \cdot$ 8Н₂О трифторацетатом тетраметилгуанидиния в присутствии трифторуксусного ангидрида для связывания воды при 60°C в течение недели приводит к образованию трифторацетатных $[Nb_6Cl_{12}(CF_3COO)_6]^{4-}$ комплексов кристаллизуются виде солей с ацилированным по иминному атому азота катионом тетраметилгуанидиния [74]. $Nb_6Cl_{14} \cdot 8H_2O$ в основных ионных жидкостях на основе имидазола (imH) и минеральной кислоты (HCl, H_2SO_4 , H_3AsO_4 , H_2CrO_4) превращается в имидазольные комплек $ci_{12}(imH)_{6}^{2+}$, выделенные и структурно охарактеризованные в виде солей с соответствующими анионами [75].

Образование фторидных комплексов [$\{(Nb_{x-}Ta_{6-x})Cl_{12}\}F_6\}^{4-}$ было использовано для характеристики сложной смеси, содержащей гетерометаллические кластеры $\{Nb_xTa_{6-x}Cl_{12}\}^{2+}$ с различным соотношением Nb: Та с помощью ЯМР на ядрах ^{19}F . При этом хроматографически было выделено семь индивидуальных фракций с высокой степенью обогащения по индивидуальной кластерной форме [43]. Дальнейшего развития это направление не получило.

15-ЭЛЕКТРОННЫЕ КЛАСТЕРЫ $\{M_6X_{12}\}^{3+}$

В бинарных галогенидах Nb_6F_{15} , Ta_6Br_{15} и Ta_6Cl_{15} кластерные группировки $\{M_6X_{12}\}^{3+}$ связаны мостиковыми галогенидными лигандами в трехмерные сетки $[M_6X^i_{12}X^{a-a}_{6/2}]$ [5, 76]. Для хлорида тантала была показана возможность электрохимической интеркаляции лития

по схеме: $Ta_6Cl_{15} + xLi = Li_xTa_6Cl_{15}$, где вблизи химического равновесия Ta₆Cl₁₅ принимает 1 моль лития с образованием 16-электронного кластера LiNb₆Cl₁₅. Обратимая емкость при достаточно высоких потенциалах (2 В) слишком мала, чтобы использовать Ta₆Cl₁₅ в качестве анода в Li-ионных батареях. Тем не менее ячейки Li/Ta₆Cl₁₅ выдерживают не менее 1500 циклов заряда и разряда [77]. К этому же семейству принадлежит и бромид состава ТаВг, 94, строение которого отвечает формуле $[{Ta_6Br_{12}}]$ $Br_3{TaBr_6}_{0.86}$], т.е. по сути частично окисленному кластеру Та₆Вг₁₅. Для ниобия аналогичного соединения не описано [78]. Кластеры $\{Nb_6Cl_{12}\}^{3+}$ присутствуют в структуре LnNb₆Cl₁₈ [9]. Соли Li, Na и Cs также известны [79].

15-Электронные кластерные комплексы обычно получают восстановлением или окислением кластеров $\{M_6X_{12}\}^{4+}$ и $\{M_6X_{12}\}^{2+}$ соответственно. Ниобиевые кластеры $\{Nb_6Cl_{12}\}^{3+}$ образуются при быстрым окислении $\{Nb_6Cl_{12}\}^{2+}$ кислородом воздуха; дальнейшее окисление до состояния +4 происходит медленно. Напротив, окисление $\{Ta_6Cl_{12}\}^{3+}$ до $\{Ta_6Cl_{12}\}^{4+}$ кислородом воздуха происходит достаточно быстро [60]. Контролируемое окисление 16-электронных кластеров $\{M_6X_{12}\}^{2+}$ (как правило, в кислых средах) с помощью Fe^{3+} , Br_2 , Cl_2 или O_2 может быть использовано для получения гидратов $\{M_6X_{12}\}$ $X_3(H_2O)_3$] · $3H_2O$ и анионных комплексов [$\{M_6X_{12}\}$ Cl_6]^{3–} [26]. Разработана методика синтеза аквакомплексов $[{Ta_6Cl_{12}}(H_2O)_6]^{3+}$ контролируемым восстановлением гидроксокомплексов [{Ta₆Cl₁₂} $(OH)_6$ $]^{2-}$ соляной или бромистоводородной кислотами [69]. Аналогичные реакции в метанольных средах позволяют получить [{Ta₆Cl₁₂} $(CH_3OH)_6]^{3+}$ [50]. Фосфиновые комплексы циси *mpaнc*- $[(Ta_6Cl_{12})Cl_2(PEt_3)_4]$ при окислении NOBF₄ образуют катионные комплексы $[(Ta_6Cl_{12})Cl_2(PEt_3)_4]^+,$ причем расположение терминальных хлоридных лигандов сохраняется [80]. Перекристаллизация $[Ta_6Cl_{12}(ROH)_6]$ Cl₂ из валеронитрила на воздухе привела к темно-красным кристаллам состава $2[(Ta_6Cl_{12})]$ $Cl_3(BuCN)_3$ · $[(Ta_6Cl_{12})Cl_4(BuCN)_2]$ · с низким выходом, в которых присутствуют нейтральные молекулярные комплексы [(Ta₆Cl₁₂) $Cl_3(BuCN)_3$] и [(Ta₆Cl₁₂)Cl₄(BuCN)₂] в соотношении 1:1 [81]. Кратко сообщалось о получении [Nb₆Cl₁₂(C₆H₅CN)₆](SbCl₆)₃ [82]. Описаны также комплексы с диметилсульфоксидом состава $[(M_6Cl_{12})Cl_3(Dmso)_3]$ и $(Et_4N)_2[(Nb_6Cl_{12})$ Cl₅(Dmso)] [55].

Трифлатные комплексы образуются по реакции галогенидных комплексов с метилтрифлатом без изменения окислительного состояния кластерного ядра:

$$(Bu_4N)_3[Nb_6Cl_{12}Cl_6] + 6CH_3OSO_2CF_3 =$$

= $(Bu_4N)_3[Nb_6Cl_{12}(SO_3CF_3)_6] + 6CH_3Cl.$

Трифлатный комплекс можно получать также реакцией обмена $(Bu_4N)_3[Nb_6Cl_{12}Cl_6]$ с $AgOSO_2CF_3$ [83]. Трифлатные комплексы легко вступают в реакции лигандного обмена:

$$\begin{split} [Nb_6Cl_{12}(SO_3CF_3)_6]^{3-} + 6X^- &= [Nb_6Cl_{12}X_6]^{3-} + \\ &+ 6OSO_2CF_3^-(X=Cl,\,Br,\,I,\,NCS). \end{split}$$

Для полного замещения необходим избыток галогенида. Аналогичные комплексы тантала получаются в реакциях $[{\rm Ta_6Cl_{12}(SO_3CF_3)_6}]^{2-}$, но в этом случае часть лиганда расходуется на восстановление кластерного ядра. Для $({\rm Bu_4N})_3$ $[{\rm Nb_6Cl_{12}Br_6}]$ снят спектр ЭПР в хлористом метилене при комнатной температуре, в котором реально удалось наблюдать лишь 41 линию из 55 ожидаемых для неспаренного электрона, связанного сверхтонким взаимодействием с шестью ядрами $^{93}{\rm Nb}$ (I=9/2).

14-ЭЛЕКТРОННЫЕ КЛАСТЕРЫ $\{M_6X_{12}\}^{4+}$

Это самое высокое из доступных для данного семейства кластеров состояние окисления может быть достигнуто окислением кластеров $\{M_6X_{12}\}^{2+}$ хлором или бромом, взятыми в избытке. Нередки случаи, когда окисление медленно протекает при хранении 16- или 15-электронных кластерных комплексов на воздухе. Например, твердые образцы $Ta_6Cl_{14} \cdot 8H_2O$ претерпевают обратимое топотактическое окисление, сопровождающееся переносом протона:

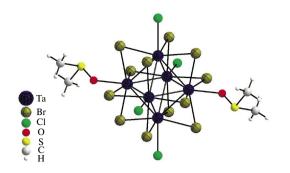
$$\begin{aligned} & [\{Ta_6Cl_{12}\}Cl_2(H_2O)_4] \cdot 4H_2O = [\{Ta_6Cl_{12}\}\\ & (OH)_x(H_2O)_{4-x} \cdot 4H_2O + xe^- + xH^+ \; (0 \le x \le 1.5) \end{aligned}$$

Особенно легко окисляются галогенидные анионные комплексы $[\{M_6X_{12}\}X_6]^{2-}$, а галогенидные комплексы $[\{M_6X_{12}\}X_6]^{2-}$, соответственно, являются наиболее стабильными производными кластеров с ядром $\{M_6X_{12}\}^{4+}$. В неводных средах окисленные состояния +3 и +4 оказываются стабильнее, чем в водных. Так, реакция $[\{Nb_6Cl_{12}\}(H_2O)_4Cl_2]\cdot 4H_2O$ с Me_4NCl в абсолютном этаноле дает комплекс $(Me_4N)_4[Nb_6Cl_{18}]$, который можно окислить Cl_2 в $(Me_4N)_2[Nb_6Cl_{18}]$. Обработка $[\{Nb_6Cl_{12}\}(H_2O)_4Cl_2]\cdot 4H_2O$ SOCl $_2$ в при-

сутствии диэтилового эфира позволяет получить $((Et_2O)_2H)_2[Nb_6Cl_{18}]$ в виде крупных темно-зеленых кристаллов. Необычным макроскопическим свойством вещества является способность к кристаллизации в виде крупных полых трубок длиной в несколько сантиметров и диаметром 2 мм. В катионе $((Et_2O)_2H)^+$ две молекулы диэтилового эфира связаны сильной водородной связью с расстоянием O...O~2.439(9) Å. Окислителем в данной реакции выступает $SOCl_2~[84]$.

Облучение $\{Ta_6Br_{12}\}^{2+}$ в деаэрированном солянокислом растворе приводит к фотохимическому окислению кластерного ядра до состояния $\{Ta_6Br_{12}\}^{4+}$ и образованию H_2 . Предполагается, что ключевой этап включает в себя двухэлектронный перенос с ядра $\{Ta_6Br_{12}\}^{2+}$ к молекуле воды, образование $\{Ta_6Br_{12}\}^{4+}$ и координированного гидрид-иона H^- с последующим взаимодействием гидрид ионов с H^+ с образованием H_2 [85].

Исходя из галогенидных комплексов получены комплексы с трифлатными лигандами:


$$\begin{array}{l} (Bu_4N)_2[\{M_6Cl_{12}\}Cl_6] + 6HOSO_2CF_3 \rightarrow \\ \rightarrow (Bu_4N)_2[\{M_6Cl_{12}\}(OSO_2CF_3)_6] + 6HCl. \end{array}$$

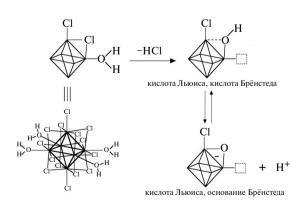
при попытках трифлат на такие лиганды, как NCS-, Br- и I-, происходит одно- или двухэлектронное восстановление кластерного ядра. Так, реакция $(Bu_4N)_2[Ta_6Cl_{12}(OSO_2CF_3)_6]$ c Bu_4NX (X = Cl, Br, I, NCS, CN) сопровождается восстановлением, приводящим к $(Bu_4N)_3[Ta_6Cl_{12}X_6]$. Тенденция к восстановлению кластерного ядра и замещению возрастает в ряду $Cl^- < Br^- < NCS^- < I^- < CN^-$ [83]. Примечательно, что лишь в реакции с металлорганическим лигандом $[CpMn(CO)_2(CN)]^-$ замещение не сопровождается восстановлением кластерного ядра и приводит к двенадцатиядерному гетерометаллическому комплексу (Ви₄N)₂ $[(Ta_6Cl_{12})(NC(CO)_2MnCp)_6]$, в котором цианидный лиганд выступает в качестве мостикового по отношению к Та (через атом азота) и Мп (через атом углерода) [86].

Из аквакомплекса $[(Ta_6Br_{12})Br_2(H_2O)_4] \cdot 4H_2O$ и диметилсульфоксида в HCl был получен нейтральный комплекс $[(Ta_6Br_{12})(Dmso)_2Cl_4]$ [57] (рис. 8).

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ОКТАЭДРИЧЕСКИХ ГАЛОГЕНИДНЫХ КЛАСТЕРОВ НИОБИЯ И ТАНТАЛА

Октаэдрические галогенидные кластеры, первые представители которых были получены в самом начале 20 века, долгое время оставались

Рис. 8. Строение [(Ta₆Br₁₂)(Dmso)₂Cl₄].


лабораторным курьезом, в лучшем случае удостаиваясь упоминания в учебниках для иллюстрации концепции «кластер». Хотя уже почти 100 лет назад было замечено, что водные растворы «Та₆Вr₁₄» проявляют свойства неорганического красителя и окрашивают шелк в зеленый несмывающийся цвет [87], развития эта идея не получила. Ранние весьма немногочисленные работы сводились к попыткам инжиниринга кристаллов, содержащих кластерные фрагменты, модификации поверхностей, интеркаляции в слоистые матрицы, получение солей с проводящей катионной подрешеткой. Они подробно суммированы в обзоре [1]. Лишь с начала XXI столетия обозначились практически значимые области применения, что в первую очередь связано с гетерогенным катализом и фотокатали-30M.

ГЕТЕРОГЕННЫЙ КАТАЛИЗ

Исследовательская группа из Японии под руководством Т. Тихара и С. Камигути опубликовала серию работ, посвященных изучению каталитической активности галогенидных кластеров ниобия и тантала. В работе использовались $[(M_6X_{12})X_2(H_2O)_4] \cdot 4H_2O$

(M = Nb, Ta; X = Cl, Br), которые активировали с помощью высокотемпературной дегидратации. При этом кластерное ядро останется интактным, а атомы металла с вакансией вместо терминальных лигандов выступают в качестве каталитических центров. Сохранение кластерного ядра было подтверждено с помощью рентгеновской дифракции, спектрометрии КР и анализом дальней тонкой структуры рентгеновских спектров поглощения (EXAFS). Появление активных центров подтверждено методами термогравиметрически-дифференциального термического анализа (ТГ-ДТА), инфракрасной спектрометрии (ИК), инфракрасного спектра адсорбированного пиридина, адсорбции монооксида углерода, титрования кислоты индикаторами Гаммета и элементного анализа. Активация кластера проводилась нагреванием при 200-400°C в течении часа в токе гелия или азота. Конечными продуктами дегидратации оказались $\{M_6Cl_{11}(OH)\}$ $(OH)_2(H_2O)$] и $[\{M_6Cl_{11}(O)\}(OH)(H_2O)_2]$ [88].

При дегидратации на начальном этапе происходит замещение одного из мостиковых хлоридных лигандов на OH- с отщеплением HCl, и возникают два типа активных центров: кислотно-основные центры Бренстеда и координационно-ненасыщенный центр при атоме металла за счет удаления молекулы воды (схема 1). Мостиковый гидроксид за счет повышенной кислотности представляет собой сильную кислоту Бренстеда, в то время как сопряженное основание — мостиковый оксидный лиганд может выступать в качестве основного катализатора [89]. Такие катализаторы эффективны в разнообразных реакциях, таких как дегидрирование спиртов, изомеризация, алкилирование и ацилирование тиолов, циклизации, пиролиз и др. [90-94].

Схема 1. Образование каталитических центров при термической обработке $[(M_6X_{12})X_2(H_2O)_4] \cdot 4H_2O$.

В реакциях дегидрирования первичных и вторичных спиртов измельченные и просеянные (150-200 меш) образцы $[(M_6Cl_{12})Cl_2(H_2O)_4]$ · 4H₂O активировали при 300°C в токе гелия в течение часа. Далее вводили спирт в поток гелия без изменения температуры. В случае дегидратации этанола на ниобиевом кластере каталитическая активность проявлялась в температурном интервале 225-350°C, причем максимальная активность лостигалась при 300-330°C. Основным продуктом был этилен. Селективность по диэтиловому эфиру снижается с повышением температуры. Кластерный бромид ниобия [(Nb₆Br₁₂) $Br_2(H_2O)_4$] · 4H₂O также проявил каталитическую активность, причем основным продуктом при 300°C был этилен. Результаты экспериментов для ряда спиртов представлены в табл. 1.

Весьма подробно были изучены реакции каталитического алкилирования тиолов алкилирующими реагентами разных типов — спиртами, простыми и сложными эфирами, карбонатами, ортоэфирами, алкилагогенидами, олефинами [95].

В качестве тиола использовался фенилмер-каптан C_6H_5SH . В реакции с метанолом в присутствии нанесенного на SiO_2 хлорида ниобия $[(Nb_6Cl_{12})Cl_2(H_2O)_4] \cdot 4H_2O$ практически никакой каталитической активности не наблюдалось ниже 200° С. Каталитическая активность

развивается выше 250°C и увеличивается с повышением температуры, достигая максимума при 400°C с образованием почти исключительно метилфенилсульфида. Побочными реакциями были сочетание фенилмеркаптана с образованием дифенилсульфида и дифенилдисульфида с селективностью 0,2 и 1,8% соответственно. Частота оборота катализатора (ТОF) в течение 2-4 ч при 400°C составила 95,6 ч⁻¹, если предположить, что все молекулы кластера активны. В реакцию с фенилмеркаптаном вводили также алифатические спирты C(2)-C(6) при 400° C. Во всех случаях происходило S-алкилирование, при этом чем длиннее алкильная цепь спирта, тем ниже реакционная способность и селективность по отношению к алкилфенилсульфиду. При использовании первичных спиртов разветвленные алкилсульфиды практически не образовывались. Алкильные катионы, по-видимому, не образуются в качестве промежуточных пролуктов. Реакционная способность вторичного спирта была низкой, а третичный спирт не вступал в реакцию.

Простые эфиры с алкильными группами C(2)-C(4) были также протестированы как алкилирующие агенты для C_6H_5SH в присутствии $[(Nb_6Cl_{12})Cl_2(H_2O)_4] \cdot 4H_2O/SiO_2$ при $400^{\circ}C$. Более короткие алкильные цепи проявляют более высокую селективность в отношении образования алкилфенилсульфида. Несимме-

Таблица 1. Дегидрировани	ие спиртов над галогенидными к.	ластерами ^а
--------------------------	---------------------------------	------------------------

Спирт		Конверсия	Селективность, % ^с					
	Катализатор (%)		1-олефины	<i>цис-</i> 2- олефины	<i>транс</i> -2- олефины	др. ^d		
П	$[{Nb_6Cl_{12}}{Cl_2(H_2O)_4}]\cdot 4H_2O$	61.3	97.7	0	0	2.3		
Пропанол-1	[{Ta ₆ Cl ₁₂ }Cl ₂ (H ₂ O) ₄]·4H ₂ O	9.0	98.9	0	0	1.1		
Бутанол-1	$[{Nb_6Cl_{12}}Cl_2(H_2O)_4]\cdot 4H_2O$	27.6	56.2	26.1	14.6	3.1		
Пентанол-1	$[{Nb_6Cl_{12}}{Cl_2(H_2O)_4}\cdot 4H_2O$	4.8	53.0	26.2	17.4	3.4		
Пропанол-2	$[{Nb_6Cl_{12}}{Cl_2(H_2O)_4}\cdot 4H_2O$	100.0	99.9	0	0	0.1		
	[{Ta ₆ Cl ₁₂ }Cl ₂ (H ₂ O) ₄]·4H ₂ O	16.2	99.7	0	0	0.3		
Бутанол-2	[{Nb ₆ Cl ₁₂ }Cl ₂ (H ₂ O) ₄]·4H ₂ O ^e	73.6	25.5	40.2	34.2	0.1		

 $^{^{}a}$ После активации кластера (30 мг) в потоке гелия (1.2 л/ч) при 300 $^{\circ}$ С в течение 1 ч.

^b Конверсия = продукты/(продукты + восстановленный спирт) ×100% (через 5 ч после начала реакции).

 $^{^{}c}$ Конверсия = продукт/смесь продуктов ×100% (через 5 ч после начала реакции).

 $^{^{}d}$ Эфиры и ацетали не образуются.

^е Масса катализатора 10 мг.

тричный эфир дает два соответствующих алкилфенилсульфида, предпочтительно с более короткой алкильной цепью. Реакционная способность простых эфиров была выше, чем у спиртов для тех же алкильных групп.

В аналогичных условиях реакции с диметили диэтилкарбонатом также давали соответствующие алкилфенилсульфиды с высокой селективностью. Реакционная способность карбонатов была намного выше реакционной способности спиртов или простых эфиров. В случае несимметричного карбоната были получены два ожидаемых алкилфенилсульфида, причем преобладал более алкилфенилсульфид с более короткой алкильной цепью. При использовании метил- и этилортоформиата при 400°C над ниобиевым кластером конверсия составила 93%, а селективность — 94%. При использовании ацетатов в аналогичных условиях основной реакцией является S-ацетилирование: метил, этил и пропилацетат образуют S-фенилтиоацетат с селективностью 50-75% [96].

Терминальные алкилгалогениды C(4)-C(6) также выступают как алкилирующие агенты. В реакции 1-хлорбутана с C_6H_5SH до 300°C был получен бутилфенилсульфид с селективностью 58%. Чем длиннее алкильная цепь хлоралкана, тем ниже как конверсия, так и селективность алкилирования. Бромоалканы также оказались эффективными реагентами. Реакционная способность бромида аналогичным образом снижается с увеличением длины алкильной цепи. Во всех случаях образовывалось незначительное количество вторичных алкилфенилсульфидов или они вообще не образовывались.

При использовании олефинов как алкилирующих агентов ниже 150°C реакции протекали одинаково как в присутствии, так и в отсутствие

 $[(Nb_6Cl_{12})Cl_2(H_2O)_4] \cdot 4H_2O/SiO_2$ с образованием в основном дифенилдисульфида. Выше 200°С реакционная способность 1-гексена возрастала как в присутствии, так и в отсутствие катализатора, и реакция переключалась на S-алкилирование с образованием H-гексилфенилсульфида. При более высоких температурах $[(Nb_6Cl_{12})Cl_2(H_2O)_4] \cdot 4H_2O/SiO_2$ оказался эффективным катализатором алкилирования. Образования разветвленного алкилфенилсульфида не обнаружено.

В реакциях бензальдегида с кетонами, катализируемых активированным $[(Ta_6Cl_{12})Cl_2(H_2O)_4] \cdot 4H_2O/SiO_2$, наблюдалось образование инденов согласно предлагаемой схеме (схема 2) [97].

Выходы продуктов для разных кетонов сопоставлены в табл. 2.

Каталитическая система $[(Ta_6Cl_{12})Cl_2(H_2O)_4] \cdot 4H_2O/SiO_2$ катализирует многочисленные реакции циклизации (табл. 3).

В реакцию также были вовлечены простые α , ω -дизамещенные алифатические соединения, содержащие группы —OH, —SH или —NH₂ (схема 3). Циклизация $HR(CH_2)_nRH$ (R=0, S или NH; n=4-6) до $(CH_2)_nR$ с отщеплением H_2R протекает селективно на галогенидных кластерных катализаторах при $\geq 200^{\circ}C$ [98, 99].

Термически активированный в атмосфере гелия гидрат $[(Nb_6Cl_{12})Cl_2(H_2O)_4] \cdot 4H_2O$ катализирует пиролиз фенилацетата выше 200°С. Активность достигает максимума при 300°С. Продуктами являются исключительно фенол и кетен. Аналогичную каталитическую активность проявляют бромидный кластер $[(Nb_6Br_{12})Br_2(H_2O)_4] \cdot 4H_2O$ и хлоридный кластер тантала $[(Ta_6Cl_{12})Cl_2(H_2O)_4] \cdot 4H_2O$.

Схема 2. Образование инденов из бензальдегида и 3-пентанона.

Таблица 2. Реакции кетонов с бензальдегидом над $[{Ta_6Cl_{12}}{Cl_2(H_2O)_4}] \cdot 4H_2O/SiO_2^a$

Кетон		Селективность, %						
	Конверсия, %	E-C ₆ H ₅ CHCR ₁ COR ₂	Индены	C ₆ H ₅ R (R=H, CH ₃ , CHCH ₃)	Прочие			
Ацетон	23.3	72.3 ($R_1 = H, R_2 = CH_3$)	6.4 ^b	16.3	5.0			
Бутанон	8.4	$9.6 (R_1 = H, R_2 = C_2 H_5)$	23.4°	47.9	19.1			
2-пентанон	13.8	17.9 ($R_1 = H, R_2 = C_3 H_7$)	31.4 ^d	15.7	16.0			
3-пентанон	29.7	$0.0 (R_1 = CH_3, R_2 = C_2H_5)$	78.4 ^e	10.2	11.4			
3,3-диметил-2-бутанон (6)	20.0	81.1 ($R_1 = H, R_2 = {}^{t}Bu$)	0.0	8.1	10.8			
Е-4-фенил-3-бутен-2-он (3a) ^f	21.6		35.8 ^g	13.9	50.3 ^h			

 $[^]a$ *После* активации кластера (100 мг, 2.9 мкмоль) в токе гелия (300 мл/ч) при 400°С в течение 1 ч реакция начиналась с введения кетона (0.575 ммоль/ч) и бензальдегида (58 мл/ч, 0.57 ммоль/ч) в поток без изменения температуры. Анализ проводили через 3 ч после начала реакции.

 f раствор бутилового эфира (15%) в отсутствии бензальдегида.

Таблица 3. Внутримолекулярная циклизация над $[{Ta_6Cl_{12}}Cl_2(H_2O)_4] \cdot 4H_2O/SiO_2$

Реагент	Конверсия, %	Продукт	Селективность, %
ОН	26.3		91.0
OH	100.0		98.9
ОН	99.7		1.1
ОН	99.9		99.9
ОН	9.7		73.0 (1.7 для бензофурана)
NH ₂	100.0		96.9 (2.3 для индола)
NH ₂	99.6	NH	94.3 (4.5 для изоиндола)
SH	56.8	S S	61.8 (10.9 для бензотиофена)

 $^{^{}b}$ 1-метиленинден (2.2%) и 3-метилинден (4.2%).

 $^{^{}c}$ 2-метил-1-метиленинден (4.5%) и 2,3-диметилинден (18.9%).

 $^{^{}d}$ 2-этил-1-метиленинден (13.6%) и 2-этил-3-метиленинден (17.8%).

 $[^]e$ Z-1-этилиден-2-метилинден (45.9%), Е-1-этилиден-2-метилинден (14.7%), 2-метил-3-винилиден (6.1%) и 3-этил-2-метилинден (11.7%).

*g*1-метиленинден (3.5%) и 3-метилинден (32.3%).

 $^{^{}h}$ 4-фенил-2-бутанон, 1-фенил-1-бутен, нафталин и т.д.

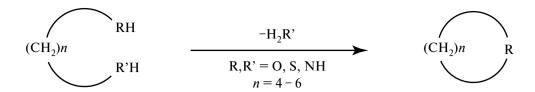
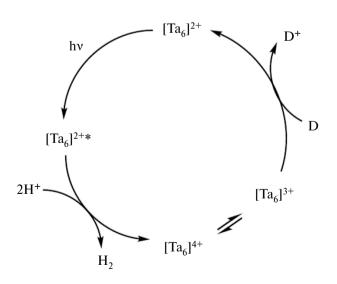
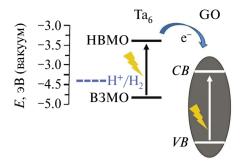



Схема 3. Циклизация α, ω -дизамещенных алифатических соединений.

ФОТОКАТАЛИЗ

Облучение ${Ta_6Br_{12}}^{2+}$ в деаэрированном солянокислом растворе приводит к фотохимическому окислению кластерного ядра до состояния ${Ta_6Br_{12}}^{4+}$ и образованию диводорода [85]. Фотолиз ${Ta_6Br_{12}}^{2+}$ осуществляется эффективнее, если использовать более кислую среду и более коротковолновое излучение. Так, квантовый выход фотохимической реакции в 1М растворе HCl возрастает на два порядка (с 10^{-4} до 10^{-2}) при переходе с 640 на 254 нм. В этом же исследовании предложен механизм, согласно которому фотовозбужденное кластерное ядро $\{Ta_6Br_{12}\}^{2+}$ претерпевает двухэлектронное окисление протоном. Образуются координированные гидрид-ионы, которые с протонами среды образуют водород, а компропорционирование $\{Ta_6Br_{12}\}^{2+}$ с $\{Ta_6Br_{12}\}^{4+}$ приводит к $\{Ta_6Br_{12}\}^{3+}$ [85]. Эта фотохимическая реакция является не каталитическим, а стехиометрическим процессом.

Фотокаталитический процесс был реализован с использованием метанола, уксусной и молочной кислот в качестве жертвенных доноров


Схема 4. Схема каталитического цикла фотохимического окисления кластерного ядра $\{Ta_6Br_{12}\}$.

электронов (D) и HBr и H_3PO_4 в качестве источников протонов. Источником света выступала ксеноновая лампа. Схема каталитического цикла представлена на схеме 4.

Оптимальной комбинацией с точки зрения выхода Н, и устойчивости кластера оказалось сочетание метанола и НВ гбыло признано оптимальным. С помощью методологии поверхности отклика были установлены оптимальные концентрации метанола (4,83 M) и HBr (0.7 M). Увеличение концентрации кислоты вызывает выпадение кластера в осадок с одновременным снижением выделения водорода. Оптимальные концентрации MeOH и HBr составляют 4,83 и 0,7 моль/л соответственно. Выход Н₂ составил 442 мкмоль/г ч, а частота оборота катализатора — 0.3 мc^{-1} [100]. На данный момент, это самая высокая производительность в реакции выделения водорода (HER — hydrogen evolution reaction), достигнутая на материалах на основе соединений тантала.

Гетерогенно-каталитический вариант был реализован в работе [101], в которой были получены наноструктурированные гибридные материалы нанесением кластера из раствора [{Та₆Вr₁₂} $Br_2(H_2O)_4$] · $4H_2O$ в тетрагидрофуране на оксид графена. Закрепление происходит за счет координации кластерных групп $\{Ta_6Br_{12}\}^{2+}$ к карбоксилатным и гидроксильным группам оксида графена, как следует из данных ИК- и КР-спектров. Эти наногибриды показали более высокие выходы в гетерогенных реакциях фотовосстановления водорода из газовой фазы водяной пар метанол — HBr, чем взятые по отдельности компоненты. Усиление фотокаталитического эффекта объясняется тем, что координационная иммобилизация кластера на поверхности оксида графена способствует переносу электрона из фотовозбужденного кластера в π-систему графеноксида (рис. 9).

Лучшая каталитическая эффективность соответствует материалу с 20% по массе загрузкой $[\{Ta_6Br_{12}\}Br_2(H_2O)_4]\cdot 4H_2O$. Стоит подчеркнуть, что хотя достигнутая активность катализатора

Рис. 9. Энергетическая диаграмма переноса электрона с орбитали HCMO [$\{Ta_6Br_{12}\}Br_2(H_2O)_4\}$ в π -систему графеноксида.

(4 мкмоль Γ^{-1} ч⁻¹) имеет тот же порядок величины, что и активность других танталовых фотокатализаторов, таких как MTaO₃ (M = Li, Na, Mg) и танталаты MTa₂O₆ (M = Mg, Ba) [102], эта величина существенно (на два порядка) уступает активности, достигнутой в гомогенно-каталитическом варианте. Достоинством гетерогенного варианта является то, что не происходит падения каталитической активности в течении трех послеловательных шиклов по 24 часа.

БИОМЕДИЦИНСКИЕ ПРИМЕНЕНИЯ

Рентгеновская компьютерная томография является важный инструментом визуализации внутренних органов в клинических исследованиях. Подбор контрастных агентов, систем визуализации, схем сбора данных и стратегии анализа изображений позволяют осуществлять визуализацию за счет ослабления рентгеновских лучей в изучаемом органе и появления сигнала на компьютерной томограмме. На сегодняшний день иод (Z = 53) остается наиболее используемым элементом в клинической практике, и коммерческие контрастные агенты представляют собой иодорганические соединения. Тантал имеет К-край поглощения при 67 кэВ и обладает высоким коэффициентом ослаблением рентгеновских лучей, обеспечивая больший контраст по сравнению с иодом [103]. Благодаря этим свойствам кристаллизация с $[{Ta_6Br_{12}}Br_2(H_2O)_4]$ · • 4Н₂О использовалась для определения фазы изоморфных производных белков в биомакромолекулярной кристаллографии [104]. Тантал также является нетоксичным абиогенным элементом. Предложены рентгеноконтрастные препараты на основе наночастиц металлического тантала, Та₂O₅ и LaTaO₄ [105, 106]. В связи с этим привлекательной представляется возможность использования иодидных кластеров тантала $\{Ta_6I_{12}\}^{2+}$, сочетающих в одном кластерном

ядре 18 тяжелых атомов (6Ta + 12I), в качестве рентгеноконтрастных средств. Однако аквакомплекс $[Ta_6I_{12}(H_2O)_6]^{2+}$ нестабилен в водной среде и деградирует в течение нескольких дней с образованием Ta_2O_5 . Присутствие полистиролсульфоната повышает стабильность кластера за счет образования частиц стехиометрии $Na[Ta_6I_{12}(H_2O)_6](C_7H_7SO_3)_3$, имеющих микронные размеры. При их редиспергировании в воде образуются коллоидные растворы, обладающие высокой рентгеновской плотностью, в 8 раз превосходящей таковую для стандартного коммерческого препарата — йогексола [29].

В связи с этим встает вопрос о потенциальной токсичности октаэдрических кластеров $\{M_6X_{12}\}$. Для кластеров тантала данные о токсичности отсутствуют, а для аквакомплекса $[\{Nb_6Cl_{12}\}]$ $(H_2O)_6]^{2+}$ была изучена цитотоксичность по отношению к раковым клеткам эпителия человека линии Нер-2. Показано, что кластер проникает через мембрану в клетку, где способен проникать в ядро и митохондрии и связываться с ДНК. Цитотоксичность обусловлена способностью кластера генерировать активные формы кислорода, видимо, за счет окислительно-восстановительных реакций. Интересно, что присутствие у-циклодекстрина снижает цитотоксичность кластера, несмотря на усиление клеточного поглощения. Способность кластера проникать во внутренние структуры клетки можно использовать для доставки различных биологически активных молекул, предварительно координированных к кластерному ядру [52]. Вопрос о том, насколько эти результаты можно экстраполировать на поведение рентгеноконтрастных наночастиц $Na[Ta_6I_{12}(H_2O)_6](C_7H_7SO_3)_3$, остается открытым.

ФИЛЬТРЫ ДЛЯ УФ-И БЛИЖНЕГО ИК-ИЗЛУЧЕНИЯ

Концепция новых современных материалов энергосбережения для экологически чистого строительства требует поиска материалов, прозрачных в видимом диапазоне длин волн и позволяющих управлять солнечным светом и передачей тепла. Следовательно, необходимо найти блокаторы УФ-излучения, задерживающие излучение в диапазоне 300—400 нм, которое разлагает органические вещества, включая строительные полимеры, с образованием вредных летучих органических соединений. С другой стороны, ближние ИК-лучи (700—3000 нм) ответственны за тепловое излучение. Эффективный контроль

пропускания окнами солнечной энергии оптимизирует таким образом работу систем кондиционирования воздуха. Поскольку обычные стекла и полимеры, используемые в зданиях, не отражают и не поглощают ближнее ИК-излучение, требуются специальные солнцезащитные покрытия. Октаэдрические кластеры ниобия и тантала обладают богатыми многополосными электронными спектрами поглощения, которые захватывают УФ-, видимую и ближнюю ИК-области. Кроме того, кластеры способны обратимо переключаться между тремя состояниями окисления, что в перспективе позволяет создавать переключаемые фильтры, поскольку окислительно-восстановительные переходы сопровождаются характерными изменениями электронных спектров поглощения. Эта концепция была реализована в работах французской группы С. Кордье путем замены катиона калия в $K_2[Ta_6Br_{18}]$ на додецил-11-(метакрилоилокси)ундецил)диметиламмоний. Этот катион несет метакрилатные группы, и полученная соль может быть сополимеризована с метилметакрилатом. Таким образом, были получены полимерные пленки с включенным кластерным анионом. Эти пленки демонстрируют свойства фильтров для УФи ближнего ИК-излучения, причем максимумы поглощения зависят от зарядового состояния аниона $[Ta_6Br_{18}]^{2-}$ или $[Ta_6Br_{18}]^{4-}$. Дальнейшая настройка может быть обеспечена, например, заменой части атомов тантала в кластере на атомы ниобия [107]. Действительно, [{Nb₅TaCl₁₂} Cl_6 l^{4-} обладает интенсивным поглощением, подходящим для применения в системах контроля солнечной активности, которое комплементарно оксиду индия-олова (ITO) Интегрированный в поливинилпирролидон ($\Pi B \Pi$) и осажденный на ITO кластер дает композитное стекло, которое позволяет фильтровать самые активные компоненты УФ- и ближних ИК-волн. Недостатком пока является то, что матрица ПВП водорастворима и демонстрирует плохие механические свойства [108].

В заключение оьметим, что за четверть века с момента написания обзора [1] наблюдается устойчивый рост интереса к химии галогенидных кластеров ниобия и тантала. За это время впервые обозначились области возможного применения таких соединений, которые включают катализ и фотокатализ, получение рентгеноконтрастных препаратов, фильтров для УФ- и ближнего ИК-изучения, химических источников тока. Обладая высоким синтетическим и прикладным потенциалом, кластерные галогениды ниобия

и тантала внесут весомый вклад в развитие коорлинационной химии.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Авторы благодарят за поддержку Министерство науки и высшего образования Российской Федерации (№ 121031700313-8).

СПИСОК ЛИТЕРАТУРЫ

- Prokopuk N., Shriver D.F. // Adv. Inorg. Chem. 1998.
 V. 56. P. 1.
- 2. *Artelt H.M.*, *Meyer G.* // Z. Kristallogr. Cryst. Mater. 1993. V. 206. № 2. P. 306.
- 3. *Simon A., Georg Schnering H., Wöhrle H., Schäfer H. //* Z. Anorg. Allg. Chem. 1965. V. 339. № 3–4. P. 155.
- 4. *Lin Z., Williams I.D.* // Polyhedron. 1996. V. 15. № 19. P. 3277.
- Schäfer H., Gerken R., Scholz H. // Z. Anorg. Allg. Chem. 1965. V. 335. № 1–2. P. 96.
- 6. *Schäfer H.*, *Dohmann K.-D.* // Z Anorg Allg Chem. 1959. V. 300. № 1–2. P. 1.
- 7. *Schäfer H., Schnering H.G., Niehues K.J., Nied-er-Vahrenholz H.G.* // J. Less. Comm. Met. 1965. V. 9. № 2. P. 95.
- 8. *Von Schnering H.G., Vu D., Jin S.L., Peters K. // Z.* Kristallogr. 1999. V. 214. № 1. P. 15.
- 9. *Habermehl K., Mudring A., Meyer G.* // Eur. J. Inorg. Chem. 2010. P. 4075.
- 10. McCarley R.E., Boatman J.C. // Inorg. Chem. 1965. V. 4. P. 1486.
- 11. *Hughes B.G., Meyer J.L., Fleming P.B., McCarley R.* // Inorg Chem. 1970. V. 9. № 6. P. 1343.
- 12. *Sokolov M.N., Abramov P.A., Mikhailov M. A. et al.* // Z. Anorg. Allg. Chem. 2010. V. 636. № 8. P. 1543.
- 13. Shamshurin M.V., Abramov P.A., Mikhaylov M.A., Sokolov M.N. // J. Struct. Chem. 2022. V. 63. № 1. P. 81.
- 14. *Womelsdorf H.*, *Meyer H.-J.*, *Lachgar*, *A.* // Z. Anorg. Allg. Chem. 1997. V. 623. № 1–6. P. 908.
- 15. *Baján B.*, *Meyer H.* // Z. Anorg. Allg. Chem. 1997. V. 623. № 1–6. P. 791.
- Ströbele M., Meyer H-J. // Z. Naturforsch. 2001. 56b. P. 1025.
- 17. *Lachgar A., Meyer H.-J.* // J Solid State Chem. 1994. V. 110. № 1. P. 15.
- 18. *Womelsdorf H.*, *Meyer H.-J.* // Z Kristallogr Cryst Mater. 1995. V. 210. № 8. P. 608.
- 19. *Duraisamy T., Hay D. N., Messerle L. et al.* // Inorg Synth. 2014. V. 36. P. 1.

- 20. *Whittaker A.G., Mingos D.M.P.* // Dalton Trans. 1995. № 12. P. 2073.
- 21. Sitar J., Lachgar A., Womelsdorf H. et al. // J. Solid State Chem. 1996. V. 122. № 2. P. 428.
- 22. *Nägele A., Anokhina E., Sitar J. et al.* // Z. Naturforsch. B. 2000. V. 55. № 2. P. 139.
- Duraisamy T., Lachgar A. // Acta Crystallogr. C. 2003.
 V. 59. № 4. P. 127.
- 24. *Duraisamy T., Qualls J.S., Lachgar A.* // J. Solid State Chem. 2003. V. 170. № 2. P. 227.
- 25. Cordier S., Perrin C., Sergent M. // Z. Anorg. Allg. Chem. 1993. V. 619. № 4. P. 621.
- 26. *Ramlau R.*, *Duppel V.*, *Simon A. et al.* // J. Solid State Chem. 1998. V. 141. № 1. P. 140.
- 27. *Cordier S.*, *Perrin C.*, *Sergent M.* //J. Solid State Chem. 1995. V. 118. №. 2. P. 274.
- 28. *Kòrösy.*, *F.* // J. Am. Chem. Soc. 1939. V. 61. № 4. P. 838.
- 29. *Shamshurin M. V., Mikhaylov M. A., Sukhikh T. et al.* // Inorg Chem. 2019. V. 58. № 14. P. 9028.
- 30. *Bauer D., Schnering H.G., Schäfer H.* // J. Less Comm. Met. 1968. V. 14. № 4. P. 476.
- 31. *Sägebarth M.*, *Simon A.* // Z. Anorg. Allg. Chem. 1990. V. 587. № 1. P. 119.
- 32. *Cordier S., Hernandez O., Perrin C.* // J. Fluorine Chem. 2001. V. 107. №. 2. P. 205.
- 33. *Cordier S., Simon A.* // Solid State Sci. 1999. V. 1. №. 4. P. 199.
- 34. Cordier S., Hernandez O., Perrin C. //J. Solid State Chem. 2001. V. 158. № 2. P. 327.
- 35. *Cordier S., Hernandez O., Perrin C.* //J. Solid State Chem. 2002. V. 163. №.. 1. P. 319.
- 36. *Cordier S.*, *Perrin C.* //J. Solid State Chem. 2004. V. 177. № 3. P. 1017.
- 37. *Mingos. D.M P.* // Acc. Chem. Res. 1984. V. 17. № 9. P. 311.
- 38. *Robin M.B.*, *Kuebler N.A.* // Inorg Chem. 1965. V. 4. № 7. P. 978.
- 39. *Cotton F.A.*, *Haas T.E.* // Inorg. Chem. 1964. V. 3. № 1. P. 10.
- 40. *Schott E., Zarate X., Arratia-Pérez R.* // Polyhedron. 2012. V. 36. № 1. P. 127.
- 41. *Shamshurin M.V., Martynova., S.A., Sokolov.M. N. et al.* // Polyhedron. 2022. V. 226. P. 116107.
- 42. *Juza D., Schäfer H.* // Z. Anorg. Allg. Chem. 1970. V. 379. № 2. P. 122.
- 43. *Perrin C., Ihmaine S., Sergent M.* // New J. Chem. 1988. V. 12. № 6–7. P. 321.
- 44. *Cordier S., Perrin C., Sergent M.* // Z. Anorg. Allg. Chem. 1993. V. 619. № 4. P. 621.
- 45. *Ihmaïne S., Perrin C., Peña O. et al.* // Physica. B. 1990. V. 163. P. 615.
- 46. *Schäfer H.*, *Spreckelmeyer B.* // J. Less-Comm. Met. 1966. V. 11. № 1. P. 73.

- 47. *Vojnović M., Antolić S., Kojić-Prodić B. et al.* // Z. Anorg, Allg. Chem. 1997. V. 623. № 8. P. 1247.
- 48. *Simon A., von Schnering H.-G., Schäfer H.* // Z. Anorg. Allg. Chem. 1968. V. 361. № 5–6. P. 235.
- 49. *Koknat F. W., McCarley R. E.* // Inorg. Chem. 1972. V. 11. P. 812.
- 50. Wilmet M., Lebastard C., Sciortino F. et al. // Dalton Trans. 2021. V. 50. P. 8002.
- 51. *Kamiguchi S., Watanabe M., Kondo K. et al.* // J. Mol. Cat. A. 2003. V. 203. P. 153.
- Ivanov A.A., Pozmogova T.N., Solovieva A.O. et al. // Chem. Eur. J. 2020. V. 26. P. 7479. https://doi.org/10.1002/chem.202000739.
- 53. *Moussawi M.A.*, *Leclerc-Laronze N.*, *Floquet S. et al.* // J. Am. Chem. Soc. 2017. V. 139. P. 12793.
- 54. *Širac S., Planinić P., Marić L. et al.* // Inorg. Chim. Acta. 1998. V. 271. № 1–2. P. 239.
- 55. Brničevič N., Nothig-Hus D., Kojic-Prodic B. et al. // Inorg. Chem. 1992. V. 31. № 19. P. 3924.
- Beck U., Simon A., Brničević N. et al. // Croat Chem Acta. 1995. V. 68. P. 837.
- 57. *Brničevič N., Muštovič F., McCarley R.E.* // Inorg. Chem. 1988. V. 27. P. 4532.
- Flemming A., Köckerling M. // Angew. Chem. Int. Ed. 2009. V. 48. P. 2605.
- Schröder F., Köckerling M. // J. Clust. Sci. 2022.
 V. 22. P. 1.
- 60. *Schröder F., Köckerling M.* // Z. Anorg. Allg. Chem. 2021. V. 647. P. 1625.
- 61. *Reckeweg O., Meyer H.* // Z. Anorg. Allg. Chem. 1996. V. 622. № 3. P. 411.
- 62. *Naumov N.G.*, *Cordier S.*, *Perrin C.* // Solid State Sci. 2003. V. 5. № 10. P. 1359.
- 63. *Meyer H.-J.* // Z Anorg Allg Chem. 1995. V. 621, № 6. P. 921.
- 64. *Pigorsch A., Köckerling M.* // Cryst Growth Des. 2016. V. 16, № 8. P. 4240.
- 65. Shamshurin M., Gushchin A., Adonin S. et al. // Inorg. Chem. 2022. V. 61. № 42. P. 16586.
- 66. Yan B., Zhou H., Lachgar A. // Inorg Chem. 2003. V. 42. № 26. P. 8818.
- 67. *Zhang J.-J., Lachgar A.* // Inorg Chem. 2015. V. 54. № 3. P. 1082.
- 68. *Fleming A., König J., Köckerling M.* // Z. Anorg. Allg. Chem. 2013. V. 639. P. 2527.
- 69. *Klendworth D.D., Walton R.A.* // Inorg. Chem. 1981. V. 20. P. 1151.
- 70. *Field R.A., Kepert D.L.* // J. Less Comm. Met. 1967. V. 13. № 4. P. 378.
- 71. *Imoto H. Hayakawa S., Morita N., Saito T.* // Inorg. Chem. 1990. V. 29. № 10. P. 2007.
- 72. *Field R.A., Kepert D.L., Robinson B.W. et al.* // Dalton Trans. 1973. V. 18. P. 1858.

- 73. Sperlich E., König J., Weiβ D.H. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. P. 233.
- Weiβ D.H., Schröder F., Köckerling M. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 345.
- 75. *Sperlich E., Köckerling M.* // ChemistryOpen. 2021. V. 10. P. 248.
- 76. *Von Schnering H.G.*, *Vu D.*, *Jin S.L. et al.* // Z. Kristallogr. 1999. V. 214. № 1. P. 15.
- 77. *Kuhn A.*, *Dill S.*, *Meyer H.J.* // Z. Anorg. Allg. Chem. 2005. V. 631. № 9. P. 1565.
- 78. *Espenson J.H., Boone D.J.* // Inorg. Chem. 1968. V. 7. № 4. P. 636.
- 79. *Jacobson R.A.*, *Thaxton C.B.* // Inorg. Chem. 1971. V. 10. № 7. P. 1460.
- 80. *Михайлов М.А.* Октаэдрические галогенидные кластерные комплексы ниобия, тантала, молибдена, вольфрама: дис. ... канд. хим. наук. Новосибирск: ИНХ СО РАН, 2013.
- 81. *Klendworth D.D., Walton R.A.* // Inorg. Chem. 1981. V. 20. № 4. P. 1151.
- 82. *Beck U., Simon A., Širac S. et al.* // Z. Anorg. Allg. Chem. 1997. V. 623. № 1. P. 59.
- 83. *Prokopuk N., Weinert C. S., Kennedy V. O. et al.* // Inorg. Chim. Acta. 2000. V. 300. P. 951.
- 84. 84. *König J., Köckerling M.* // Chem. Eur. J. 2019. V. 25. № 61. P. 13836.
- 85. 85. Vogler A., Kunkely H. // Inorg. Chem. 1984. V. 23. № 10. P. 1360.
- 86. *Prokopuk N., Kennedy V.O., Stern C.L. et al.* // Inorg. Chem. 1998. V. 37. № 19. P. 5001.
- 87. *Chapin W. H.* // J. Am. Chem. Soc. 1910. V. 32. № 3. P. 323.
- 88. *Kamiguchi S., Nagashima S., Chihara., T. //* Metals. 2014. V. 4. P. 84.
- 89. *Kamiguchi S., Nishida S., Kurokawa H. et al.* // J. Mol. Catal. A. 2005. V. 226. P. 1.
- 90. Nagashima S., Kamiguchi S., Chihara T. // Metals. 2014. V. 4. P. 235.

- 91. Kamiguchi S., Noda M., Miyagishi Y. et al. // J. Mol. Catal. A. 2003. V. 195. P. 159.
- 92. Nagashima S., Kamiguchi S., Ohguchi S. et al. // J. Clust. Sci. 2011. V. 22. P. 647.
- 93. Kamiguchi S., Takahashi I., Kurokawa H. et al. // Appl. Catal. A. 2006. V. 309. P. 70.
- 94. *Kamiguchi S., Nakamura A., Suzuki A. et al.* // J. Catal. 2005. V. 230. P. 204.
- Nagashima S., Kudo K., Yamazaki H. et al. // Appl. Catal. A. 2013. V. 450. P. 50.
- Nagashima S., Yamazaki H., Kudo K. et al. // Appl. Catal. A. 2013. V. 464. P. 332.
- Kamiguchi S., Nishida S., Takahashi I. et al. // J. Mol. Catal. A. 2006. V. 255. P. 117.
- 98. Nagashima S., Kamiguchi S., Kudo K. et al. // Chem. Lett. 2011. V. 40. P. 78.
- 99. *Nagashima S., Sasaki T., Yamazaki H.* Proceedings of the 7th International Symposium on Acid-Base Catalysis. Tokyo (Jpn): 2013. PA-051.
- 100. *Hernández J. S., Guevara D., Shamshurin M. et al.* // Inorg. Chem. 2023. V. 62. № 46. P. 19060.
- 101. Hernández J.S., Shamshurin M., Puche M. et al. // Nanomaterials. 2022. V. 12. P. 3647.
- 102. Kato H., Kudo A. // Chem. Phys. Lett. 1998. V. 295. P. 487.
- 103. *Butts M.D., Torres A.S., Fitzgerald P.F. et al.* // Invest. Radiol. 2016. V. 51. P. 786.
- 104. *Dahms S.O., Kuester M., Streb C. et al.* // Acta Crystallogr. D. 2013. V. 69. P. 284.
- 105. Зуев М.Г., Ларионов Л.П. Танталовые рентгеноконтрастные вещества. Екатеринбург: УрО РАН, 2002. 155 с.
- 106. Chakravarty S., Hix J.M.L., Wiewiora K.A. et al. // Nanoscale. 2020. V. 12. P. 7720.
- 107. Lebastard C., Wilmet M., Cordier S. et al. // Nanomaterials. 2022. V. 12. P. 2052.
- 108. Lebastard C., Wilmet M., Cordier S. et al. // Sci. Tech. Adv. Mater. 2022. V. 23. P. 446.

Octahedral Halide Clusters of Niobium and Tantalum Bearing the Cluster Core $\{M_6X_{12}\}$

M. V. Shamshurin^a and M. N. Sokolov^{a, *}

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia *e-mail: caesar@niic.nsc.ru

Synthesis methods, molecular and electronic structures, and reactivity of the family of the octahedral clusters of niobium and tantalum halides bearing the $\{M_6X_{12}\}$ cluster core are reviewed. Possible fields of the practical use of this class of compounds are considered.

Keywords: niobium, tantalum, halides, clusters

REFERENCES

- Prokopuk N., Shriver D.F. // Adv. Inorg. Chem. 1998.
 V. 56. P. 1.
- 2. *Artelt H.M., Meyer G.* // Z. Kristallogr. Cryst. Mater. 1993. V. 206. № 2. P. 306.
- 3. *Simon A.*, *Georg Schnering H.*, *Wöhrle H.*, *Schäfer H.* // Z. Anorg. Allg. Chem. 1965. V. 339. № 3–4. P. 155.
- 4. *Lin Z.*, *Williams I.D.* // Polyhedron. 1996. V. 15. № 19. P. 3277.
- Schäfer H., Gerken R., Scholz H. // Z. Anorg. Allg. Chem. 1965. V. 335. № 1–2. P. 96.
- 6. *Schäfer H.*, *Dohmann K.-D.* // Z Anorg Allg Chem. 1959. V. 300. № 1–2. P. 1.
- Schäfer H., Schnering H.G., Niehues K.J., Nieder-Vahrenholz H.G. // J. Less. Comm. Met. 1965.
 V. 9. № 2. P. 95.
- 8. *Von Schnering H.G.*, *Vu D.*, *Jin S.L.*, *Peters K.* // *Z*. Kristallogr. 1999. V. 214. № 1. P. 15.
- Habermehl K., Mudring A., Meyer G. // Eur. J. Inorg. Chem. 2010. P. 4075.
- McCarley R.E., Boatman J.C. // Inorg. Chem. 1965.
 V. 4. P. 1486.
- 11. *Hughes B.G., Meyer J.L., Fleming P.B., McCarley R.* // Inorg Chem. 1970. V. 9. № 6. P. 1343.
- 12. *Sokolov M.N., Abramov P.A., Mikhailov M. A. et al.* // Z. Anorg. Allg. Chem. 2010. V. 636. № 8. P. 1543.
- 13. Shamshurin M.V., Abramov P.A., Mikhaylov M.A., Sokolov M.N. // J. Struct. Chem. 2022. V. 63. № 1. P. 81.
- 14. *Womelsdorf H., Meyer H.-J., Lachgar, A.* // Z. Anorg. Allg. Chem. 1997. V. 623. № 1–6. P. 908.
- 15. *Baján B., Meyer H.* // Z. Anorg. Allg. Chem. 1997. V. 623. № 1–6. P. 791.
- Ströbele M., Meyer H-J. // Z. Naturforsch. 2001. 56b. P. 1025.
- 17. *Lachgar A.*, *Meyer H.-J.* // J Solid State Chem. 1994. V. 110. № 1. P. 15.
- 18. Womelsdorf H., Meyer H.-J. // Z Kristallogr Cryst Mater. 1995. V. 210. № 8. P. 608.
- 19. *Duraisamy T., Hay D. N., Messerle L. et al.* // Inorg. Synth. 2014. V. 36. P. 1.
- 20. *Whittaker A.G., Mingos D.M.P.* // Dalton Trans. 1995. № 12. P. 2073.
- 21. Sitar J., Lachgar A., Womelsdorf H. et al. // J. Solid State Chem. 1996. V. 122. № 2. P. 428.
- 22. *Nägele A., Anokhina E., Sitar J. et al.* // Z. Naturforsch. B. 2000. V. 55. № 2. P. 139.
- 23. *Duraisamy T., Lachgar A.* // Acta Crystallogr. C. 2003. V. 59. № 4. P. 127.
- 24. *Duraisamy T., Qualls J.S., Lachgar A.* // J. Solid State Chem. 2003. V. 170. № 2. P. 227.
- 25. 25. Cordier S., Perrin C., Sergent M. // Z. Anorg. Allg. Chem. 1993. V. 619. № 4. P. 621.
- 26. *Ramlau R.*, *Duppel V.*, *Simon A. et al.* // J. Solid State Chem. 1998. V. 141. № 1. P. 140.

- 27. *Cordier S.*, *Perrin C.*, *Sergent M.* //J. Solid State Chem. 1995. V. 118. №. 2. P. 274.
- 28. Kòrösy., F. // J. Am. Chem. Soc. 1939. V. 61. № 4. P. 838.
- 29. *Shamshurin M. V., Mikhaylov M. A., Sukhikh T. et al.* // Inorg Chem. 2019. V. 58. № 14. P. 9028.
- 30. *Bauer D., Schnering H.G., Schäfer H.* // J. Less Comm. Met. 1968. V. 14. № 4. P. 476.
- 31. *Sägebarth M., Simon A.* // Z. Anorg. Allg. Chem. 1990. V. 587. № 1. P. 119.
- 32. *Cordier S., Hernandez O., Perrin C.* // J. Fluorine Chem. 2001. V. 107. № 2. P. 205.
- Cordier S., Simon A. // Solid State Sci. 1999. V. 1. №. 4. P. 199.
- 34. *Cordier S., Hernandez O., Perrin C.* //J. Solid State Chem. 2001. V. 158. № 2. P. 327.
- 35. *Cordier S., Hernandez O., Perrin C.* //J. Solid State Chem. 2002. V. 163. №.. 1. P. 319.
- 36. *Cordier S.*, *Perrin C.* //J. Solid State Chem. 2004. V. 177. № 3. P. 1017.
- 37. *Mingos. D.M P.* // Acc. Chem. Res. 1984. V. 17. № 9. P. 311.
- 38. *Robin M.B.*, *Kuebler N.A.* // Inorg. Chem. 1965. V. 4. № 7. P. 978.
- 39. *Cotton F.A.*, *Haas T.E.* // Inorg. Chem. 1964. V. 3. № 1. P. 10.
- 40. *Schott E., Zarate X., Arratia-Pérez R.* // Polyhedron. 2012. V. 36. № 1. P. 127.
- 41. *Shamshurin M.V.*, *Martynova.*, *S.A.*, *Sokolov.M.N. et al.* // Polyhedron. 2022. V. 226. P. 116107.
- 42. *Juza D.*, *Schäfer H.* // Z. Anorg. Allg. Chem. 1970. V. 379. № 2. P. 122.
- 43. *Perrin C., Ihmaine S., Sergent M.* // New J. Chem. 1988. V. 12. № 6–7. P. 321.
- 44. *Cordier S., Perrin C., Sergent M.* // Z. Anorg. Allg. Chem. 1993. V. 619. № 4. P. 621.
- 45. *Ihmaïne S., Perrin C., Peña O. et al.* // Physica. B. 1990. V. 163. P. 615.
- 46. *Schäfer H., Spreckelmeyer B.* // J. Less-Comm. Met. 1966. V. 11. № 1. P. 73.
- 47. *Vojnović M., Antolić S., Kojić-Prodić B. et al.* // Z. Anorg, Allg. Chem. 1997. V. 623. № 8, P. 1247.
- 48. *Simon A., von Schnering H.-G., Schäfer H.* // Z. Anorg. Allg. Chem. 1968. V. 361. № 5–6. P. 235.
- Koknat F. W., McCarley R. E. // Inorg. Chem. 1972.
 V. 11. P. 812.
- 50. Wilmet M., Lebastard C., Sciortino F. et al. // Dalton Trans. 2021. V. 50. P. 8002.
- 51. *Kamiguchi S., Watanabe M., Kondo K. et al.* // J. Mol. Cat. A. 2003. V. 203. P. 153.
- Ivanov A.A., Pozmogova T.N., Solovieva A.O. et al. // Chem. Eur. J. 2020. V. 26. P. 7479. https://doi.org/10.1002/chem.202000739.
- 53. *Moussawi M.A.*, *Leclerc-Laronze N.*, *Floquet S. et al.* // J. Am. Chem. Soc. 2017. V. 139. P. 12793.
- 54. 54. *Širac S., Planinić P., Marić L. et al.* // Inorg. Chim. Acta. 1998. V. 271. № 1–2. P. 239.

- 55. *Brničevič* N., *Nothig-Hus* D., *Kojic-Prodic* B. *et al.* // Inorg. Chem. 1992. V. 31. № 19. P. 3924.
- Beck U., Simon A., Brničević N. et al. // Croat Chem Acta. 1995. V. 68. P. 837.
- 57. Brničevič N., Muštovič F., McCarley R.E. // Inorg Chem. 1988, V. 27. P. 4532.
- 58. *Flemming A., Köckerling M.* // Angew. Chem. Int. Ed. 2009. V. 48. P. 2605.
- Schröder F., Köckerling M. // J. Clust. Sci. 2022. V. 22.
 P. 1.
- Schröder F., Köckerling M. // Z. Anorg. Allg. Chem. 2021. V. 647. P. 1625.
- 61. *Reckeweg O., Meyer H.* // Z. Anorg. Allg. Chem. 1996. V. 622. № 3. P. 411.
- 62. *Naumov N.G., Cordier S., Perrin C.* // Solid State Sci. 2003. V. 5. № 10. P. 1359.
- 63. *Meyer H.-J.* // Z Anorg Allg Chem. 1995. V. 621, № 6. P. 921.
- 64. *Pigorsch A., Köckerling M.* // Cryst Growth Des. 2016. V. 16, № 8. P. 4240.
- 65. Shamshurin M., Gushchin A., Adonin S. et al. // Inorg. Chem. 2022. V. 61. № 42. P. 16586.
- 66. *Yan B., Zhou H., Lachgar A.* // Inorg Chem. 2003. V. 42. № 26. P. 8818.
- 67. *Zhang J.-J.*, *Lachgar A*. // Inorg Chem. 2015. V. 54. № 3. P. 1082.
- 68. *Fleming A., König J., Köckerling M.* // Z. Anorg. Allg. Chem. 2013. V. 639. P. 2527.
- Klendworth D.D., Walton R.A. // Inorg. Chem. 1981.
 V. 20. P. 1151.
- 70. *Field R.A., Kepert D.L.* // J. Less Comm. Met. 1967. V. 13. № 4. P. 378.
- 71. *Imoto H. Hayakawa S., Morita N., Saito T.* // Inorg Chem. 1990. V. 29. № 10. P. 2007.
- 72. *Field R.A., Kepert D.L., Robinson B.W. et al.* // Dalton Trans. 1973. V. 18. P. 1858.
- 73. Sperlich E., König J., Weiβ D.H. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. P. 233.
- Weiβ D.H., Schröder F., Köckerling M. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 345.
- Sperlich E., Köckerling M. // ChemistryOpen. 2021.
 V. 10. P. 248.
- 76. *Von Schnering H.G.*, *Vu D.*, *Jin S.L. et al.* // Z. Kristallogr. 1999. V. 214. № 1. P. 15.
- 77. *Kuhn A., Dill S., Meyer H.J.* // Z. Anorg. Allg. Chem. 2005. V. 631. № 9. P. 1565.
- 78. *Espenson J.H., Boone D.J.* // Inorg. Chem. 1968. V. 7. № 4. P. 636.
- 79. *Jacobson R.A.*, *Thaxton C.B.* // Inorg. Chem. 1971. V. 10. № 7. P. 1460.
- 80. *Mikhailov M.A.* Octahedral cluster niobium, tantalum, molybdenum, and tungsten halide complexes: Cand. Sci. (Chem.) Dissertation, Novosibirsk: Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 2013.
- 81. *Klendworth D.D.*, *Walton R.A.* // Inorg. Chem. 1981. V. 20. № 4. P. 1151.

- 82. Beck U., Simon A., Širac S. et al. // Z. Anorg. Allg. Chem. 1997. V. 623. № 1. P. 59.
- 83. *Prokopuk N., Weinert C. S., Kennedy V. O. et al.* // Inorg, Chim. Acta. 2000. V. 300. P. 951.
- 84. *König J., Köckerling M.* // Chem. Eur. J. 2019. V. 25. № 61. P. 13836.
- 85. *Vogler A., Kunkely H.* // Inorg. Chem. 1984. V. 23. № 10. P. 1360.
- 86. *Prokopuk N., Kennedy V.O., Stern C.L. et al.* // Inorg. Chem. 1998. V. 37. № 19. P. 5001.
- 87. *Chapin W. H.* // J. Am. Chem. Soc. 1910. V. 32. № 3. P. 323.
- 88. *Kamiguchi S., Nagashima S., Chihara., T. //* Metals. 2014. V. 4. P. 84.
- 89. *Kamiguchi S., Nishida S., Kurokawa H. et al.* // J. Mol. Catal. A. 2005. V. 226. P. 1.
- 90. Nagashima S., Kamiguchi S., Chihara T. // Metals. 2014. V. 4. P. 235.
- Kamiguchi S., Noda M., Miyagishi Y. et al. // J. Mol. Catal. A. 2003. V. 195. P. 159.
- 92. Nagashima S., Kamiguchi S., Ohguchi S. et al. // J. Clust. Sci. 2011. V. 22. P. 647.
- 93. Kamiguchi S., Takahashi I., Kurokawa H. et al. // Appl. Catal. A. 2006. V. 309. P. 70.
- 94. Kamiguchi S., Nakamura A., Suzuki A. et al. // J. Catal. 2005. V. 230. P. 204.
- 95. Nagashima S., Kudo K., Yamazaki H. et al. // Appl. Catal. A. 2013. V. 450. P. 50.
- Nagashima S., Yamazaki H., Kudo K. et al. // Appl. Catal. A. 2013. V. 464. P. 332.
- 97. *Kamiguchi S., Nishida S., Takahashi I. et al.* // J. Mol. Catal. A. 2006. V. 255. P. 117.
- 98. *Nagashima S., Kamiguchi S., Kudo K. et al.* // Chem. Lett. 2011. V. 40. P. 78.
- 99. Nagashima S., Sasaki T., Yamazaki H. Proceedings of the 7th International Symposium on Acid-Base Catalysis. Tokyo (Jpn): 2013. PA-051.
- 100. Hernández J. S., Guevara D., Shamshurin M. et al. // Inorg. Chem. 2023. V. 62. № 46. P. 19060.
- 101. Hernández J.S., Shamshurin M., Puche M. et al. // Nanomaterials. 2022. V. 12. P. 3647.
- 102. Kato H., Kudo A. // Chem. Phys. Lett. 1998. V. 295. P. 487.
- 103. Butts M.D., Torres A.S., Fitzgerald P.F. et al. // Invest. Radiol. 2016. V. 51. P. 786.
- 104. *Dahms S.O., Kuester M., Streb C. et al.* // Acta Crystallogr. D. 2013. V. 69. P. 284.
- 105. *Zuev M.G., Larionov L.P.* Tantalovye Rentgenokontrastnye Veshchestva (Tantalum X-Ray Constrast Compounds). Ekaterinburg: UrO RAN, 2002.
- 106. Chakravarty S., Hix J.M.L., Wiewiora K.A. et al. // Nanoscale. 2020. V. 12. P. 7720.
- 107. Lebastard C., Wilmet M., Cordier S. et al. // Nanomaterials. 2022. V. 12. P. 2052.
- 108. *Lebastard C., Wilmet M., Cordier S. et al.* // Sci. Tech. Adv. Mater. 2022. V. 23. P. 446.

К 70-летию проф. В.П. Федина

УЛК 546.711

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОВ МАРГАНЦА С N,N'-бис[(2,4,6-ТРИМЕТИЛФЕНИЛ)ИМИНО]АЦЕНАФТЕНОМ

© 2024 г. Ю. А. Ларичева¹, Ч. Гуань², Н. В. Куратьева¹, Н. Ф. Ромашев^{1, *}, А. Л. Гущин¹

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия
²Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия
^{*}e-mail: nikolaj.romashev75@gmail.com
Поступила в редакцию 28.02.2024 г.
После доработки 01.04.2024 г.
Принята к публикации 02.04.2024 г.

Разработаны методы синтеза новых комплексов марганца(II) с N,N'- δuc [(2,4,6-триметилфенил) имино]аценафтеном (Tmp-bian): [Mn(Tmp-bian)Br₂] (I), [Mn(Tmp-bian)(EtOH)Br₂] (Ia), [Mn (Tmp-bian)Cl₂] (II), [Mn(Tmp-bian)₂(ClO₄)₂] (III) и [Mn(Tmp-bian)₂(OTs)₂] (IV). Полученные соединения охарактеризованы с помощью элементного анализа и ИК-спектроскопии. Методом рентгеноструктурного анализа определена молекулярная структура для I, Ia и III (CCDC № 233510—233512). С помощью квантово-химических расчетов в рамках теории функционала плотности (DFT) установлено электронное строение для I и III.

Ключевые слова: комплексы, марганец, *бис*(имино)аценафтены (BIAN), синтез, рентгеноструктурный анализ, квантово-химические расчеты

DOI: 10.31857/S0132344X24100029, EDN: LQESRW

Координационные соединения марганца, способные существовать в различных редокс состояниях, играют существенную роль в индустриально важных реакциях и биохимических превращениях. Процессы с участием марганца нашли применение во многих областях: от электрохимической генерации водорода, катализаторов окисления и технологий возобновляемой энергетики до окислительного расщепления ДНК и разработки новых лекарств [1-3]. Кроме того, комплексы марганца(II), как один из классов светоизлучающих материалов, проявляют удивительные люминесцентные свойства при воздействии света, электрического поля, механической силы, температуры и т.д. [4-9]. По сравнению с люминесцентными комплексами тяжелых 5*d*-металлов, таких как иридий(III), платина(II), золото(I) и т.д., комплексы марганца(II) зачастую не уступают по своим фотофизическим характеристикам, демонстрируя высокую квантовую эффективность излучения и долгоживущую фосфоресценцию, но при этом являются более доступными (дешевыми) и менее токсичными. Эти преимущества делают комплексы марганца(II) перспективными в различных областях исследований, таких как дизайн эмиссионных слоев OLED, разработка осветительных устройств и др. [10-13].

Бис(имино)аценафтены (BIAN) представляют собой семейство широко используемых редокс-активных лигандов, координационная химия которых привлекла всеобщее внимание с 1990-х годов [14, 15]. Они содержат центральный 1,4-диазабутадиеновый фрагмент, дополненный нафталиновым остовом. Это позволяет сочетать сильные σ-донорные и π-акцепторные свойства, обеспечивая стабильность при координации к ионам металлов как в высоких, так и в низких степенях окисления. Кроме того, наличие у BIAN низколежащих π^* -орбиталей приводит к их способности обратимо принимать до четырех электронов и существовать в различных валентных состояниях [16]. В настоящее время металлокомплексы на основе ВІА нашли применение в таких областях исследования, как катализ [17—20], бионеорганическая химия [21, 22], а также в качестве сенсибилизирующих красителей [23—25].

Несмотря на хорошо разработанную координационную химию BIAN в отношении многих переходных и непереходных металлов, сведения о комплексах марганца с BIAN фрагментарны. Сообщается о получении серии квадратно-пирамидальных комплексов Mn(II) общего вида [Mn(R1,R2-bian)Cl₂] (схема 1),

содержащих несимметричные лиганды BIAN с дополнительным N-донорным центром, обеспечивающим тридентатно-циклический способ координации [26]. Несимметричные BIAN также использовались для синтеза моно-, бии трехъядерных комплексов: $[Mn(R1,R2-bian)(THF)Cl_2]$, $[Mn(R1,R2-bian)Cl_2]_2$ и $[Mn(R1,R2-bian)Cl_2]_2$ (схема 1), в которых один из атомов азота BIAN связан со стерически затрудненной 2,6-дибензгидрилфенильной группой [27].

$$R_{1} = R_{2} = Me$$

$$R_{1} = Me, R_{2} = iPr$$

$$R_{1} = R_{2} = Me$$

$$R_{1} =$$

Схема 1. Синтез комплексов Mn/BIAN.

Синтезирован карбонильный комплекс Mn(I) состава fac- $[Mn(4-Cl-C_6H_4-bian)(CO)_3Br]$ (схема 2), для которого обнаружена фотоактивируемая способность высвобождения CO [28]. При взаимодействии $[Ga_2(Dpp-bian)_2]$ с Cp_2Mn в толуоле и последующей его перекристаллизацией из диметоксиэтана получен комплекс состава [CpMn(Dpp-bian)(Dme)] (схема 2) с анион-радикалом Dpp-bian [29].

Цель настоящей работы — разработка методов синтеза комплексов марганца с N,N'- $\mathit{fuc}[(2,4,6)$ -триметилфенил)имино]аценафтеном (**Tmp-bian**) (схема 3), а также установление их молекулярного и электронного строения и изучение фотолюминесцентных свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Органические растворители перед использованием очищали по стандартным методикам. Коммерчески доступные MnO_2 и $MnBr_2$ 4 H_2O , аценафтенхинон использовали без предварительной очистки. Другие марганецсодержащие соединения $(MnCl_2 \cdot 4H_2O, Mn(ClO_4)_2 \cdot 6H_2O, [Mn(H_2O)_4](OTs)_2 \cdot H_2O)$ получали по известным методикам [30, 31]. N,N'-бис[(2,4,6-триметилфенил)имино]аценафтен (Tmp-bian) был получен по методике [32].

ИК-спектры образцов, спрессованных в таблетки КВг, в области 4000—400 см⁻¹ записывали на спектрометре Scimitar FTS 2000. Элементный анализ на С, Н, N выполняли на приборе Euro EA 3000. Спектры фотолюминесценции и возбуждения комплексов в твердом состоянии регистрировали с помощью спектрофлуориметра Horiba Fluorolog 3, оснащенного непрерывными 450 Вт и импульсными ксеноновыми лампами в качестве источников света, охлаждаемым детектором и двойными решетчатыми монохроматорами возбуждения и излучения.

Квантово-химические расчеты парамагнитных комплексов выполнены с использованием пакета программ ADF2022 [33]. Неограниченные расчеты проводили в рамках теории функционала плотности (DFT) с использованием полноэлектронного функционала PBE0 с использованием трижды расщепленного базисного набора орбиталей типа Слейтера, дополненного двойным набором поляризационных функций TZ2P [34]. Скалярные релятивистские эффекты учитывались в рамках приближения ZORA [35].

Синтез [Mn(Tmp-bian)Br₂] **(I).** MnBr₂ · 4H₂O (66 мг, 230мкмоль) растворяли в смеси 0,5 мл EtOH и 15 мл CH_2Cl_2 с получением бесцветного раствора. Tmp-bian (96 мг, 230 мкмоль) раство-

Схема 2. Синтез металлоорганических комплексов Mn/BIAN.

Схема 3.

ряли в 10 мл CH_2Cl_2 , получили оранжево-желтый раствор. Оба раствора смешивали. Реакционную смесь перемешивали при кипячении в течение 4 ч. Раствор темно-оранжевого цвета упаривали в вакууме досуха. Монокристаллы $I \cdot H_2O$, пригодные для PCA, получали двойной перекристаллизацией: диффузией паров диэтилового эфира в раствор комплекса в ацетонитриле и наслаиванием гексана на раствор комплекса в дихлорметане. Выход I 36 мг (25%).

Найдено, %: С 56,9 H 4,5 N 4,5 Для $C_{30}H_{28}N_2Br_2Mn$ вычислено, %: С 57,1 H 4,5 N 4,4

ИК (КВг; ν , см $^{-1}$): 3362 с, 2971 с, 2911с, 2735 сл, 1964 сл, 1779 сл, 1727 сл, 1699 сл, 1653 с, 1629 с, 1583 с, 1513 с, 1471 с, 1425 с, 1374 сл, 1355 сл, 1286 с, 1234 с, 1160 сл, 1104 с, 1021 с, 970 сл, 928 сл, 905 сл, 863 с, 839 с, 775 с, 733 сл, 686 сл, 650 сл, 602 сл, 556 сл, 511 сл.

Синтез [Mn(Tmp-bian)(EtOH)Br₂] (Ia). MnBr₂· $4H_2O$ (66 мг, 230 мкмоль) и Tmp-bian (96 мг, 230 мкмоль) растворяли в 15 мл EtOH и 15 мл CH₂Cl₂, получали оранжево-желтый раствор. Кипячение смеси в течение 4 ч давало темно-оранжевый раствор, который выпаривали досуха. Монокристаллы Ia · CH₂Cl₂ · $2H_2O$, пригодные для рентгеноструктурного анализа, получали наслаиванием гексана на раствор комплекса в дихлорметане. Выход 25 мг (17%).

Найдено, %: С 56,5 H 5,0 N 4,0 Для $C_{32}H_{34}N_2O$ Br₂Mn вычислено, %: С 56,7 H 5,1 N 4,1

ИК (КВг; v, см⁻¹): 3360 с.пл, 2982 с, 2914 с, 2735 сл, 1963 сл, 1779 сл, 1725 сл, 1696 сл, 1657 с, 1629 с, 1583 с, 1514 с, 1471 с, 1425 с, 1374 сл, 1355 сл, 1286 (с), 1234 (с), 1160 сл, 1104 с, 1021 с, 970 сл, 928 сл, 905 сл, 863 с, 840 с, 775 с, 733 сл, 686 сл, 602 сл, 556 сл, 511 сл.

Синтез [Mn(Tmp-bian)Cl₂] (II). MnCl₂ · $4H_2O$ (62 мг, 313 мкмоль) и Tmp-bian (130 мг, 313 мкмоль) растворяли в 15 мл EtOH и 15 мл CH₂Cl₂, получили оранжево-желтый раствор. После кипячения смеси в течение 4 ч раствор приобретал темно-оранжевый цвет, затем его выпаривали досуха. Мелкокристаллический продукт получали наслаиванием гексана на раствор комплекса в дихлорметане. Выход 29 мг (17%).

Найдено, %: С 66,2 H 5,1 N 5,1 Для $C_{30}H_{28}N_2Cl_2Mn$ вычислено, %: С 66,4 H 5,2 N 5,2

ИК (КВг; ν , см $^{-1}$): 3362 с, 2971 с, 2911 с, 2735 сл, 1962 сл, 1779 сл, 1727 сл, 1699 сл, 1655 с, 1632 с, 1583 с, 1513 с, 1472 с, 1425 с, 1374 сл, 1355 сл, 1286 с, 1234 с, 1160 сл, 1107 с, 1022 с, 971 сл, 928 сл, 905 сл, 863 с, 839 с, 775 с, 733 сл, 686 сл, 651 сл, 602 сл, 553 сл, 511 сл.

Синтез [Mn(Tmp-bian) $_2$ (ClO $_4$) $_2$] (III). Mn(ClO $_4$) $_2$: · 6H₂O (320 мг, 884 мкмоль) и Tmp-bian (736 мг, 1768 мкмоль) растворяли в 20 мл CH₂CN с получением оранжево-желтого раствора. При перемешивании смеси при комнатной температуре в течение 4 ч раствор приобретал темно-коричневую окраску. Затем раствор упаривали в вакууме до минимального объема, что приводило к выпадению осадка. Осадок отфильтровывали на фильтре Шотта (пористость 16) и промывали последовательно этанолом, холодным диэтиловым эфиром и холодным этилацетатом. Монокристаллы III · 2C₇H₈, пригодные для рентгеноструктурного анализа, получали наслаиванием гексана на раствор комплекса в толуоле. Выход 471 мг (49%).

Найдено, %: С 66,5 H 5,3 N 5,2 Для $C_{60}H_{56}N_4O_8Cl_2Mn$ вычислено, %: С 66,3 H 5,2 N 5,2

ИК (КВг; v, см $^{-1}$): 3403 ш, 2911 сл, 2020 сл, 1732 сл, 1653 с, 1615 с, 1583 с, 1434 сл, 1374 сл, 1351 сл, 1286 сл, 1239 сл, 1202 сл, 1137 с, 1109 с, 1076 с, 938 ср, 900 сл, 849 сл, 775 ср, 733 сл, 691 сл, 626 ср, 556 сл, 505 сл.

Синтез [Mn(Tmp-bian)₂(OTs)₂] (IV). [Mn(H₂O)₄] [OTs]₂ · H₂O (640 мг, 1313 мкмоль) и Tmp-bian (1094 мг, 2626 мкмоль) растворяли в 20 мл СH₃CN с получением оранжево-желтого раствора. При кипячении смеси в течение 6 ч цвет раствора изменился на оранжево-коричневый. Затем раствор упаривали в вакууме до минимального объема, что приводило к выпадению осадка. Осадок отфильтровывали на фильтре Шотта (пористость 16) и промывали последовательно сухим этанолом, холодным диэтиловым эфиром и холодным этилацетатом. Мелкокристаллический продукт получали диффузией паров диэтилового эфира в раствор комплекса в ацетонитриле. Выход 403 мг (25%).

Найдено, %: С 74,0 H 5,7 N 4,7 Для $C_{74}H_{70}N_4O_4S_2Mn$ вычислено, %: С 74,2 H 5,9 N 4,7

ИК (КВг; v, см⁻¹): 3672 сл, 3378 сл, 3058 сл, 3018 сл, 2960 оч.с, 2930 с, пл, 2866 оч.с, 2825 сл, 2027 сл, 1615 сл, 1595 сл 1581 сл, 1530 сл, 1480 оч.с,

1434 сл, 1417 оч.с, 1385 сл, 1361 сл, 1326 сл, 1294 оч.с, 1249 сл, 1216 сл, 1190 ср, 1180 с.пл, 1160 сл, 1141 сл, 1109 сл, 1087 сл, 1073 сл, 1060 сл, 1042 сл, 1005 сл, 972 сл, 955 сл, 935 сл, 880 с, 846 сл, 831 сл, 803 сл, 779 оч.с, 760 сл, 735 сл, 716 сл, 694 сл, 664 с, 592 сл, 573 сл, 546 сл, 507 сл, 478 сл, 445 сл.

РСА комплексов проведен по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius X8Apex (III), оснащенном двухкоординатным ССD детектором, при температуре 150 К с использованием молибденового излучения ($\lambda = 0.71073 \text{ Å}$) и графитового монохроматора или Bruker D8 Venture (I и Ia),

оснащенном детектором СМОЅ РНОТОNIII и микрофокусным источником IµS 3.0 (фокусирующие зеркала Монтеля, MoK_{α} -излучение). Интенсивности отражений измерены методом ϕ - и ω -сканирования узких (0.5°) фреймов. Обработка данных проведена с помощью пакетов программ APEX2 [36] или APEX3 [37] соответственно. Поглощение учтено полуэмпирически по программе SADABS [38]. Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELXTL [39], детали экспериментов и уточнения приведены в табл. 1. Атомы водо-

Таблица 1. Кристаллографические характеристики, детали эксперимента и уточнения структур I, Iа и III

П	Значение						
Параметр	I	Ia	III				
Брутто-формула	$C_{30}H_{30}N_2OBr_2Mn$	$C_{33}H_{40}N_2O_3Cl_2Br_2Mn$	$C_{74}H_{72}N_4O_8Cl_2Mn$				
M	649.32	798.33	1271.19				
Сингония	Ромбическая	Моноклинная	Триклинная				
Пр. группа	Pbcn	C2/c	$P\bar{1}$				
a, Å b, Å c, Å α, град β, град γ, град	22.9987(11) 17.8818(7) 16.6963(8)	7.2348(10) Å 12.1596(4) Å 22.8405(8) Å 96.247(2)	10.9938(6) 11.8780(7) 13.0971(8) 99.545(2) 108.612(2) 99.219(2)				
Объем Å ³	6866.5(5)	7519.0(5) ³	1556.27(16)				
Z	8	8	1				
ρ(выч.), г/см ³	1.256	1.410	1.356				
μ, мм ⁻¹	2.733	2.651	0.360				
F(000)	2616	3240	667				
Размер кристалла, мм	0.14 x 0.08 x 0.08	0.14 x 0.08 x 0.07	0.22 x 0.14 x 0.12				
Диапазон сбора данных по θ	1.889-26.379	1.794-28.315	2.725-26.437				
Диапазон <i>h,k,l</i>	$-28 \le h \le 28$ $-15 \le k \le 22$ $-20 \le l \le 19$	$-36 \le h \le 36$ $-16 \le k \le 16$ $-29 \le l \le 30$	-13 <= h <= 11 -14 <= k <= 14 -16 <= l <= 16				
Число измеренных рефлексов	45005	38176	12753				
Число независимых рефлексов (R_{int})	7015 (0.1012)	9329 (0.0508)	6339 (0.0475)				
Полнота сбора данных по $\theta = 25.250^{\circ}$, %	99.7	99.9	99.4				
Число рефлексов/ ограничений/пара- метров	7015/42/385	9329/57/468	6339/0/410				
S -фактор по F^2	1.006	1.071	1.014				
R_1 , w R_2 $(I > 2\sigma(I))$	0.0551, 0.1367	0.0626, 0.1907	0.0516, 0.1136				
R_1 , w R_2 (все данные)	0.1055, 0.1542	0.0955, 0.2075	0.0794, 0.1247				
Остаточная электронная плотность (max/min), e/Å ³	0.883 и -0.672	1.831 и -0.680	0.452 и -0.441				

рода органических лигандов и растворителей уточнены в приближении жесткого тела. Атомы водорода сокристаллизованных молекул воды не локализованы. Молекулы сокристаллизованных растворителей разупорядочены по нескольким позициям, введены некоторые ограничения на длины связей С—СІ и параметры анизотропных тепловых смещений. Основные межатомные расстояния и валентные углы представлены в табл. 2.

Кристаллографические параметры комплексов депонированы в Кембриджском банке структурных данных (ССDС № 233510 (I), 233511 (Ia), 233512 (III); https://www.ccdc.cam.ac.uk/data_reguest/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Комплексы марганца(II), содержащие BIAN, описаны в литературе как достаточно просто синтезируемые соединения, за исключением комплексов, получаемых в инертной атмосфере, и основные сложности у авторов вызывало лишь получение кристаллических продуктов. Однако в ходе данной работы мы столкнулись с определенными трудностями в получении комплексов марганца в качестве индивидуальных соединений. Первоначально мы использовали более широкий спектр BIAN, имеющих различные заместители в арильных кольцах (Ттр-bian, Dpp-bian, 4-XPh-bian (X = Cl, Br, I)), но удовлетворительные результаты были достигнуты только в экспериментах с Ттр-bian.

При проведении реакций Tmp-bian с галогенидами марганца, а в дальнейшем и с другими марганецсодержащими соединениями ($Mn(ClO_4)_2$, $Mn(OTs)_2$), мы варьировали следую-

щие условия: температуру (от комнатной до температуры кипения растворителей); растворитель (дихлорметан, этиловый спирт, ацетонитрил, тетрагидрофуран); продолжительность эксперимента (от одного часа до 4 сут); стехиометрическое соотношение металла и лиганда (от недостатка лиганда до его четырехкратного избытка). В результате было получено пять новых комплексов Mn(II) с одной (I, Ia, II) или двумя (III, IV) координированными молекулами Ттр-bian (схема 4).

Выходы конечного кристаллического продукта варьировались от 10 до 25%; в случае комплекса III выход достигал 49%. Низкие выходы, по-видимому, обусловлены образованием побочных продуктов в этих реакциях. Чистота полученных комплексов подтверждена с помощью элементного анализа на C, H, N и ИК-спектроскопии. В ИК-спектрах всех комплексов наблюлаются характеристичные полосы в диапазонах 1575-1775 и 1420-1500 см⁻¹. относящиеся к валентным колебаниям v(C=N)и $\nu(C-C)$, что указывает на нейтральное состояние лиганда Tmp-bian. Полосы сдвинуты в более длинноволновую область в среднем на 15 см-1 относительно некоординированного Tmp-bian. В ИК-спектре комплекса III наблюдаются интенсивные полосы поглощения в области 1137-1076 см⁻¹ от перхлоратного фрагмента. В спектре комплекса IV зарегистрированы характеристичные полосы при 1180 и 663 см¹, относящиеся к валентным колебаниям $v(SO_2)$ и v(SO), соответственно, аниона $OTs^$ п-толуолсульфоновой кислоты. Следует отметить смещение этих полос в длинноволновую область на 20 и 27 см⁻¹, соответственно, относительно $[Mn(H_2O)_4](OTs)_2$ [31], что указывает на координацию OTs- к иону Mn(II).

Таблица 2. Основные геометрические параметры в структурах комплексов I, Iа и III по данным РСА

Связь	Расстояние, Å	Связь	Расстояние, Å	Связь	Расстояние, Å
	I		Ia		III
Mn-Br	2.4247(9) 2.4288(9)	Mn-Br	2.4879(8) 2.5210(8)	Mn-N	2.256(2) 2.2955(18)
Mn-N	2.197(3) 2.192(4)	Mn-N	2.238(3) 2.321(3)	Mn-O	2.2673(16)
C-C	1.517(6)		2.164(3)	C-C	1.527(4)
C=N	1.284(5) 1.279(6)	C–C	1.511(5)	C=N	1.276(3) 1.282(3)
		C=N	1.276(5) 1.281(5)		

Для соединений I, Ia и III получены кристаллы надлежащего качества и проведен рентгеноструктурный анализ (табл. 1 и 2). В структуре комплекса I ион Mn(II) находится в слабоискаженном тетраэдрическом окружении, состоящем из двух анионов брома и двух атомов азота Tmp-bian (рис. 1). Угол ω между плоскостями N— Mn-N и Br-Mn-Br составляет 87,68°, что близко к значению $\omega = 90^{\circ}$, характерному для идеального тетраэдрического окружения. В случае комплекса Іа ион марганца находится в сильно искаженном квадратно-пирамидальном окружении, состоящем из двух анионов брома, двух атомов азота и атома кислорода координированной молекулы этанола (схема 4). Параметр τ_{s} , характеризующий отклонение от идеальной геометрии квадратной пирамиды (КП) ($\tau_5 = 0$) или тригональной бипирамиды (ТБП) $(\tau_5 = 1)$ и равный $(\alpha-\beta)/60$ $(\alpha$ и β — наибольшие углы LML), составляет 0,44. Комплекс III содержит две координированных молекулы Tmp-bian; координационный полиэдр — слабоискаженный

октаэдр, состоящий из четырех атомов азота двух Tmp-bian, находящихся в экваториальной плоскости, и двух атомов кислорода перхлоратных анионов, занимающих аксиальные положения (рис. 2).

Как уже отмечалось во введении, на данный момент имеются ограниченные сведения о комплексах марганца с лигандами ВІАN, тогда как структурно охарактеризованных комплексов насчитываются мало. В описанных структурах расстояния Mn-N варьируются от 2,06 Å в [MnBr(CO)₃(BIAN)] [28] до 2,41 Å в [(BIAN) $MnCl(\mu-Cl)$], [27] и зависят от типа координационного полиэдра и стерического объема координированных лигандов. Значения расстояний Mn-Br находятся в диапазоне от 2,32 до 2,52 Å. Как видно из табл. 2, расстояния Мп-N и Мп-Вг для I и Ia варьируются в этих же пределах. При этом расстояния Mn-N и Mn-Br в I примерно на 0.05 - 0.1 Å меньше, чем в Іа, что можно объяснить большей стерической загруженностью

$$CIO_4 \longrightarrow Mn \longrightarrow CIO_4 \longrightarrow Mn(CIO_{4})_2$$

$$CH_3CN \longrightarrow CH_2C_2/EIO_{H_{1/1}}$$

$$CH_3CN \longrightarrow CH_2C_2/EIO_{H_{1/1}}$$

$$CH_3CN \longrightarrow CH_3CN \longrightarrow CH_2C_2/EIO_{H_{1/1}}$$

$$CH_3CN \longrightarrow CH_3CN \longrightarrow$$

Схема 4. Синтез комплексов марганца I–IV.

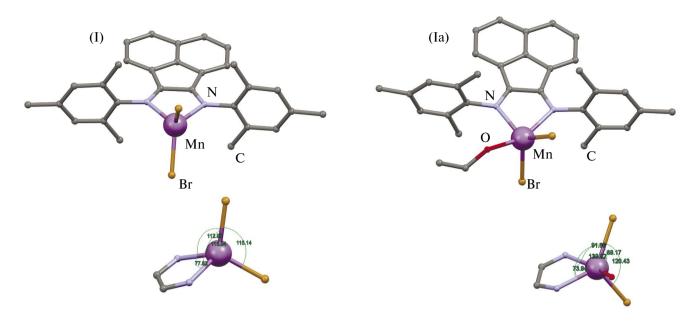


Рис. 1. Молекулярная структура комплексов I и Ia по данным РСА. На врезках показаны выбранные углы координационного узла Mn-Br(2)-N(2) (слева) и Mn-Br(2)-N(2)-O (справа). Атомы водорода для ясности опущены.

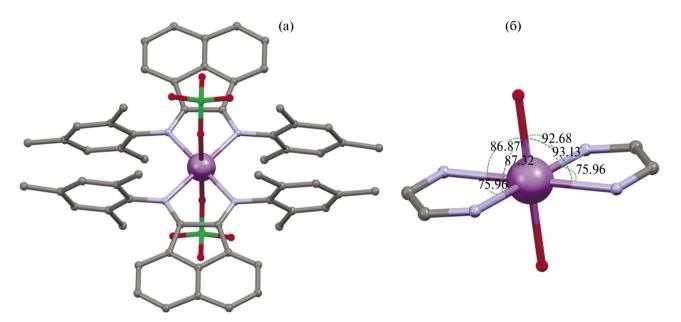
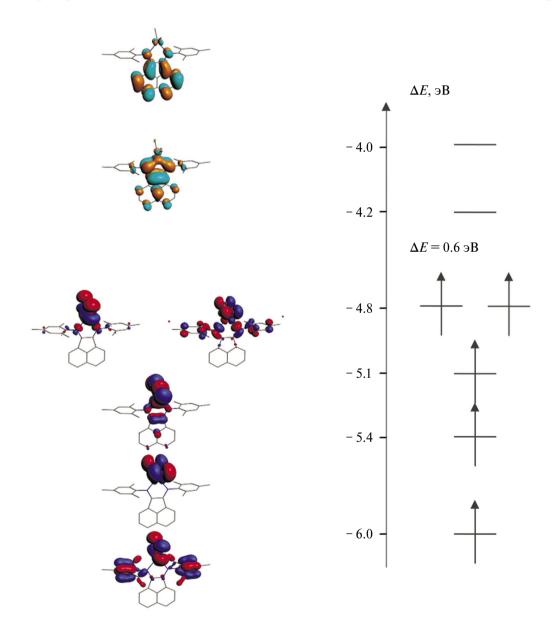


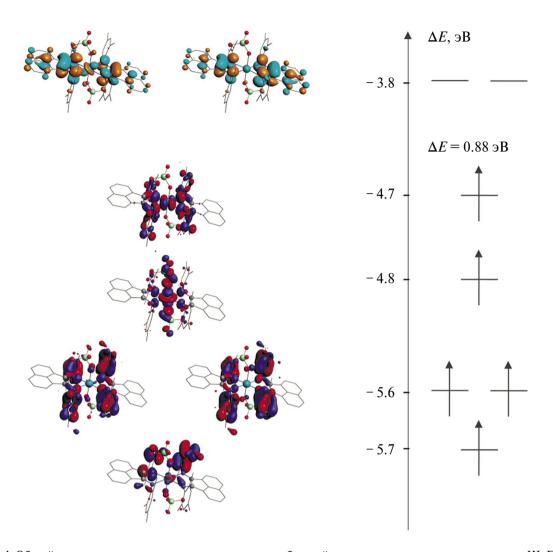
Рис. 2. Молекулярная структура комплекса III по данным РСА (а); выбранные ракурсы координационного узла Мп-N(2)-O(2) (б). Атомы водорода не показаны.

координационной сферы комплекса Іа. Расстояния Mn-N и Mn-O в III также согласуются с литературными данными [28, 40]. Длины связей C-C и C=N дииминового фрагмента во всех структурах однозначно свидетельствуют о нейтральном состоянии Tmp-bian.

Одной из задач данной работы было изучение фотолюминесцентных свойств комплексов комплексов I и III выполнялись квантово-хи-


Mn(II) с Tmp-bian. Для этого для порошков полученных комплексов записывались эмиссионные спектры при различных длинах волн возбуждающего света. К сожалению, ни для одного из полученных соединений не было выявлено заметной фотолюминесценции.

Для установления электронной структуры


мические расчеты в рамках DFT. Полученные рентгеноструктурные данные использовались в качестве исходных моделей для дальнейшей оптимизации. С использованием неограниченного (unrestricted) метода расчетов были рассчитаны уровни энергии и формы граничных молекулярных орбиталей основного состояния молекул с пятью неспаренными электронами (рис. 3 и 4, табл. 3). Отсутствие мнимых частот указывало на нахождение системы в локальном минимуме на поверхности потенциальной энергии.

В результате оптимизации геометрия комплекса I претерпевает незначительные изме-

нения. Наблюдается небольшое укорочение (\sim 0,03 Å) связей Mn-N до 2,170 Å, при котором обе связи становятся равными по длине, и более сильное укорочение (\sim 0,1 Å) связей Mn-Br до 2,298 Å, что также приводит к их выравниванию. Углы в тетраэдре MnBr₂N₂ практически не изменяются, значительное искажение координационного полиэдра сохраняется. В случае комплекса III оптимизация геометрии также приводит к небольшим изменениям. Наблюдается укорочение (\sim 0,1 и \sim 0,05 Å) связей Mn-N до 2,353 и 2,343 Å и укорочение (\sim 0,1 Å) связей Mn-O до 2,166 и 2,177 Å. Различия в углах незначительны. Важно отметить, что при оптими-

Рис. 3. Общий вид и энергетические уровни граничных орбиталей для основного состояния комплекса І. Показаны ВЗМО, ВЗМО–1, ВЗМО–2, ВЗМО–3, НСМО, НСМО+1.

Рис. 4. Общий вид и энергетические уровни граничных орбиталей для основного состояния комплекса III. Показаны $B3MO_1$, $B3MO_2$, $B3MO_3$, HCMO, $HCMO_1$.

Таблица 3. Вклады фрагментов в граничные молекулярные орбитали в комплексах I и III*

Duran AO 07	B3MO-N			НСМО						
Вклад АО, %	-4	-3	-2	-1	0	0	+1	+2	+3	+4
Комплекс І										
Mn		28.2	31.0	45.5	45.4	4.0	10.8	83.8	78.2	11.7
Tmp-bian	56.3		7.2	4.7	9.2	81.8	85.1	4.1	6.8	82.4
Br	40.8	47.1	51.4	43.1	40.3	2.1		3.7	10.1	
			Ком	· иплекс III	[•	•	•		
Mn	2.2	1.3	1.8	55.5	50.4		6.8	3.2		96.8
Tmp-bian	87.7	85.8	87.2	5.7	29.8	87.1	85.9	86.8	92.7	
ClO ₄				33.1	3.3	2.4	1.8			

^{*} Вклады менее 1% опущены.

зации геометрии не происходит разрыва связей Mn-O и отщепления ClO_4^- , учитывая слабые координационные свойства перхлорат-аниона, что указывает на большую устойчивость комплекса III по сравнению с гипотетическим $[Mn(Tmp-bian)_2](ClO_4)_2$.

Из состава граничных орбиталей (табл. 3) следует, что в образовании ВЗМО участвуют в основном орбитали Мп и Вг (для I), Мп и Ттр-bian (для III) с сопоставимыми вкладами, тогда как НСМО преимущественно локализована на Ттр-bian (более 80%), что согласуется с π -акцепторными свойствами Ттр-bian (рис. 3, 4). Кроме того, была проведена оценка энергетического зазора между ВЗМО и НСМО, которая составила 0,6 эВ для I и 0,88 эВ для III.

Таким образом, получена и охарактеризована серия новых комплексов марганца(II), содержащих одну или две координированные молекулы Tmp-bian: [Mn(Tmp-bian)Br₂] · \cdot H₂O (I \cdot H₂O), [Mn(Tmp-bian)(EtOH)Br₂] \cdot $\cdot \text{CH}_2\text{Cl}_2 \cdot 2\text{H}_2\text{O}$ (Ia $\cdot \text{CH}_2\text{Cl}_2 \cdot 2\text{H}_2\text{O}$), [Mn(Tmpbian)Cl₂ (II), [Mn(Tmp-bian)₂(ClO₄)₂] · C₇H₈ (III · · C₇H₈), [Mn(Tmp-bian)₂(OTs)₂] (IV). Методом рентгеноструктурного анализа показано, что комплексы I, Ia и III различаются строением координационного узла: тетраэдр MnN₂Br₂ для I, искаженная квадратная пирамида MnN₂Br₂O для Ia и октаэдр MnN₄O₂ для III. В рамках теории (PBE0/TZ2P) рассчитаны энергетические уровни и формы граничных молекулярных орбиталей для основного состояния комплексов I и III. Показано, что орбитали Tmp-bian вносят основной вклад в НСМО. Установлено, что полученные комплексы I–IV не люминесцируют в твердом состоянии.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Авторы выражают благодарность ЦКП ИНХ СО РАН и Я.М. Гайфулину за предоставление мощностей на вычислительном кластере.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (гранты № 121031700315-2 и № 121031700313-8).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kallmeier F., Kempe R.* // Angew. Chem. Int. Ed. 2018. V. 57. № 1. P. 46.
- 2. *Najafpour M. M., Allakhverdiev S. I.* // Int. J. Hydrogen Energy. 2012. V. 37. № 10. P. 8753.
- 3. *Mallick Ganguly O., Moulik S.* // Dalton Trans. 2023. V. 52. № 31. P. 10639.
- 4. Vinogradova K. A., Shekhovtsov N. A., Berezin A. S. et al. // Inorg. Chem. Commun. 2019. V. 100. P. 11.
- 5. Berezin A.S., Vinogradova K.A., Nadolinny V.A. et al. // Dalton Trans. 2018. V. 47. № 5. P. 1657.
- Artem'Ev A.V., Davydova M.P., Berezin A.S. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 27. P. 31000.
- 7. *Davydova M.* ., *Bauer I.A.*, *Brel V.K. et al.* // Eur. J. Inorg. Chem. 2020. V. 2020. № 8. P. 695–703.
- 8. *Artem'ev A.V.*, *Davydova M.P.*, *Rakhmanova M.I. et al.* // Inorg. Chem. Front. 2021. V. 8. № 15. P. 3767.
- 9. *Artem'ev, A.V., Kashevskii A.V., Bogomyakov A.S. et al.* // Dalton Trans. 2017. V. 46. № 18. P. 5965.
- 10. *Hu J. Q.*, *Song E. H.*, *Ye S. et al* // J. Mater. Chem. C. 2017. V. 5. № 13. P. 3343.
- 11. *Zou S., Liu Y., Li J. et al.* // J. Am. Chem. Soc. 2017. V. 139. № 33. P. 11443.
- 12. *Davydova M., Meng L., Rakhmanova M.I. et al.* // Adv. Mater. 2023. V. 35. № 35. P. 2303611.
- 13. *Qin Y., She P., Huang X., Huang W. et al.* // Coord. Chem. Rev. 2020. V. 416. P. 213331
- 14. *van Asselt R., Gielens E.E.C.G., Rülke R.E. et al.* // J. Am. Chem. Soc. 1994. V. 116. № 3. P. 977.
- Fomenko I.S., Romashev N.F., Gushchin. A.L. // Coord. Chem. Rev. 2024. V. 514. P. 215845.
- 16. Fedushkin I.L., Skatova A.A., Chudakova V.A. et al. // Angew. Chem. Int. Ed. 2003. V. 42. № 28. P. 3294.
- 17. Bernauer J., Pölker J., Jacobi von Wangelin A. // ChemCatChem. 2022. V. 14. № 1. Art. e202101182.
- 18. Fomenko I.S., Koshcheeva O.S., Kuznetsova N.I. et al. // Catalysts. 2023. V. 13. № 5. P. 849.
- 19. Fomenko I. S., Gongola M. I., Shul'pina L. S. et al. // Catalysts. 2022. V. 12. № 10. P. 1168.
- 20. Komlyagina V.I., Romashev N.F., Kokovkin V. et al. // Molecules. 2022. V. 27. № 20. P. 6961.
- 21. Komlyagina V.I., Romashev N.F., Besprozvannykh V.K. et al. // Inorg. Chem. 2023. V. 62. № 29. P. 11541.
- 22. *Romashev N.F.*, *Abramov P.A.*, *Bakaev I.* . *et al.* // Inorg. Chem. 2022. V. 61. № 4. P. 2105.
- 23. *Hasan K., Zysman-Colman E. // Inorg. Chem.* 2012. V. 51. № 22. P. 12560.
- 24. *Geary E.A.M.*, *Yellowlees L.J.*, *Jack L.A. et al.* // Inorg. Chem. 2005. V. 44. № 2. P. 242.
- 25. *Bakaev I.V., Romashev N.F., Komlyagina V.I. et al.* // New J. Chem. 2023. V. 47. № 40. P. 18825.

- 26. Schmiege B.M., Carney M.J., Small B.L. et al. // Dalton Trans. 2007. № 24. P. 2547.
- 27. Zhou M., Li X., Bu D.et al. // Polyhedron. 2018. V. 148. P. 88.
- 28. Carrington S.J., Chakraborty I., Mascharak P.K. // Dalton Trans. 2015. V. 44. № 31. P. 13828.
- 29. *Fedushkin I.L., Sokolov V.G., Makarov V.M. et al.* // Russ. Chem. Bull. 2016. V. 65. № 6. P. 1495.
- 30. *Bermejo M.R.*, *Perez M.C.*, *Fondo M. et al.* // Synth. React. Inorg. Met. Chem. 1997. V. 27. № 7. P. 1009.
- 31. Girolami G.S. // Inorg. Synth. 2002. V. 33. P. 91.
- 32. *El-Ayaan U., Murata F., El-Derby S. et al.* // J. Mol. Struct. 2004. V. 692. № 1–3. P. 209.
- 33. *te Velde G., Bickelhaup, F.M., Baerends E.J. et al.* // J. Comput. Chem. 2001. V. 22. № 9. P. 931.
- 34. *Van Lenthe E., Baerends E.J.* // J. Comput. Chem. 2003. V. 24. № 9. P. 1142.

- 35. *Van Lenthe E., Snijders J.G., Baerends E.J.* // J. Chem. Phys. 1996. V. 105. № 15. P. 6505.
- 36. APEX2 (version 2.0), SAINT (version 8.18c), and SADABS (version 2.11), Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.
- 37. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, version 2019.1-0; Bruker AXS Inc.: Madison, WI, 2017.
- 38. Sheldrick G.M. SADABS. Program for Scaling and Correction of Area Detector Data. Göttingen (Germany): Unive. of Göttingen, 1996.
- 39. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
- 40. *Singh G., Kapoor I.P.S., Kumar D. et al.* // Inorg. Chim. Acta. 2009. V. 362. № 11. P. 4091.

Synthesis and Structure of Manganese Complexes with N,N'-bis[(2,4,6-trimethylphenyl)imino]acenaphthene

Yu. A. Laricheva^a, Ch. Guan^b, N. V. Kuratieva^a, N. F. Romashev^{a, *}, and A. L. Gushchin^a

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
^b Novosibirsk National Research State University, Novosibirsk, Russia
*e-mail: nikolaj.romashev75@gmail.com

Methods for the synthesis of new manganese(II) complexes with N,N'-bis[(2,4,6-trimethylphenyl) imino (acenaphthene (Tmp-bian), [Mn(Tmp-bian)Br₂] (I), [Mn(Tmp-bian)(EtOH)Br₂] (Ia), [Mn(Tmpbian) Cl₂] (II), [Mn(Tmp-bian)₂ (ClO₄) ₂] (III), and [Mn(Tmp-bian)₂ (OTs)₂] (IV) were developed. The obtained compounds were characterized by elemental analysis and IR spectroscopy. The molecular structures of I, Ia, and III were determined by X-ray diffraction (CCDC no. 233510–233512). The electronic structures of I and III were established by quantum chemical calculations using density functional theory (DFT).

Keywords: complexes, manganese, bis(imino)acenaphthenes (BIANs), synthesis, X-ray diffraction, quantum chemical calculations

REFERENCES

- 1. *Kallmeier F.*, *Kempe R.* // Angew. Chem. Int. Ed. 2018. V. 57. № 1. P. 46.
- 2. *Najafpour M. M., Allakhverdiev S. I.* // Int. J. Hydrogen Energy. 2012. V. 37. № 10. P. 8753.
- 3. *Mallick Ganguly O., Moulik S.* // Dalton Trans. 2023. V. 52. № 31. P. 10639.
- 4. Vinogradova K. A., Shekhovtsov N. A., Berezin A. S. et al. // Inorg. Chem. Commun. 2019. V. 100. P. 11.
- 5. Berezin A.S., Vinogradova K.A., Nadolinny V.A. et al. // Dalton Trans. 2018. V. 47. № 5. P. 1657.
- Artem'Ev A.V., Davydova M.P., Berezin A.S. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 27. P. 31000.
- 7. *Davydova M.*., *Bauer I.A.*, *Brel V.K. et al.* // Eur. J. Inorg. Chem. 2020. V. 2020. № 8. P. 695–703.

- 8. Artem'ev A.V., Davydova M.P., Rakhmanova M.I. et al. // Inorg. Chem. Front. 2021. V. 8. № 15. P. 3767.
- 9. Artem'ev A.V., Kashevskii A.V., Bogomyakov A.S. et al. // Dalton Trans. 2017. V. 46. № 18. P. 5965.
- 10. *Hu J. Q.*, *Song E. H.*, *Ye S. et al* // J. Mater. Chem. C. 2017. V. 5. № 13. P. 3343.
- 11. *Zou S., Liu Y., Li J. et al.* // J. Am. Chem. Soc. 2017. V. 139. № 33. P. 11443.
- 12. *Davydova M., Meng L., Rakhmanova M.I. et al.* // Adv. Mater. 2023. V. 35. № 35. P. 2303611.
- 13. *Qin Y., She P., Huang X., Huang W. et al.* // Coord. Chem. Rev. 2020. V. 416. P. 213331
- 14. *van Asselt R., Gielens E.E.C.G., Rülke R.E. et al.* // J. Am. Chem. Soc. 1994. V. 116. № 3. P. 977.
- 15. Fomenko I.S., Romashev N.F., Gushchin. A.L. // Coord. Chem. Rev. 2024. V. 514. P. 215845.

- 16. *Fedushkin I.L.*, *Skatova A.A.*, *Chudakova V.A. et al.* // Angew. Chem. Int. Ed. 2003. V. 42. № 28. P. 3294.
- 17. Bernauer J., Pölker J., Jacobi von Wangelin A. // ChemCatChem. 2022. V. 14. № 1. Art. e202101182.
- 18. Fomenko I.S., Koshcheeva O.S., Kuznetsova N.I. et al. // Catalysts. 2023. V. 13. № 5. P. 849.
- 19. Fomenko I. S., Gongola M. I., Shul'pina L. S. et al. // Catalysts. 2022. V. 12. № 10. P. 1168.
- 20. Komlyagina V.I., Romashev N.F., Kokovkin V. et al. // Molecules. 2022. V. 27. № 20. P. 6961.
- 21. Komlyagina V.I., Romashev N.F., Besprozvannykh V.K. et al. // Inorg. Chem. 2023. V. 62. № 29. P. 11541.
- 22. Romashev N.F., Abramov P.A., Bakaev I. et al. // Inorg. Chem. 2022. V. 61. № 4. P. 2105.
- 23. Hasan K., Zysman-Colman E. // Inorg. Chem. 2012. V. 51. № 22. P. 12560.
- 24. *Geary E.A.M., Yellowlees L.J., Jack L.A. et al.* // Inorg. Chem. 2005. V. 44. № 2. P. 242.
- 25. *Bakaev I.V., Romashev N.F., Komlyagina V.I. et al.* // New J. Chem. 2023. V. 47. № 40. P. 18825.
- 26. *Schmiege B.M.*, *Carney M.J.*, *Small B.L. et al.* // Dalton Trans. 2007. № 24. P. 2547.
- 27. Zhou M., Li X., Bu D.et al. // Polyhedron. 2018. V. 148. P. 88.
- 28. Carrington S.J., Chakraborty I., Mascharak P.K. // Dalton Trans. 2015. V. 44. № 31. P. 13828.

- 29. Fedushkin I.L., Sokolov V.G., Makarov V.M. et al. // Russ. Chem. Bull. 2016. V. 65. № 6. P. 1495.
- 30. *Bermejo M.R.*, *Perez M.C.*, *Fondo M. et al.* // Synth. React. Inorg. Met. Chem. 1997. V. 27. № 7. P. 1009.
- 31. Girolami G.S. // Inorg. Synth. 2002. V. 33. P. 91.
- 32. *El-Ayaan U., Murata F., El-Derby S. et al.* // J. Mol. Struct. 2004. V. 692. № 1–3. P. 209.
- 33. *te Velde G., Bickelhaup, F.M., Baerends E.J. et al.* // J. Comput. Chem. 2001. V. 22. № 9. P. 931.
- 34. *Van Lenthe E., Baerends E.J.* // J. Comput. Chem. 2003. V. 24. № 9. P. 1142.
- 35. *Van Lenthe E., Snijders J.G., Baerends E.J.* // J. Chem. Phys. 1996. V. 105. № 15. P. 6505.
- 36. APEX2 (version 2.0), SAINT (version 8.18c), and SADABS (version 2.11), Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.
- 37. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, version 2019.1-0; Bruker AXS Inc.: Madison, WI, 2017.
- 38. *Sheldrick G.M.* SADABS. Program for Scaling and Correction of Area Detector Data. Göttingen (Germany): Unive. of Göttingen, 1996.
- 39. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
- 40. *Singh G., Kapoor I.P.S., Kumar D. et al.* // Inorg. Chim. Acta. 2009. V. 362. № 11. P. 4091.

К 70-летию проф. В.П. Федина

УДК 549.233:539.26

АДДУКТЫ СТЕРИЧЕСКИ ЗАТРУДНЕННОГО КАТЕХОЛАТА ТЕЛЛУРА С N-МЕТИЛПИРРОЛИДОНОМ

© 2024 г. П. А. Петров^{1, *}, Е. А. Филиппова¹, Т. С. Сухих¹

¹ Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия * e-mail: panah@niic.nsc.ru

Поступила в редакцию 12.03.2024 г. После доработки 04.04.2024 г. Принята к публикации 04.04.2024 г.

Изучено образование аддуктов 3,6-ди-*трет*-бутилкатехолата теллура(IV) ($Te(Cat^{36})_2$) с N-метилпирролидоном (NMP). Установлено, что кристаллизация из смеси CH_2Cl_2 –NMP—ароматический углеводород приводит к образованию димерных комплексов [{ $Te(Cat^{36})_2$ } $_2$ (μ -NMP)(μ -arene)] (arene = C_6H_6 , C_7H_8), тогда как из смеси CH_2Cl_2 –NMP—алкан — к моноядерному [$Te(Cat^{36})_2$ (NMP) $_2$]. Образование аддуктов с ароматическими углеводородами указывает на возможную перспективу использования комплексов теллура для разделения смесей углеводородов, в том числе промышленно важной смеси бензол—пиклогексан.

Ключевые слова: теллур, хиноны, ренттеноструктурный анализ, N-метилпирролидон, ЯМР

DOI: 10.31857/S0132344X24100033, **EDN:** LPWAYK

Химия комплексов непереходных элементов с редокс-активными лигандами, способными существовать в нескольких окислительных состояниях, активно изучается в последние десятилетия [1, 2]. Классическим примером таких лигандов являются производные 1,2-бензохинона (диоксолены), способные к ступенчатому восстановлению до *о*-семихинолятного анион-радикала и катехолатного дианиона (схема 1).

За счет координации редокс-активного лиганда комплексы непереходных элементов могут проявлять необычную реакционную способность (например, активировать малые молекулы [3—10]), проявлять нетривиальные каталитические [11—15], оптические [16—19] и магнитные [20—23] свойства. Комплексы халькогенов с редокс-активными лигандами гораздо более малочисленны, чем их аналоги с элементами 13—15 групп [24—29] и имеют важные отличия

Схема 1.

от последних. Во-первых, для теллура нехарактерно образование комплексов с анион-радикальной формой диоксоленового или иминоксоленового лиганда. Единственным известным на сегодняшний день исключением является комплекс теллура с тетрадентатным бис(амидофенолятом), при восстановлении которого удалось выделить устойчивое анион-радикальное производное, являющееся первым примером структурно охарактеризованного теллур-центрированного радикала [30]. Кроме того, для бискатехолатов теллура характерно увеличение координационной сферы не за счет ковалентного связывания дополнительных лигандов, а за счет невалентных контактов (халькогеновых связей [31]). Комплексы с халькогеновыми связями интенсивно изучаются в последние годы и рассматриваются в качестве сенсоров [32] и катализаторов [33]. Настоящая работа посвящена синтезу и исследованию аддуктов $\mathit{fuc}(3,6$ -ди- mpem -бутил)катехолата теллура(IV) с N-метилпирролидоном (NMP).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

 $Te(Cat^{36})_2$ получали по литературной методике [28]. Спектры ЯМР регистрировали на спектрометре Bruker Avance III 500 с рабочей частотой 500.03 МГц для ядер 1 Н и 150.76 МГц для ядер 125 Те. ИК-спектры в таблетках КВг записывали на приборе Simex FT-801. Элементный анализ выполняли в Аналитической лаборатории ИНХ CO PAH.

Синтез [{Te(Cat³⁶)₂}₂(μ -NMP)(μ -C₇H₈)] (I). Te(Cat³⁶)₂ (50 мг, 0.088 ммоль) растворяли в смеси 5 мл сухого CH₂Cl₂ и 2 мл толуола, после чего добавляли к раствору 2 капли N-метилпирролидона. Медленное упаривание раствора на воздухе привело к образованию желтых кристаллов I, пригодных для PCA. Выход 38 мг (65%).

ЯМР ¹H (CDCl₃; δ , м.д.) 1.26 (c, 72H, CH₃ (Cat)), 2.01 (м, 2H, C⁴H₂ (NMP)), 2.36 (c, 3H, CH₃ (толуол)), 2.40 (м, 2H, C³H₂ (NMP)), 2.84 (c, 3H, CH₃ (NMP)), 3.38 (м, 2H, C²H₂ (NMP)), 6.67 (c, 8H, CH (Cat)), 7.19–7.40 (м, 5H, CH (толуол)). ЯМР 125 Те (CH₂Cl₂): δ 1611.9.

ИК-спектр (КВг; v, см⁻¹): 3083, 2951, 2909, 2867, 1656, 1623, 1508, 1491, 1466, 1396, 1384, 1357, 1307, 1272, 1203, 1144, 1028, 970, 938, 922, 808, 738, 715, 688, 647, 604.

Найдено, %: С 61.45; Н 7.05; N, 1.05. Для $C_{68}H_{97}NO_{9}Te_{2}$ вычислено, %: С 61.28; Н 7.34; N, 1.05.

Синтез [{Te(Cat³⁶)₂}₂(μ -NMP)(μ -C₆H₆)] (II). Te(Cat³⁶)₂ (50 мг, 0.088 ммоль) растворяли в смеси 5 мл сухого CH₂Cl₂ и 2 мл бензола, после чего добавляли к раствору 2 капли N-метилпирролидона. Медленное упаривание раствора на воздухе привело к образованию желтых кристаллов II, пригодных для PCA. Выход 40 мг (69%).

ЯМР 1 H (CDCl₃; δ , м.д.) 1.26 (c, 72H, CH₃ (Cat)), 2.05 (м, 2H, C 4 H₂ (NMP)), 2.50 (м, 2H, C 3 H₂ (NMP)), 2.89 (c, 3H, CH₃ (NMP)), 3.42 (м, 2H, C 2 H₂ (NMP)), 6.68 (c, 8H, CH (Cat)), 7.36 (c, 6H, CH (бензол)). ЯМР 125 Te (CH₂Cl₂): δ 1611.6.

ИК-спектр (КВг; v, см⁻¹): 3085, 3032, 2951, 2909, 2867, 1621, 1507, 1492, 1467, 1398, 1384, 1357, 1307, 1233, 1204, 1144, 1028, 970, 938, 922, 808, 715, 689, 647, 604.

Найдено, %: С 60.85; Н 7.20; N, 0.95. Для $C_{67}H_{95}NO_9Te_2$ вычислено, %: С 61.02; Н 7.27; N, 1.06.

Синтез [Te(Cat³⁶)₂(NMP)₂] · 2NMP (III · 2NMP). Те(Cat³⁶)₂ (53 мг, 0.093 ммоль) растворяли в смеси 5 мл сухого CH_2Cl_2 и 2 мл циклогексана, после чего добавляли к раствору 2 капли N-метилпирролидона. Медленное упаривание раствора на воздухе привело к образованию порошка III · 2NMP. Монокристаллы III отбирали из реакционной смеси. Выход 65 мг (72%).

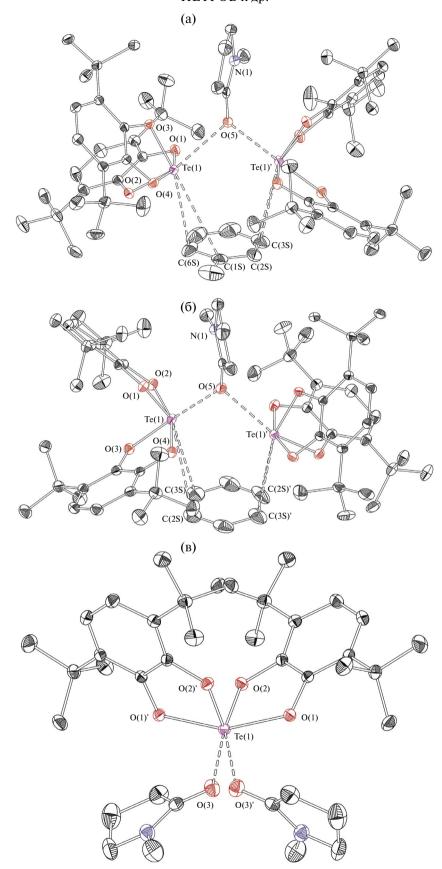
ЯМР 1 H (CDCl₃; δ, м.д.) 1.24 (c, 36H, CH₃ (Cat)), 2.01 (м, 8H, C 4 H₂ (NMP)), 2.38 (м, 8H, C 3 H₂ (NMP)), 2.84 (c, 12H, CH₃ (NMP)), 3.38 (м, 8H, C 2 H₂ (NMP)), 6.65 (c, 4H, CH (Cat). ЯМР 125 Те (CH₂Cl₂): δ 1606.4.

ИК-спектр (КВг; v, см⁻¹): 3081, 2950, 2908, 1667, 1650, 1505, 1491, 1476, 1401, 1384, 1359, 1307, 1273, 1237, 1201, 1144, 1111, 1029, 972, 940, 924, 808, 795, 714, 687, 647, 615, 597.

Найдено, %: С 60.65; Н 8.00; N, 5.65. Для $C_{48}H_{76}N_4O_8Te$ вычислено, %: С 60.85; H 7.93; N, 5.80.

РСА монокристаллов (I, II, III · 2NMP) проведен в ЦКП ИНХ СО РАН на дифрактометре Bruker D8 Venture с детектором СМОЅ PHOTON III и микрофокусным источником IµЅ 3.0 (Мо K_{α} -излучение $\lambda = 0.71073$ Å, фокусирующие зеркала Монтеля) при 150 К. Интегрирование и учет поглощения проведены в пакете программ APEX3 [34]. Структуры расшифрованы с использованием программы SHELXT [35] и уточнены с использованием программы SHELXL [36]

в анизотропном приближении для неводородных атомов с использованием программной оболочки Olex2 [37]. Атомы водорода локализованы геометрически и уточнены в приближении жесткого тела. В структурах комплексов I и II молекулы N-метилпирролидона и толуола разупорядочены по двум позициям каждая с заселенностью 0.5. Уточнение этих молекул проводилось с ограничениями DFIX, SADI, FLAT, RIGU и ISOR. Кристаллографические характеристики комплексов и детали дифракционного эксперимента приведены в табл. 1.


Кристаллографические параметры комплексов депонированы в Кембриджском банке структурных данных (ССDС № 2208717—2208719) и могут быть получены по адресу: http://www.ccdc.cam.ac.uk.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Упаривание раствора $Te(Cat^{36})_2$ в смеси CH_2Cl_2 —толуол (5 : 2) в присутствии NMP привело к образованию комплекса [{ $Te(Cat^{36})_2$ } $_2$ (μ -NMP)(μ -C $_7H_8$)] (I) (рис. 1a). Данный комплекс

Таблица 1. Кристаллографические данные и параметры уточнения структур I-III

_	Значение				
Параметр	I	II	III		
Брутто-формула	$C_{68}H_{97}NO_9Te_2$	C ₆₇ H ₉₅ NO ₉ Te ₂	$C_{38}H_{58}N_2O_6Te$		
M	1327.66	1313.63	766.46		
Сингония	Моноклинная	Моноклинная	Моноклинная		
Пр. группа	C2/c	C2/c	C2/c		
a, Å	18.9849(3)	18.7903(6)	22.6078(5)		
<i>b</i> , Å	12.0993(2)	12.1239(4)	15.6929(4)		
c, Å	30.1877(7)	30.1586(9)	11.2267(2)		
α, град	90	90	90		
β, град	107.071(1)	107.405(1)	106.433(1)		
ү, град	90	90	90		
<i>V</i> , Å ³	6628.7(2)	6555.9(4)	3820.33(15)		
Z	4	4	4		
μ, мм ⁻¹	0.934	0.943	0.824		
F(000)	2752.0	2720.0	1600.0		
Размер кристалла, мм	$0.12 \times 0.1 \times 0.09$	0.15×0.1×0.1	0.2×0.1×0.09		
Область сбора данных 20, град	4.496-58.56	4.54-55.854	4.534-54.284		
Диапазон индексов h, k, l	$-25 \le h \le 25,$ $-16 \le k \le 16,$ $-39 \le l \le 41$	$ \begin{array}{c} -24 \leqslant h \leqslant 24, \\ -15 \leqslant k \leqslant 15, \\ -39 \leqslant l \leqslant 39 \end{array} $	$ \begin{array}{c} -28 \leqslant h \leqslant 28, \\ -20 \leqslant k \leqslant 20, \\ -14 \leqslant l \leqslant 14 \end{array} $		
Число измеренных, независимых и наблюдаемых ($I > 2\sigma(I)$) отражений	48372, 8540, 6931	58633, 7833, 7155	33033, 4228, 4053		
R _{int}	0.0442	0.0423	0.0315		
Число уточняемых параметров	434	397	220		
Число ограничений	175	45	0		
GOOF	1.024	1.056	1.063		
R_1 , wR_2 $(I > 2\sigma(I))$	0.0281, 0.0565	0.0255, 0.0571	0.0194, 0.0471		
R_1 , wR_2 (все отражения)	0.0416, 0.0601	0.0289, 0.0588	0.0206, 0.0481		
$\Delta \rho_{\rm max}/\Delta \rho_{\rm min}$, e Å ⁻³	0.39/-0.53	0.53/-0.66	0.46/-0.31		

Рис. 1. Молекулярные структуры комплексов I (а), II (б), III (в) (тепловые эллипсоиды 30%-ной вероятности; атомы H не показаны).

является крайне редким примером координации NMP к неметаллу — ранее был описан единственный комплекс бора $[(TsC(PPh_2))_2B(NMP)]^+$ (Ts = тозил) [38]. Комплекс I кристаллизуется в моноклинной пространственной группе C2/c, атом О N-метилпирролидона лежит на кристаллографической оси 2 порядка. Лиганд NMP является мостиковым и соединяет два фрагмента $\{Te(Cat^{36})_2\}$, из которых лишь один является кристаллографически независимым. Длина связи $Te-O_{NMP}$ равна 2.6431(12) Å, что существенно больше, чем в описанном ранее аддукте с ДМФА (2.4815(10) Å) [28]. Это различие относится, скорее, не к разнице донорных чисел ДМФА и NMP (26.6 и 27.3 соответственно [39]), а к различному способу координации (терминальному для ДМФА и мостиковому для NMP). Двугранный угол между хелатными циклами равен 81°. Помимо мостикового N-метилпирролидона, два фрагмента связаны мостиковой молекулой толуола, координированной по η^2 -типу к каждому атому Те. Молекула толуола, как и молекула NMP, разупорядочена по двум позициям. Расстояния Te-C (Te(1)-C(1S), 3.827(5) Å; Te(1)-C(6S), 3.509(15) Å; Te(1)'-C(2S) 3.588(14) Å, Te(1)'-C(3S) 3.527(5) Å) сравнимы с таковыми в аддук-TE [Te(Cat³⁶)₂(Py)(η^6 -C₇H₈)] (3.500(3)-3.755(2) Å), однако несколько больше расстояний Те-С в димерном 3,5-ди-трет-бутилкатехолате теллура $[Te(Cat^{35})_2]_2$ (3.192(1)—3.601(2) Å), в котором также присутствуют контакты $Te-(\eta^6-C_6)$ [27].

Упаривание раствора $Te(Cat^{36})_2$ в смеси CH_2Cl_2 —бензол (5 : 2) в присутствии NMP привело к образованию комплекса [{ $Te(Cat^{36})_2$ } $_2$ (μ -NMP)(μ -C $_6H_6$)] (II). Комплексы I и II изоструктурны, их геометрические характеристики близки (табл. 2). В структуре II разупорядоченной является лишь молекула NMP. Длина связи

Те- O_{NMP} (2.6061(12) Å) несколько меньше, чем в комплексе I. Расстояния Те-C равны 3.552(3) и 3.722(3) Å. Несмотря на то что контакты Те- $(\eta^6$ - C_6) описывалась ранее [27, 28, 40], координация ароматического цикла к атому Те по η^2 -типу, насколько нам известно, ранее не фиксировалась. Очевидно, контакт Те-(C=C) можно описать как взаимодействие σ-дырки связи Те- O_{cat} и π -системы ароматического углеводорода. Соответствующие углы $OTeC_2$ (C_2 — центр связи C=C) находятся в интервале 155.2°— 166.8° (табл. 2).

Попытки получения аналогов комплекса I, содержащие иодбензол и нитробензол, успехом не увенчались. Также была предпринята попытка получить аналог комплекса II с циклогексаном, однако упаривание раствора $Te(Cat^{36})_2$ в смеси СН₂СІ₂-циклогексан (5 : 2) в присутствии NMP привело к образованию мономерного комплекса $[Te(Cat^{36})_2(NMP)_2]$ (III). Таким образом, можно сделать вывод, что взаимодействия между атомом Те и ароматическим углеводородом, несмотря на свою слабость, вносят свой вклад в стабилизацию структур I и II. Комплекс III также образуется при кристаллизации Te(Cat³⁶)₂ из смеси CH_2Cl_2 -гептан (5 : 2) в присутствии NMP. Мономерный комплекс III кристаллизуется в моноклинной сингонии, атом Те находится в частной позиции на оси 2 порядка, кристаллографически независимыми являются один катехолатный лиганд и одна молекула NMP. Двугранный угол между плоскостями металлоциклов TeOCCO равен 83.4°, угол между плоскостями N-метилпирролидоновых лигандов — 81.3°. Расстояние $Te-O_{NMP}$ равно 2.7270(11) Å. Как и в комплексах I и II, а также ранее описанных аддуктах $Te(Cat^{36})_2$ связи $Te-O_{cat}$ неэквивалентны: одна из них на ~0.08 Å длиннее другой.

Таблица 2. Основные геометрические характеристики аддуктов I–III

C	I	II	III
Связь		d, Å	
Te-O _{cat}	1.9441(13), 2.0099(13), 1.9469(12), 2.0424(13)	1.9518(12), 2.0168(12), 1.9491(12), 2.0091(13)	1.9560(10), 2.0314(10)
Te···O _{NMP}	2.6431(12)	2.6061(12)	2.7270(11)
Te···C	3.509(15)-3.827(17)	3.552(3)-3.722(3)	
Угол		ω, град	•
$O_{cat}TeO_{cat}$	83.34(5), 79.71(5)	80.60(5), 81.27(5)	80.39(4)
O _{cat} TeC ₂ *	160.1, 166.8	155.2	

^{*} C_2 — центр связи C=C углеводорода.

Атомы кислорода NMP находятся приблизительно в *транс*-положении по отношению к более коротким связям $Te-O_{cat}$, что отмечалось для аддуктов $Te(Cat^{36})_2$ и ранее [28, 29]. Расстояния C-C и C-O в металлоциклах комплексов I-III однозначно указывают на дианионное (катехолатное) состояние диоксоленовых лигандов. Длина связи C=O (1.229(2)—1.265(4) Å) в комплексах I-III лишь незначительно отличается от среднего значения для некоординированных молекул NMP, найденного в E

Данные ¹Н ЯМР-спектроскопии подтверждают состав аддуктов I-III. Химический сдвиг молекулы C_6H_6 в спектре II (7.36 м.д.) в точности совпадает с химическим сдвигом бензола в CDCl₃ [41]. То же относится к комплексу I (хим. сдвиг метильной группы толуола 2.36 м.д.). Это указывает на то, что структура комплексов I и II не сохраняется в растворе. Несмотря на упомянутую близость донорных чисел для ДМФА и NMP $(26.6 \text{ и } 27.3, \text{ соответственно}), \text{ сигнал } \delta(^{125}\text{Te})$ для раствора $Te(Cat^{36})$, в чистом N-метилпирролидоне (1607.9 м.д.) сдвинут в слабое поле по сравнению с сигналом в ДМФА (1597.7 м.д.). Хим. сдвиг $\delta(^{125}\text{Te})$ комплекса III в CH₂Cl₂ (1606.4 м.д.) близок к значению для чистого NMP. Хим. сдвиги комплексов I и II практически совпадают (1611.9) и 1611.6 м.д.) и находятся в еще более слабом поле, что можно объяснить соотношением Te: NMP в них (2:1).

Таким образом, получены и охарактеризованы методами РСА и спектроскопии ЯМР аддукты стерически затрудненного $\mathit{fuc}(3,6$ -ди- mpem -бутил) катехолата теллура (IV) с N-метилпирролидоном. Установлено, что ароматические углеводороды (бензол и толуол) входят в состав комплексов за счет слабых взаимодействий атома Те с π -системой арена. Отметим, что комплексы теллура могут быть потенциально интересными предшественниками систем разделения ароматических и алифатических углеводородов, в том числе промышленно важной смеси бензол—циклогексан.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Авторы благодарны Н.Б. Компанькову за регистрацию спектров ЯМР.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (проект № 121031700313-8).

СПИСОК ЛИТЕРАТУРЫ

- 1. Poddel'sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291.
- 2. Kaim W. // Inorg. Chem. 2011. V. 50. P. 9752.
- 3. Abakumov G.A., Poddelsky A.I., Grunova E.V. et al. // Angew. Chem., Int. Ed. 2005. V. 44. P. 2767.
- 4. Cherkasov V.K., Abakumov G.A., Grunova E.V. et al. // Chem. Eur. J. 2006. V. 12. P. 3916.
- 5. Poddel'sky A.I., Kurskii Yu.A., Piskunov A.V. et al. // Appl. Organomet. Chem. 2011. V. 25. P. 180.
- Ilyakina E.V., Poddel'sky A.I., Cherkasov V.K., Abakumov G.A. // Mendeleev Commun. 2012. V. 22. P. 208.
- 7. Ладо А.В., Пискунов А.В., Черкасов В.К. и др. // Коорд. химия. 2006. Т. 32. № 3. С. 181 (*Lado A.V., Piskunov, A.V., Cherkasov, V.K. et al* // Russ. J. Coord. Chem. 2006. V. 32. P. 173). doi: 10.1134/S1070328406030031
- 8. Piskunov A.V., Ershova I.V., Fukin G.K., Shavyrin A.S. // Inorg. Chem. Commun. 2013. V. 38. P. 127.
- 9. Piskunov A.V., Meshcheryakova I.N., Fukin G.K. et al. // Dalton Trans. 2013. V. 42. P. 10533.
- 10. *Thorwart T., Hartman D., Greb L.* // Chem. Eur. J. 2022. V. 23. Art. e202202273.
- 11. *Thorwart T., Roth D., Greb L.* // Chem. Eur. J. 2021. V. 21. P. 10422.
- 12. *Hartmann D., Braner S., Greb L.* // Chem. Commun. 2021. V. 57. P. 8572.
- 13. *Ansmann N., Thorwart T., Greb L.* // Angew. Chem. Int. Ed. 2022. V. 61. Art. e202210132.
- 14. Arsenyeva K.V., Pashanova K.I., Trofimova O.Yu. et al. // New J. Chem. 2021. V. 45. P. 11758.
- 15. Arsenyeva K.V., Klimashevskaya A.V., Pashanova, K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. Art. e6593.
- Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83.
- 17. *Климашевская А.В., Арсеньева К.В., Черкасов А.В. и др.* // Журн. структур. химии. 2023. Т. 64. № 12. С. 118910 (*Klimashevskaya A.V., Arsenyeva K.V., Cherkasov A.V. et al.* // J. Struct. Chem. 2023. V. 64. P. 2271). doi: 10.1134/S0022476623120016
- 18. Klimashevskaya A.V., Arsenyeva, K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. Art. e202300540.
- 19. Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mendeleev Commun. 2023. V. 33. P. 733.

- 20. *Ershova I.V., Piskunov A.V., Cherkasov V.K.* // Russ. Chem. Rev. 2020. V. 89. P. 1157.
- 21. Chegerev M.G., Starikova A.A., Piskunov A.V., Cherkasov V. K. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 252.
- 22. Chegerev M.G., Piskunov A.V., Starikova A.A. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 1087.
- 23. Greb L. // Eur. J. Inorg. Chem. 2022. V. 2022. Art. e202100871.
- 24. *Antikainen P.J.*, *Mälkönen P.J.* // Z. Anorg. Allg. Chem. 1959. V. 299. P. 292.
- 25. Lindqvist O. // Acta Chem. Scand. 1967. V. 21. P. 1473.
- 26. *Annan T.A.*, *Ozarowski A.*, *Tian Z.*, *Tuck D.G.* // Dalton Trans. 1992. P. 2931.
- Kieser J.M., Jones L.O., Lin N.J. et al. // Inorg. Chem. 2021. V. 60. P. 3460.
- 28. *Petrov P.A.*, *Filippova E.A.*, *Sukhikh T.S. et al.* // Inorg. Chem. 2022. V. 61. P. 9184.
- 29. *Петров П.А.* // Коорд. химия. 2023. Т. 49. № 6. С. 354 (*Petrov P.A.* // Russ. J. Coord. Chem. 2023. V. 49. P. 357). doi: 10.1134/S1070328423600262
- 30. *Petrov P.A., Kadilenko E.M., Sukhikh T.S. et al.* // Chem. Eur. J. 2020. V. 26. P. 14688.

- 31. Mahmudov K.T., Kopylovich M.N., Guedes da Silva M.F.C., Pombeiro A.J.L. // Dalton Trans. 2017. V. 46. P. 10121.
- 32. Fourmigué M., Dhaka A. // Coord. Chem. Rev. 2020. V. 403. P. 213084.
- 33. *Pale P., Mamane V.* // Chem. Eur. J. 2023. V. 29. Art. e202302755.
- 34. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
- 35. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 36. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 37. *Dolomanov O.V., Bourhis L.J., Gildea R.J. et al.* // J. Appl. Cryst. 2009. V. 42. P. 339.
- 38. *Scherpf T., Feichtner K.-S., Gessner V.H.* // Angew. Chem. Int. Ed. 2017. V. 56. P. 3275.
- 39. Schmid R. // J. Solution Chem. 1983. V. 12. P. 135.
- 40. *O'Quinn G.K., Rudd M.D., Kautz J.A.* // Phosphorus, Sulfur, Silicon Relat. Elem. 2002. V. 177. P. 853.
- 41. Fulmer G.R., Miller A.J., Sherden N.H. et al. // Organometallics. 2020. V. 29. P. 2176.

Adducts of Sterically Hindered Tellurium Catecholate with N-Methylpyrrolidone P. A. Petrov^{a, *}, E. A. Filippova^a, and T. S. Sukhikh^a

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia *e-mail: panah@niic.nsc.ru

The formation of adducts of tellurium(IV) 3,6-di-*tert*-butyl catecholate (Te(Cat³6)₂) with N-methylpyrrolidone (NMP) is studied. The crystallization from a CH₂Cl₂-NMP-aromatic hydrocarbon mixture is found to result in the formation of dimeric complexes [{Te(Cat³6)₂}₂,(μ -NMP)(μ -arene)] (arene = C₆H₆, C₇H₈), whereas mononuclear [Te(Cat³6)₂(NMP)₂] is formed from a CH₂Cl₂-NMP-alkane mixture. The formation of the adducts with aromatic hydrocarbons indicates a possibility of using the tellurium complexes for the separation of hydrocarbon mixtures, including an industrially important benzene—cyclohexane mixture.

Keywords: tellurium, quinones, XRD, N-methylpyrrolidone, NMR

REFERENCES

- 1. Poddel'sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291.
- 2. *Kaim W.* // Inorg. Chem. 2011. V. 50. P. 9752.
- 3. Abakumov G.A., Poddelsky A.I., Grunova E.V. et al. // Angew. Chem., Int. Ed. 2005. V. 44. P. 2767.
- 4. *Cherkasov V.K.*, *Abakumov G.A.*, *Grunova E.V. et al.* // Chem. Eur. J. 2006. V. 12. P. 3916.
- 5. *Poddel'sky A.I.*, *Kurskii Yu.A.*, *Piskunov A.V. et al.* // Appl. Organomet. Chem. 2011. V. 25. P. 180.
- 6. *Ilyakina E.V., Poddel'sky A.I., Cherkasov V.K., Abakumov G.A.* // Mendeleev Commun. 2012. V. 22. P. 208.

- 7. *Lado A.V., Piskunov, A.V., Cherkasov, V.K. et al //* Russ. J. Coord. Chem. 2006. V. 32. P. 173. doi: 10.1134/S1070328406030031
- 8. Piskunov A.V., Ershova I.V., Fukin G.K., Shavy-rin A.S. // Inorg. Chem. Commun. 2013. V. 38. P. 127.
- 9. Piskunov A.V., Meshcheryakova I.N., Fukin G.K. et al. // Dalton Trans. 2013. V. 42. P. 10533.
- Thorwart T., Hartman D., Greb L. // Chem. Eur. J. 2022. V. 23. Art. e202202273.
- 11. *Thorwart T., Roth D., Greb L.* // Chem. Eur. J. 2021. V. 21. P. 10422.
- 12. *Hartmann D., Braner S., Greb L.* // Chem. Commun. 2021. V. 57. P. 8572.

- Ansmann N., Thorwart T., Greb L. // Angew. Chem. Int. Ed. 2022, V. 61, Art. e202210132.
- 14. Arsenyeva K.V., Pashanova K.I., Trofimova O.Yu. et al. // New J. Chem. 2021. V. 45. P. 11758.
- Arsenyeva K.V., Klimashevskaya A.V., Pashanova, K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. Art. e6593.
- 16. Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83.
- Klimashevskaya A.V., Arsenyeva K.V., Cherkasov A.V. et al. // J. Struct. Chem. 2023. V. 64. P. 2271. doi: 10.1134/S0022476623120016
- 18. Klimashevskaya A. V., Arsenyeva, K. V., Maleeva A. V. et al. // Eur. J. Inorg. Chem. 2023. Art. e202300540.
- 19. Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mendeleev Commun. 2023. V. 33. P. 733.
- 20. *Ershova I.V., Piskunov A.V., Cherkasov V.K.* // Russ. Chem. Rev. 2020. V. 89. P. 1157.
- 21. Chegerev M.G., Starikova A.A., Piskunov A.V., Cherkasov V.K. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 252.
- 22. *Chegerev M.G., Piskunov A.V., Starikova A.A. et al.* // Eur. J. Inorg. Chem. 2018. V. 2018. P. 1087.
- 23. Greb L. // Eur. J. Inorg. Chem. 2022. V. 2022. Art. e202100871.
- Antikainen P.J., Mälkönen P.J. // Z. Anorg. Allg. Chem. 1959. V. 299. P. 292.
- 25. Lindavist O. // Acta Chem. Scand. 1967. V. 21. P. 1473.
- 26. *Annan T.A.*, *Ozarowski A.*, *Tian Z.*, *Tuck D.G.* // Dalton Trans. 1992. P. 2931.

- Kieser J. M., Jones L. O., Lin N.J. et al. // Inorg. Chem. 2021. V. 60. P. 3460.
- 28. Petrov P.A., Filippova E.A., Sukhikh T.S. et al. // Inorg. Chem. 2022. V. 61. P. 9184.
- Petrov P.A. // Russ. J. Coord. Chem. 2023. V. 49.
 P. 357. doi: 10.1134/S1070328423600262
- 30. *Petrov P.A.*, *Kadilenko E.M.*, *Sukhikh T.S. et al.* // Chem. Eur. J. 2020. V. 26. P. 14688.
- 31. Mahmudov K.T., Kopylovich M.N., Guedes da Silva M.F.C., Pombeiro A.J.L. // Dalton Trans. 2017. V. 46. P. 10121.
- 32. *Fourmigué M., Dhaka A.* // Coord. Chem. Rev. 2020. V. 403. P. 213084.
- 33. *Pale P., Mamane V.* // Chem. Eur. J. 2023. V. 29. Art. e202302755.
- Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
- 35. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 36. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 37. *Dolomanov O.V., Bourhis L.J., Gildea R.J. et al.* // J. Appl. Cryst. 2009. V. 42. P. 339.
- 38. *Scherpf T., Feichtner K.-S., Gessner V.H.* // Angew. Chem. Int. Ed. 2017. V. 56. P. 3275.
- 39. Schmid R. // J. Solution Chem. 1983. V. 12. P. 135.
- 40. *O'Quinn G.K., Rudd M.D., Kautz J.A.* // Phosphorus, Sulfur, Silicon Relat. Elem. 2002. V. 177. P. 853.
- 41. Fulmer G.R., Miller A.J., Sherden N.H. et al. // Organometallics. 2020. V. 29. P. 2176.

К юбилею чл.-корр. РАН В.П. Федина

УДК 546.34+ 546.02+ 547.789.69+ 535.37

ДИЛИТИЕВЫЕ СОЛИ ДИТОПНОГО ЦЕНТРОСИММЕТРИЧНОГО МЕРКАПТОБЕНЗОТИАЗОЛА: ОТ МОЛЕКУЛЯРНОГО КОМПЛЕКСА К ЛЮМИНЕСЦЕНТНЫМ 1D-КООРДИНАЦИОННЫМ ПОЛИМЕРАМ

© 2024 г. А. Ф. Рогожин^{1, *}, В. А. Ильичев¹, Л. И. Силантьева¹, Е.А. Козлова¹, Г. К. Фукин¹, М. Н. Бочкарев¹

¹Институт металлоорганической химии им. Г.А. Разуваева РАН, Нижний Новгород, Россия

*e-mail: atonrog@iomc.ras.ru
Поступила в редакцию 26.03.2024 г.

Поступила в редакцию 26.03.2024 г. После доработки 04.04.2024 г. Принята к публикации 05.04.2024 г.

Реакцией амида лития LiN(Si(Me) $_3$) $_2$ и дитопного гетероциклического лиганда — бен-3о[1,2-d:4,5-d']-*бис*-тиазол-2,6(3H,7H)-дитиона (H $_2$ L) в среде ДМЭ получен биядерный молекулярный комплекс состава Li $_2$ L(DME) $_4$ (I). При перекристаллизации соединения I с использованием смеси растворителей ДМСО—диэтиловый эфир или ДМСО/ТГФ были получены новые соединения состава [Li $_2$ L(ДМСО) $_4$ • (ДМСО) $_2$] $_n$ (II) и [Li $_2$ L(ДМСО) $_4$ • (ТГФ) $_2$] $_n$ (III) соответственно. По данным РСА, эти соединения являются одномерными координационными полимерами (КП), отличающимися расположением бистиазольных фрагментов относительно друг друга и фрагмента Li $_2$ О $_2$ в полимерной цепи, что находит отражение в люминесцентных свойствах. Молекулярное строение I—III установлено с помощью РСА (СССС № 2334192 (I), 2334193 (II), 2334194 (III)).

Ключевые слова: 2-меркаптобензотиазол, фосфоресценция, флуоресценция гетероциклические лиганды, литий, координационный полимер

DOI: 10.31857/S0132344X24100048, **EDN:** LPVOOX

Последние несколько лет в области координационных полимеров (КП) наблюдается интенсификация исследований, что связано с наличием у таких соединений ряда востребованных свойств [1]. В частности, они находят применение в качестве люминесцентных сенсоров [2-4], гетерогенных катализаторов [5], материалов для хранения газов [6], селективных газовых сорбентов [7–10], нелинейных оптических сред [11], сцинтилляторов [12], молекулярных магнетиков [13] и материалов для инкапсуляции лекарственных препаратов [14]. КП, содержащие в своем составе катионы лития, помимо вышеперечисленных областей, интересны тем, что существует возможность использования таких соединений в качестве материалов для производства Li-ионных батарей [15–18].

На сегодняшний день известны примеры одномерных (1D), двумерных (2D) и трехмерных (3D) КП лития. В качестве политопных линкеров в этих соединения чаще всего используются кар-

боновые [8, 10, 18-21] и поликарбоновые [22-28] кислоты. Среди других дитопных линкеров для синтеза Li-содержащих KП можно выделить производные хинонов [29, 30], азотсодержащих гетероциклов [31-34] и аминокислот [35]. Несмотря на многочисленные исследования литиевых КП, люминесцентные свойства таких соединений до настоящего времени остаются практически неизученными. Так, в работе Колтуновой и соавторов сообщается о флуоресценции полимерных литиевых солей трикарбоновой кислоты [26]. В работе Надима (Nadeem) и соавторов приводятся примеры голубой флуоресценции литиевых КП на основе фталоилсодержащих аминокислот [35]. Проявляющие фотолюминесценцию (ФЛ) гетеробиметаллические литий-лантаноидные КП на основе терефталевой кислоты описаны в работах Абдельбаки (Abdelbaky) и соавторов [36, 37].

Ранее нами были получены 2D-КП на основе натрия и лантаноидов с бистиазолятным лиган-

дом бензо[1,2-d:4,5-d'] *бис*тиазол-2,6(3H,7H)-дитионом (H_2L), молекулярное строение и люминесцентные свойства которых зависели от содержащихся в них молекул растворителей [38, 39]. В данной работе нами сообщается о синтезе новых дилитиевых производных — молекулярного комплекса и координационных полимеров, содержащих депротонированный дитопный лиганд H_2L . В работе также сообщается о $\Phi \Pi$ свойствах этих соединений как при комнатной, так и при температуре жидкого азота.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все реакции и манипуляции с веществами проводились с использованием техники Шленка или в атмосфере аргонового главбокса ($O_2 < 1$ м.д.; $H_2O < 0.1$ м.д.). Все реагенты и растворители были получены из коммерческих источников. Диэтиловый эфир, 1,2-диметоксиэтан (ДМЭ), тетрагидрофуран (ТГФ) сушили бензофенонкетилом натрия по стандартной методике и отбирали в вакууме непосредственно перед использованием. Диметилсульфоксид (ДМСО) сушили над ситами 4Å. Синтез бензо[1,2-d:4,5-d']- δ uc-тиазол-2,6(3H,7H)-дитиона (H_2 L) проводили по известной методике [38].

Элементный анализ C, H, N и S проводили на элементном анализаторе Euro EA 3000. ИК-спектры снимали на спектрометре FSM-1201 FTIR в диапазоне 4000 до 450 см $^{-1}$ в вазелиновом масле на подложках KBr. ФЛ твердых образцов возбуждали 405 нм диодным лазером мощностью 100 мВт или 310 нм УФ диодом ОсеапОрtics LLS 310 и регистрировали в диапазоне от 400 до 950 нм при помощи спектрофлуориметров OceanOptics USB2000 или Zolix OmniFluo-990 LSP. Кинетические исследования люминесценции кристаллических образцов I–III выполняли на спектрофлуориметре Zolix OmniFluo-990 LSP при возбуждении импульсным диодным лазером (375 нм, 10 нс, производство CNI Laser) при температурах 298 и 77 К.

РСА соединений I—III проведен на дифрактометрах Bruker D8 Quest (I) и Oxford Xcalibur Eos (II, III) (графитовый монохроматор, MoK_{α} -излучение, ω -сканирование, $\lambda=0.71073$ Å). Экспериментальные наборы интенсивностей интегрированы с помощью программ SAINT [40] (I) и CrysAlisPro [41] (II, III). Поправки на поглощение введены с использованием алгоритма масштабирования SCALE3 ABSPACK, реализованного в программе CrysAlisPro и SADABS [42].

Структуры решены с использованием программы SHELXT [43] и уточнены полноматричным МНК по $F_{\rm hkl}^2$ в анизотропном приближении для всех неводородных атомов с помощью программы SHELXL [44]. Атомы водорода помещены в геометрически рассчитанные положения и уточнены в изотропном приближении с использованием модели «наездника»: $U_{\rm изо}({\rm H}) = 1.5~U_{\rm экв}({\rm C})$ для метильных групп, $U_{\rm изо}({\rm H}) = 1.2~U_{\rm экв}({\rm C})$ для всех остальных групп. В КП III координированные молекулы ДМСО разупорядочены с использованием инструкций EADP, SADI и DFIX. Основные кристаллографические характеристики соединений I—III приведены в табл. 1.

Структуры депонированы в Кембриджской базе структурных данных (ССDС № 2334192 (I), 2334193 (II), 2334194 (III); http://www.ccdc.cam. ac.uk).

Синтез $Li_2L(ДМЭ)_4$ (I). К суспензии H_2L (0.39 ммоль, 100 мг) в ДМЭ (5 мл), полученной после перемешивания в ультразвуковой бане, добавляли бесцветный раствор LiN(SiMe₂)₂ (0.781 ммоль, 130.5 мг) в ДМЭ (5 мл). После смешивания наблюдали изменение цвета раствора на желтый и образование бежевого осадка. Реакционную ампулу запаивали, обрабатывали в ультразвуковой бане в течение 15 мин, затем выдерживали в течение 24 ч при температуре 5°С. Образовавшиеся бесцветные кристаллы отделяли фильтрованием, промывали холодным гексаном и высушивали в вакууме при комнатной температуре. Выход кристаллического целевого продукта 157.4 мг (63%). Кристалл для РСА брали непосредственно из реакционной ампулы.

ИК-спектр (v, см⁻¹): 456 ср, 498 сл, 567 сл, 602 ср, 665 ср, 680 сл, 831 сл, 997 с, 1007 с, 1052 с, 1099 ср, 1116 ср, 1191 сл, 1220 ср, 1246 ср, 1412 ср, 1615 ср, 1766 сл, 2386 сл, 3069 сл.

Найдено, %: C, 45.64; H, 6.57; N, 4.41; S, 19.85. Для $C_{24}H_{42}N_2O_8S_4Li_2$ вычислено, %: C, 45.85; H, 6.73; N, 4.46; S, 20.40.

Синтез [Li₂L(ДМСО)₄ • (ДМСО)₂]_n (II). Комплекс I (117 мг, 0.186 ммоль) растворяли в ДМСО (3 мл). Раствор помещали в одно из отделений вакуумированной h-образной трубки, в другом отсеке которой находилось 10 мл диэтилового эфира. В течение 12 ч происходила самопроизвольная конденсация эфира к раствору ДМСО, содержащего соединение I. В результате на дне трубки образовывались кристаллы нового соеди-

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры соединений I-III

Папоможн		Значение	
Параметр	I	II	III
Брутто-формула	C ₂₄ H ₄₂ N ₂ O ₈ S ₄ Li ₂	C ₁₀ H ₁₉ NO ₃ S ₅ Li	C ₁₂ H ₂₁ NO ₃ S ₄ Li
M	628.71	368.50	362.48
Температура	100(2)	150(2)	100(2)
Сингония	Триклинная	Триклинная	Моноклинная
Пр. группа	Pt	Pf	P2(1)/c
a, Å	8.6634(5)	7.39420(10)	9.9347(5)
b, Å	13.5657(7)	9.1082(2)	18.5736(10)
c, Å	15.0368(10)	14.0838(2)	9.8171(5)
α, град	110.646(6)	100.3820(10)	90
β, град	102.112(5)	92.6230(10)	100.572(5)
ү, град	91.593(4)	109.271(2)	90
<i>V</i> , Å ³	1606.86(18)	875.03(3)	1780.74(16)
Z	2	2	4
ρ(выч.), г/см ³	1.299	1.399	1.352
μ , cm $^{-1}$	0.340	0.664	0.539
F(000)	668	386	764
Размеры кристаллов	0.34 x 0.12 x 0.08	0.61 x 0.55 x 0.49	0.45 x 0.36 x 0.29
Диапазон сбора данных по 20, град	2.419-25.963	2.937-29.997	2.085-6.724
Число отражений измеренных/независимых	23686 / 6294	41067 / 5109	13041 / 3781
R _{int}	0.0710	0.0439	0.0506
R_1 , wR_2 (все отражения)	0.0736, 0.1241	0.0430, 0.0766	0.0627, 0.1361
$R_1, wR_2 (I > 2\sigma(I))$	0.0494, 0.1106	0.0300, 0.0724	0.0513, 0.1285
$S(F^2)$	1.040	1.055	1.054
$\Delta \rho_{max} \! / \! \Delta \rho_{min}, e \! / \! \mathring{A}^3$	0.404/-0.480	0.422/-0.305	1.166/-0.598

нения II. Образовавшиеся бесцветные кристаллы отфильтровывали, промывали диэтиловым эфиром и высушивали в вакууме при комнатной температуре. Выход II в кристаллическом виде 54.8 мг (40%).

ИК-спектр (ν , см $^{-1}$):474сл, 603сл, 623сл, 662ср, 681 сл, 875 ср, 992 с, 1012 с, 1209 ср, 1352 с, 1401 ср, 1583 ср, 1744 сл, 2240 сл, 3070 сл.

Найдено, %: C, 32.41; H, 5.16; N, 3.73; S, 42.97. Для $C_{20}H_{38}N_2O_6S_{10}Li_2$ вычислено, %: C, 32.59; H, 5.20; N, 3.80; S, 43.50.

Синтез [Li₂L(ДМСО)₄ • (ТГФ)₂]_n (III). Комплекс III получали аналогично II из I (140.2 мг, 0.222 ммоль) при конденсации ТГФ вместо диэтилового эфира. Образовавшиеся бесцветные кристаллы отфильтровывали, промывали диэтиловым эфиром и высушивали в вакууме при

комнатной температуре. Выход III в кристаллическом виде 72.4 мг (45%).

ИК-спектр (v, см $^{-1}$): 456 (ср), 546 сл, 601 сл, 654 ср, 681 сл, 695 сл, 871 с, 990 с, 1022 с, 1057 с, 1211 ср, 1405 с, 1617 сл, 1733 сл) 1808 сл, 2243 сл, 3071 сл.

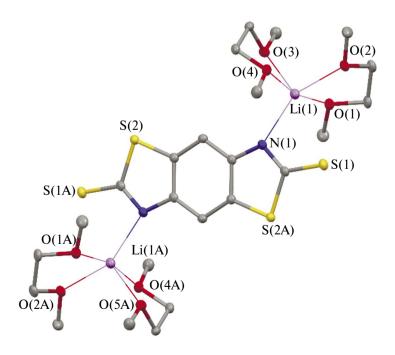
Найдено, %: C, 39.42; H, 5.71; N, 3.82; S, 34.87. Для $C_{24}H_{42}N_2O_6S_8Li_2$ вычислено, %: C, 39.76; H, 5.84; N, 3.86; S, 35.38.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

С целью получения литиевых координационных полимеров была проведена реакция силиламидного комплекса лития с центросимметричным дитопным меркаптобензотиазолятным лигандом H_2L в ДМЭ в соответствии со схемой 1. По данным рентгеноструктурного анализа, было

$$2 \operatorname{LiN}(\operatorname{Si}(\operatorname{Me})_3)_2 + \operatorname{S} = \operatorname{DME} \\ H_2 \operatorname{Li} \\ H_2 \operatorname{Li} \\ H_2 \operatorname{Li} \\ O \operatorname{ME} \\ S = \operatorname{S}$$

$$(1)$$


Схема 1. Синтез $\text{Li}_2\text{L}(\text{ДМЭ})_4$ (I).

установлено, что в отличие от вышеупомянутого родственного динатриевого производного, являющегося 2D-КП [38], реакция с амидом лития приводит к образованию мономерного комплекса.

Соединение I представляет собой дилитиевый молекулярный комплекс состава $\text{Li}_2\text{L}(\text{ДМ9})_4$ (рис. 1). Две независимые молекулы соединения I расположены в центре инверсии. 2-Меркаптобензотиазолятные лиганды в I практически плоские. Среднее отклонение от плоскостности в них составляет 0.029 Å. Расстояния Li(1)–N(1) и Li(1)–S(1) в I составляют 2.162(4), 2.055(5) Å и 2.991(4), 3.007(4) Å. Отметим, что расстояния Li(1)–S(1) заметно превышают сумму ионного радиуса лития и ван-дер-ваальсового радиуса

серы. Следовательно, NCS-фрагменты 2-меркаптобензотиазолятных лигандов бидентатно не координируют катионы лития в отличие от родственных натриевых комплексов [38].

Соединение I не растворяется в неполярных растворителях (гексан, толуол) и обладает низкой растворимостью в полярных растворителях (ДМЭ, ТГФ, диэтиловый эфир). Вместе с тем это соединение продемонстрировало хорошую растворимость в ДМСО, что позволило методом медленной диффузии диэтилового эфира в данный раствор получить кристаллы нового соединения II, которое, в отличие от молекулярного комплекса I, является 1D-КП состава [Li₂L(ДМСО)₄ • (ДМСО)₂]_n (рис. 2).

Рис. 1. Молекулярное строение соединения I.

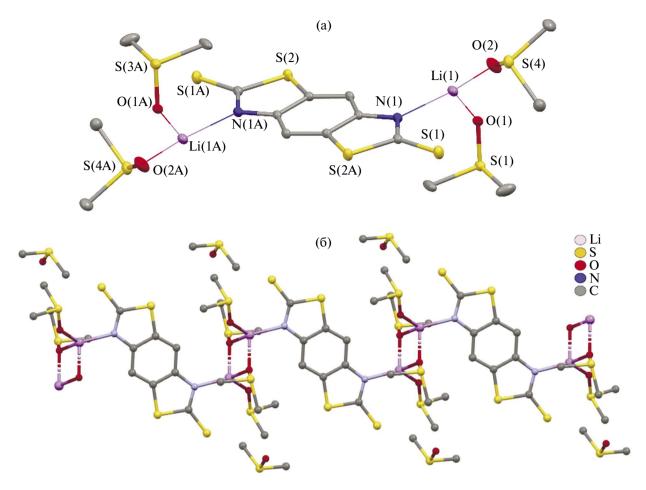


Рис. 2. Мономерное звено (а) и фрагмент полимерной цепи (б) в кристалле соединения II.

Интересно отметить, что соединение II, как и I, в кристалле расположено в центре инверсии. Расстояния Li(1) -N(1) и Li(1) -S(1) составляют 2.090(2) и 3.341(2) Å. Из этого следует, что NCS фрагменты 2-меркаптобензотиазолятных лигандов бидентатно не координируют катионы лития, в II литий связан с L только через атомы азота. Анализ кристаллической упаковки КП II показал, что расстояние между параллельными плоскостями лигандов в соседних цепочках составляет 6.513 Å, что указывает на отсутствие π ... π -взаимодействий между бистиазолятными лигандами [45].

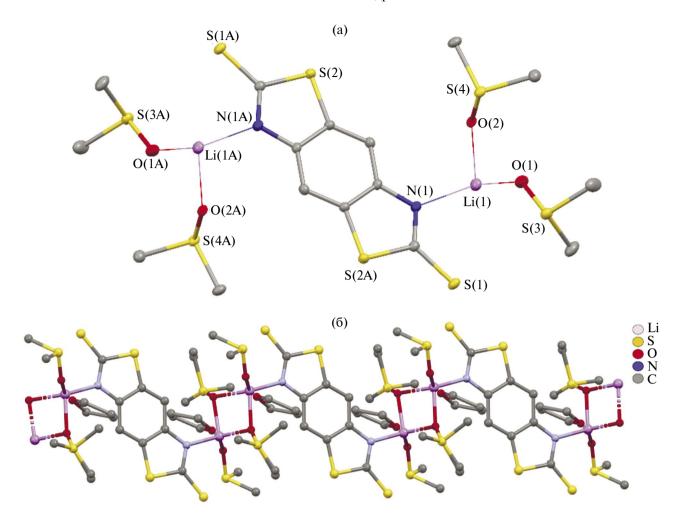
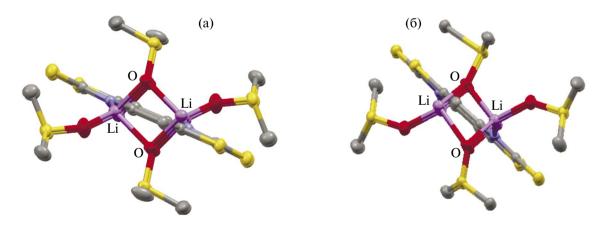
При использовании ТГФ для диффузии в раствор соединения I в ДМСО происходило выделение кристаллов соединения III, также являющегося 1D-КП и имеющего состав $[\text{Li}_2\text{L}(\text{ДМСO})_4 \cdot (\text{ТГФ})_2]_n$ (рис. 3).

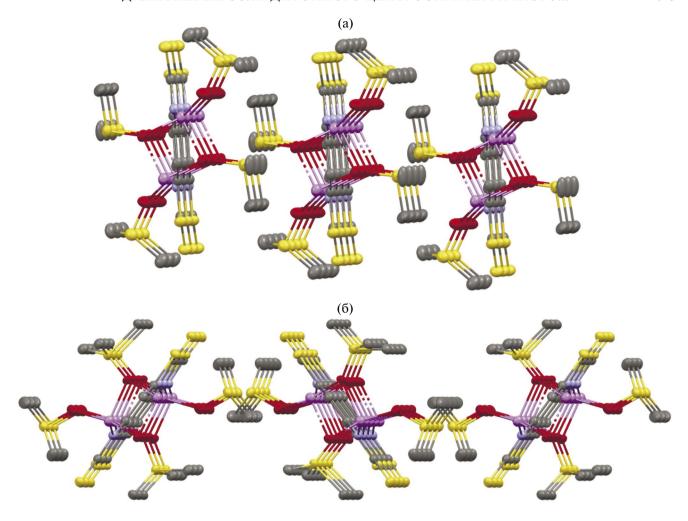
Согласно РСА, геометрические характеристики КП III близки к аналогичным характеристикам соединения II. Кроме того, располо-

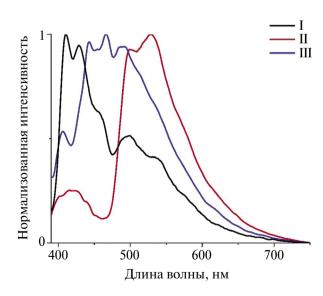
жение бистиазолятных лигандов относительно фрагмента Li_2O_2 (рис. 4) в КП II и III примерно одинаковое. Однако, двугранный угол между плоскостями *бис*-тиазольного лиганда и фрагмента Li_2O_2 в II составляет 70.28°, что заметно больше, чем в III (54.84°). Следует отметить, что в кристалле КП I обнаружены сольватные молекулы ДМСО, тогда как в КПІІІ — сольватные молекулы ТГФ.

Несмотря на то что КП в II и III имеют подобное геометрическое строение, взаимная ориентация одномерных полимерных цепей в кристаллах этих соединений различается (рис. 5). Дитопные 2-меркаптобензотиазолятные лиганды соседних цепей в II параллельны друг другу, тогда как в III двугранный угол между ними составляет 70.69°.

Все синтезированные соединения обнаружили ФЛ при комнатной (298 K) и пониженной (77 K) температурах. Несмотря на подобие составов, спектры эмиссии соединений I—III раз-


Рис. 3. Мономерное звено (a) и фрагмент полимерной цепи (б) в кристалле соединения III.


Рис. 4. Взаимное расположение *бис*-тиазолятных лигандов относительно фрагмента Li_2O_2 в II (а) и III (б).

личны. При температуре 298 К спектры ФЛ всех соединений представляют собой суперпозицию широких полос в области 400-750 нм. При этом спектр соединения I характеризуется интенсивной люминесценцией в области 400-450 нм, тогда как на спектрах ФЛ КП II и III наиболее

интенсивная эмиссия находится в области 540 и 490 нм соответственно (рис. 6). Кинетические исследования ФЛ при 298 К показали, что эмиссия в области 400—450 нм является короткоживущей с характерными для флуоресценции значениями времен жизни (табл. 2). Тогда как

Рис. 5. Взаимное расположение цепей КП в соединениях II (а) и III (б).

Рис. 6. Спектр ФЛ твердых образцов I—III при $T = 298 \; \mathrm{K}, \, \lambda_{\mathrm{Boso}} = 370 \; \mathrm{Hm}.$

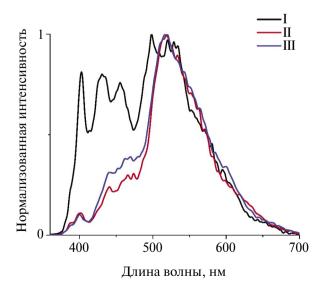

излучение с длиной волны более 490 нм обладает временами жизни люминесценции микросекундного порядка, что указывает на его фосфоресцентный характер. Следует отметить, что фосфоресценция при комнатной температуре характерна для соединений комплексов тяжелых металлов, а для комплексов легких металлов и органических соединений является редким явлением [46].

Таблица 2. Кинетические характеристики люминесценции I—III при различных температурах и длинах волн

	Темпера- тура, К	Длина волны, нм	I	II	III
	298	410	3.5 нс	3.4 нс	3.2 нс
		540	7.2 мкс	72.8 мкс	18.8 мкс
	77	410	3.5 нс	3.4 нс	3.5 нс
	77	540	95 мкс	5.5 мс	5.6 мс

При переходе к температуре жидкого азота интенсивность ФЛ всех соединений значительно увеличивается. При этом максимум эмиссии соединений I и III смещается в область 550 нм, а максимум эмиссии II практически не изменяется (рис. 7). Кинетические исследования показали значительное увеличение времени жизни фосфоресценции при 77 К, которая достигла 5.5 и 5.6 мс для КП II и III соответственно, а в случае молекулярного комплекса І выросла на порядок, достигнув 95 мкс (табл. 2). Из этих данных можно заключить, что рост интенсивности ФЛ соединений I-III при переходе от комнатной к температуре жидкого азота связан с увеличением эффективности фосфоресценции. Интересно отметить, что среди соединений I-III молекулярный комплекс I демонстрирует наибольшую склонность к флуоресценции, тогда как КП проявляют как флуоресценцию, так и фосфоресценцию лиганда. Среди двух КП полимер II, в котором плоскости одномерных цепочек в кристалле параллельны друг другу и двугранный угол между плоскостью лиганда и фрагментом Li₂O₂ составляет 70.28°, наиболее склонен проявлять фосфоресценцию уже при комнатной температуре.

В результате данной работы нами было получено три новых координационных соединения лития с центросимметричным дитопным гетероциклическим лигандом бензо[1,2-d:4,5-d']-бис-тиазол-2,6(3H,7H)-дитионом. Установлено, что в зависимости от выбора растворителей данные координационные соединения образуют дилитиевый молекуляр-

Рис. 7. Спектр ФЛ твердых образцов I—III при T=77 K, $\lambda_{{
m Bo}36}=310$ нм.

ный комплекс или 1D-координационные полимеры. Изучение ФЛ свойств данных соединений показало, что молекулярный комплекс склонен проявлять короткоживущую эмиссию, тогда как координационные полимеры демонстрируют долгоживущую эмиссию во временном диапазоне, характерном для фосфоресценции. При этом КП, в котором плоскости одномерных цепочек параллельны друг другу, а двугранный угол между лигандом и фрагментом Li_2O_2 ближе к 90°, обладает долгоживущей эмиссией даже при комнатной температуре.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования центра коллективного пользования «Аналитический центр ИМХ РАН» при поддержке гранта «Обеспечение развития материально-технической инфраструктуры центров коллективного пользования научным оборудованием» (Уникальный идентификатор RF----2296.61321X0017, Номер Соглашения 075-15-2021-670).

ФИНАНСИРОВАНИЕ

Исследование выполнено при финансовой поддержке Российского научного фонда (грант N 20-73-10115).

СПИСОК ЛИТЕРАТУРЫ

- 1. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
- 2. *Zhang Y., Yuan S., Day G. et al* // Coord. Chem. Rev. 2018. V. 354. P. 28.
- 3. *Yu. X.*, *Ryadun A.A.*, *Pavlov D.I. et al.* // Angew. Chem. 2023. V. 135. Art. e202306680.
- Liu. Y. Y., Zhang., J., Sun L. X. et al. // Inorg. Chem. Commun. 2008. V. 11. P. 396.
- Yoon M., Srirambalaji R., Kim K. // Chem. Rev. 2012.
 V. 112. P. 1196.
- 6. Suh M. P., Park H. J., Prasad T.K. et al. // Chem. Rev. 2012. V. 112. P. 782.
- 7. Sapchenko S.A., Barsukova M.O., Belosludov R.V. et al // Inorg. Chem. 2012. V. 58. P. 6811.
- 8. *Abrahams B.F., Grannas M.J., Hudson T.A. et al.* // Angew. Chem. Int. Ed. 2010. V. 122. P. 1105.
- 9. *Xie L-H.*, *Lin J-B.*, *Liu X.M. et al.* // Inorg. Chem. 2010. V. 49. P. 1158.
- White K.F., Abrahams B.F., Babarao R. et al. // Chem. Eur. J. 2015. V. 21. P. 18057.

- 11. Wang C., Zhang T., Lin W. // Chem. Rev. 2012. V. 112. P. 1084.
- 12. Wang X., Wang Y., Wang Y. et al. // Chem. Commun. 2019. V. 56. P. 233.
- 13. Mínguez Espallargas G., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533.
- Lestar M., Lusi M., O'Leary A. et al. // CrystEng-Comm. 2018. V. 20. P. 5940.
- 15. *Gou L., Zhang H.X., Fan X.Y. et al.* // Inorg. Chim. Acta. 2013. V. 394. P.10.
- 16. Xiang J., Chang C., Li M. et al. // Cryst. Growth. Des. 2008. V. 8. P. 280.
- Chen H., Armand M., Courty M. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 8984.
- 18. Yeung H.H.M., Kosa M., Parrinello M. et al. // Cryst. Growth. Des. 2011. V. 11. P. 221.
- 19. Walker W., Grugeon S., Vezin H. et al. // Electrochem. Commun. 2010. V. 12. P. 1348.
- 20. *Liu, R.B. Zhu, J., Dai Y. et al.* // Z. Anorg. Allg. Chem. 2013. V. 639. P. 569.
- Zhao X., Shimazu M.S., Chen X. // Angew. Chem. Int. Ed. 2018. V. 57. P. 6208.
- 22. Cheng P.C., Lin W.C., Tseng F.S. et al. // Dalton Trans. 2013, V. 42. P. 2765.
- 23. Thuéry P. // CrystEngComm. 2014. V. 16. P. 1724.
- 24. White K.F., Abrahams B.F., Hudson T.A. et al. // ChemPlusChem. 2016. V. 81. P. 877.
- 25. *Pugh D., Ashworth E., Robertson K. et al.* // Cryst. Growth. Des. 2019. V. 19. P. 487.
- 26. Koltunova T.K., Samsonenko D.G., Rakhmanova M.I. // Russ. Chem. Bull. 2015. V. 64. P. 2903.
- Clough A., Zheng S.T., Zhao X. et al. // Cryst. Growth. Des. 2014. V. 14. P. 897.
- 28. *Cheng P.C., Li B.H., Tsen F.S. et al.* // Polymers. 2019. V. 11. P. 126.

- 29. Zeng R.H., Li X.P., Qiu Y.C. et al. // Electrochem. Commun. 2010. V. 12. P. 1253.
- Tominaka S., Yeung H.H.M., Henke S. et al. // CrystEngComm. 2016. V. 18. P. 398.
- 31. Zhao X., Wu T., Zheng S.T. et al. // Chem. Commun. 2011. V. 47. P. 5536.
- 32. Zheng S.T., Li Y., Wu T. et al. // Chem. Eur. J. 2010. V. 16. P. 13035.
- 33. *Chen X., Bu X., Lin Q. et al.* // Cryst. Growth. Des. 2016. V. 16. P. 6531.
- 34. Bazyakina N.L., Moskalev M.V., Cherkasov A.V. et al. // CrystEngComm. 2022. V. 24. P. 2297.
- 35. *Nadeem M., Bhatti M.H., Yunus U. et al.* // Inorg. Chim. Acta. 2018. V. 479. P. 179.
- 36. Abdelbaky M.S.M., Amghouz Z., García-Granda S. et al. // Dalton Trans. 2014. V. 43. P. 5739.
- 37. Abdelbaky M.S.M., Amghouz Z., García-Granda, S. et al. // Polymers. 2016. V. 8. P. 86.
- 38. *Rogozhin A.F., Ilichev V.A., Fagin A.A. et al.* // New J. Chem. 2022. V. 46. P. 13987.
- 39. *Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al.* // Inorg. Chem. 2023. V. 62. P. 12625.
- SAINT. Data Reduction and Correction Program. Version 8.27B. Madison (WI, USA): Bruker AXS, 2014.
- 41. Rigaku Oxford Diffraction. CrysAlis Pro software system. Version 1.171.41.122a. Wroclaw (Poland): Rigaku Corporation, 2021.
- 42. Sheldrick G.M. SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS, 2012.
- 43. Sheldrick G.M. // Acta Crystfllogr. A. 2015. V. 71. P. 3
- 44. Sheldrick G.M. // Acta Crystfllogr. C. 2015. V. 71. P. 3
- 45. Janiak C. // J. Chem. Soc. Dalton. Trans. 2000. P. 3885.
- Zhao W., He Z., Tang B.Z. // Nat. Rev. Mater. 2020.
 V. 5. P. 869.

Ditopic Centrosymmetric Mercaptobenzothiazole Dilithium Salts: From the Molecular Complex to Luminescent 1D Metal-Organic Frameworks

A. F. Rogozhin^{a, *}, V. A. Il'ichev^a, L. I. Silant'eva^a, E. A. Kozlova^a, G. K. Fukin^a, and M. N. Bochkarev^a

^a Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia *e-mail: atonrog@iomc.ras.ru

The reaction of lithium amide LiN(Si(Me)₃)₂ and ditopic heterocyclic ligand benzo[1,2-d:4,5-d']bis(thi-azole)-2,6(3H,7H)-dithione (H₂L) in dimethoxyethane (DME) affords the binuclear molecular complex Li₂L(DME)₄ (I). New compounds [[Li₂L(ДMCO)₄ • (ДMCO)₂]_n (II) and [Li₂L(ДMCO)₄ • (TΓΦ)₂]_n (III) are prepared by the recrystallization of compound I using a DMSO–diethyl ether or DMSO/THF mixture of solvents, respectively. According to the XRD data, these compounds are one-dimensional metalorganic frameworks (MOFs) differed by the arrangement of the bis(thiazole) fragments relative to each other and the Li₂O₂ fragment in the polymer chain, which affects the luminescence properties. The molecular structures of compounds I–III are determined by XRD (CIF files CCDC nos. 2334192 (I), 2334193 (II), and 2334194 (III)).

Keywords: 2-mercaptobenzothiazole, phosphorescence, fluorescence, heterocyclic ligands, lithium, metalorganic framework

REFERENCES

- 1. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
- 2. *Zhang Y., Yuan S., Day G. et al* // Coord. Chem. Rev. 2018. V. 354. P. 28.
- 3. Yu. X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. 2023. V. 135. Art. e202306680.
- Liu. Y. Y., Zhang., J., Sun L. X. et al. // Inorg. Chem. Commun. 2008. V. 11. P. 396.
- Yoon M., Srirambalaji R., Kim K. // Chem. Rev. 2012.
 V. 112. P. 1196.
- Suh M. P., Park H. J., Prasad T.K. et al. // Chem. Rev. 2012. V. 112. P. 782.
- 7. Sapchenko S.A., Barsukova M.O., Belosludov R.V. et al // Inorg. Chem. 2012. V. 58. P. 6811.
- 8. Abrahams B.F., Grannas M.J., Hudson T.A. et al. // Angew. Chem. Int. Ed. 2010. V. 122. P. 1105.
- Xie L-H., Lin J-B., Liu X.M. et al. // Inorg. Chem. 2010. V. 49. P. 1158.
- White K.F., Abrahams B.F., Babarao R. et al. // Chem. Eur. J. 2015. V. 21. P. 18057.
- Wang C., Zhang T., Lin W. // Chem. Rev. 2012. V. 112. P. 1084.
- 12. *Wang X., Wang Y., Wang Y. et al.* // Chem. Commun. 2019. V. 56. P. 233.
- 13. *Mínguez Espallargas G., Coronado E. //* Chem. Soc. Rev. 2018. V. 47. P. 533.
- 14. *Lestar M., Lusi M., O'Leary A. et al.* // CrystEng-Comm. 2018. V. 20. P. 5940.
- 15. *Gou L., Zhang H.X., Fan X.Y. et al.* // Inorg. Chim. Acta. 2013. V. 394. P.10.
- Xiang J., Chang C., Li M. et al. // Cryst. Growth. Des. 2008. V. 8. P. 280.
- Chen H., Armand M., Courty M. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 8984.
- 18. Yeung H.H.M., Kosa M., Parrinello M. et al. // Cryst. Growth. Des. 2011. V. 11. P. 221.
- 19. *Walker W., Grugeon S., Vezin H. et al.* // Electrochem. Commun. 2010. V. 12. P. 1348.
- Liu, R.B. Zhu, J., Dai Y. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. P. 569.
- 21. *Zhao X.*, *Shimazu M.S.*, *Chen X.* // Angew. Chem. Int. Ed. 2018. V. 57. P. 6208.
- 22. *Cheng P.C., Lin W.C., Tseng F.S. et al.* // Dalton Trans. 2013. V. 42. P. 2765.
- 23. Thuéry P. // CrystEngComm. 2014. V. 16. P. 1724.

- 24. White K.F., Abrahams B.F., Hudson T.A. et al. // ChemPlusChem. 2016. V. 81. P. 877.
- 25. Pugh D., Ashworth E., Robertson K. et al. // Cryst. Growth. Des. 2019. V. 19. P. 487.
- 26. Koltunova T.K., Samsonenko D.G., Rakhmanova M.I. // Russ. Chem. Bull. 2015. V. 64. P. 2903.
- Clough A., Zheng S.T., Zhao X. et al. // Cryst. Growth. Des. 2014. V. 14. P. 897.
- 28. *Cheng P.C., Li B.H., Tsen F.S. et al.* // Polymers. 2019. V. 11. P. 126.
- 29. Zeng R.H., Li X.P., Qiu Y.C. et al. // Electrochem. Commun. 2010. V. 12. P. 1253.
- 30. *Tominaka S., Yeung H.H.M., Henke S. et al.* // Cryst EngComm. 2016. V. 18. P. 398.
- 31. *Zhao X., Wu T., Zheng S.T. et al.* // Chem. Commun. 2011. V. 47. P. 5536.
- 32. Zheng S.T., Li Y., Wu T. et al. // Chem. Eur. J. 2010. V. 16. P. 13035.
- 33. *Chen X., Bu X., Lin Q. et al.* // Cryst. Growth. Des. 2016. V. 16. P. 6531.
- 34. Bazyakina N.L., Moskalev M.V., Cherkasov A.V. et al. // CrystEngComm. 2022. V. 24. P. 2297.
- 35. *Nadeem M., Bhatti M.H., Yunus U. et al.* // Inorg. Chim. Acta. 2018. V. 479. P. 179.
- 36. Abdelbaky M.S.M., Amghouz Z., García-Granda S. et al. // Dalton Trans. 2014. V. 43. P. 5739.
- 37. Abdelbaky M.S.M., Amghouz Z., García-Granda, S. et al. // Polymers. 2016. V. 8. P. 86.
- 38. *Rogozhin A.F., Ilichev V.A., Fagin A.A. et al.* // New J. Chem. 2022. V. 46. P. 13987.
- 39. *Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al.* // Inorg. Chem. 2023. V. 62. P. 12625.
- SAINT. Data Reduction and Correction Program. Version 8.27B. Madison (WI, USA): Bruker AXS, 2014
- 41. Rigaku Oxford Diffraction. CrysAlis Pro software system. Version 1.171.41.122a. Wroclaw (Poland): Rigaku Corporation, 2021.
- 42. *Sheldrick G.M.* SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS, 2012.
- 43. Sheldrick G.M. // Acta Crystfllogr. A. 2015. V. 71. P. 3
- 44. Sheldrick G.M. // Acta Crystfllogr. C. 2015. V. 71. P. 3
- 45. Janiak C. // J. Chem. Soc. Dalton. Trans. 2000. P. 3885.
- 46. *Zhao W., He Z., Tang B.Z.* // Nat. Rev. Mater. 2020. V. 5. P. 869.

К 70-летию проф. В.П. Федина

УЛК 547.7 539.26

ОСОБЕННОСТИ СИНТЕЗА 1,3-ИМИНОФОСФИНА С 2,1,3-БЕНЗОТИАДИАЗОЛЬНЫМ ЗАМЕСТИТЕЛЕМ И КОМПЛЕКСА Pt C HИМ

© 2024 г. Р. М. Хисамов¹, С. Н. Конченко¹, Т. С. Сухих^{1, *}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия
^{*}e-mail: sukhikh@niic.nsc.ru

Поступила в редакцию 14.03.2024 г. После правки 04.04.2024 г. Принята к публикации 05.04.2024 г.

Ключевые слова: иминометилфосфин, бензотиадиазол, комплекс Рt, аминометилфосфиноксид

DOI: 10.31857/S0132344X24100059, EDN: LPQBRV

Р, N-Донорные лиганды, в которых Р и N непосредственно связаны друг с другом (1,2-аминофосфины) или разделены одним атомом углерода (1,3-аминометилфосфины), являются перспективными полидентатными лигандами, сочетающими разные по жесткости донорные атомы. Эти лиганды способны образовывать комплексы с разными ионами металлов [1-7]. В первую очередь комплексы с Р. N-лигандами исследуются как катализаторы широкого спектра химических реакций [8–12]. В частности, очень интересны 1,3-иминометилфосфины, содержащие фрагмент Р-С=N, но работы по ним немногочисленны, хотя в последние годы их число возрастает в связи с успехами в разработке удобных синтетических полходов к этим соединениям [8, 13, 14]. Известны две схемы синтеза таких соединений, отличающихся конечной стадией: 1) присоединение фосфиновой группы по тройной связи N=C в реакции трифлатной соли $(R^1-N=C-R^2)^+$ с вторичным фосфином $(R^3)_2$ PH [14, 15] или 2) замещение хлорида в имидоилхлориде $R^2C(Cl)N-R^1$ на фосфидную группировку $(R^3_2P)^-$ с использованием Ph_2PLi [16] или Ph_2PSiMe_3 [13] (схема 1; R^1-R^3 = алкил или арил).

Как сами 1,3-иминометилфосфины, так и комплексы переходных металлов с ними проявляют каталитическую активность в реакциях олиго- и полимеризации этилена [13], гидролиза бензонитрила [15, 17], гидрирования CO_2 [18] и др., что в значительной степени определяет большой интерес к ним. Вместе с тем круг известных 1,3-иминометилфосфинов в основном ограничен производными, содержащими алкильные (метил, изопропил [14—16, 19], циклогексил [14, 16]) или арильные (фенил [14—16], 2,6-диметил-

$$R^{1} - N = R^{2} \xrightarrow{(R^{3})_{2}PSiMe_{3}} R^{1} - R^{2} \xrightarrow{(R^{3})_{2}PLi} R^{2} \xrightarrow{(R^{3})_{2}PLi} Cl$$

Схема 1. Общие подходы к синтезу 1,3-иминометилфосфинов.

фенил, 2,6-диизопропилфенил [13], 2,4,6-триметилфенил [14]) заместители R¹ при атоме N, функциональность которых связана в основном с их размером. Введение других функциональных заместителей, например гетероциклических, позволит придать новые функциональные свойства таким лигандам (люминофорность, редокс-активность и т.д.), поэтому разработка методов их синтеза и изучение координационной химии являются актуальными задачами.

В данной работе была предпринята попытка реализовать синтез 1,3-иминометилфосфина с гетероциклическим заместителем $R^1-2,1,3$ -бензотиадиазолом (**Btd**) по второму пути, т.е. фосфинированием имидоилхлорида дифенил(триметилсилил)фосфином, для чего необходимо было пройти следующую цепочку стадий:

$$NH_2$$
-Btd + ${}^tBuC(=O)Cl + Et_3N \rightarrow {}^tBuC(=O)NH$ -Btd + $[Et_3NH]Cl$, (1)

$${}^{t}BuC(=O)NH-Btd + SOCl_{2} \rightarrow$$

 ${}^{t}BuC(Cl)=N-Btd + SO_{2} + HCl, (2)$

$${}^{t}BuC(Cl)=N-Btd + Ph_{2}PSiMe_{3} \rightarrow {}^{t}BuC(Ph_{2}P)=N-Btd + Me_{3}SiCl. (3)$$

Промежуточные продукты — амид ${}^{t}BuC(=O)$ NH-Btd и имидоилхлорид t BuC(Cl)=N-Btd ранее не были описаны, поэтому для их синтеза были применены известные общие для подобных соединений методы. Первая стадия этой схемы действительно приводит к амиду ^tBuC(=O)NH-Btd, однако на второй стадии результат оказался неожиданным: вместо ожидаемого ${}^{t}BuC(C1)=N-Btd$ воспроизводимо получается имидоилхлорид, содержащий Cl в положении 7 2,1,3-бензотиадиазола — ${}^{t}BuC(Cl)=N-(7-Cl-$ Btd). Использовав который в реакции с Ph₂P-SiMe₃, удалось получить 1,3-иминометилфосфин $^{t}BuC(Ph_{2}P)=N-(7-Cl-Btd)$ (PC=N),взаимодействием которого с $[Pt(COD)Cl_2]$ (COD = 1.3-циклооктадиен) был успешно синтезирован комплекс $[Pt(PC=N)_2Cl_2]$. В этой статье обсуждаются особенности протекания всех стадий синтеза лиганда PC=N и комплекса $[Pt(P-C=N)_2Cl_2]$. Помимо этого, мы сообщаем о выделении и идентификации продукта окисления лиганда PC=N-1,3-аминометилфосфиноксида $^tBuC\{Ph_2P(O)\}NH-(7-Cl-Btd)$ (POCN), а также результатах его реакции с $[Pt(COD)Cl_2]$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Операции по синтезу соединений проводили в атмосфере аргона с использованием аппаратуры Шленка. Растворители очищали перегонкой над распространенными осушителями. Коммерчески доступные реагенты использовали без дополнительной очистки. Загрузку веществ осуществляли в аргоновом перчаточном боксе. Анализ на С, Н, N, S выполняли в Аналитической лаборатории ИНХ СО РАН на приборе Euro EA 3000. ИК-спектры регистрировали на спектрофотометре FT-801 (Simex) в таблетках КВг. Спектры ЯМР на ядрах ¹H (500.13 МГц) и ³¹P{¹H} (202.45 МГц) записывали в ЦКП ИНХ СО РАН на спектрометре Bruker DRX-500; сигналы растворителей использовали в качестве стандарта.

Ph₂**PSiMe**₃ получен по модифицированной методике [13]. К 30 мл тетрагидрофурана (**ТГФ**) добавляли Ph₂PH (1.07 г, 5.75 ммоль) смесь охлаждали в изопропанольной бане до -60° С и по каплям прилили раствор BuLi в гексане (2.5 М, 2.30 мл). Смесь перемешивали в течение часа при -60° С, затем еще час при комнатной температуре ($T_{\text{комн}}$), затем снова охлаждали и приливали по каплям триметилсилилхлорид (0.729 мл, 5.75 ммоль). Раствор оставляли медленно отогреваться до $T_{\text{комн}}$, затем перемешивали в течение суток. Растворитель удаляли в вакууме, к оставшемуся небольшому количеству жидкости с осадком приливали 15 мл гексана и филь-

тровали полученный раствор через кизельгур. Этот раствор концентрировали до 5мл и перегоняли (фракция 94°С). Выход 0.93 г (62%). Спектр ЯМР 31 Р{ 1 H} ($C_{6}D_{6}$) -56.6 м.д.

Синтез амида ^tBuC(=O)NH-Btd. К твердому 4-амино-2,1,3-бензотиадиазолу (0.50 г, 3.31 ммоль) при $T_{\text{комн}}$ добавляли 0.46 мл триэтиламина и 5 мл хлористого метилена. К раствору приливали по каплям ${}^{t}BuC(=O)Cl$, при этом постепенно образовывался осадок. Смесь перемешивали 2 сут, затем добавляли 20 мл хлористого метилена и 20 мл воды. Органическую жидкую фазу отделяли, промывали еще двумя порциями воды по 20 мл, затем 20 мл насыщенного раствора $NaHCO_3$, после чего высушивали над Na_2SO_4 . Раствор отделяли и концентрировали до минимального объема в вакууме. Оставшееся коричневое масло постепенно превратилось в кристаллический порошок. Выход 0.57 г (75%). Спектр ЯМР 1 H (ДМСО- d_{6} , м.д.) 9.27 (1H, c), 8.10 (1H, д), 7.78 (1H, д), 7.68 (1H, д), 1.30 (1H, с).

Синтез имидоилхлорида ${}^{\rm t}$ BuC(Cl)=N-Btd-Cl. К твердому ${}^{\rm t}$ BuC(=O)NH-Btd (0.50 г, 2,44 ммоль) добавляли 5 мл SOCl₂, кипятили смесь с обратным холодильником при перемешивании 3 сут, затем удаляли легколетучие вещества в вакууме. Оставшееся масло постепенно превратилось в кристаллический порошок. Выход 0.44 г (65%). Продукт очищали экстракцией гексаном; бесцветные кристаллы пригодные для PCA отбирали из полученной массы. Спектр ЯМР ${}^{\rm 1}$ H (ДМСО-d₆, м.д.) 8.13 (1H, кв), 7.85 (1H, д), 1.32 (9H, с).

Peakuuя ^tBuC(Cl)=N-(7-Cl-Btd) с Ph₂PSiMe₂. t BuC(Cl)= \tilde{N} -(7-Cl-A. K смеси Btd) (0.21 г, 0.73 ммоль) и Ph₂PSiMe₃ (0.38 г, 1.46 ммоль) добавляли 5 мл толуола и кипятили с обратным холодильником в течение 4 сут. Легколетучие вещества удалили в вакууме, образовалось масло, по данным ³¹Р ЯМР спектроскопии состоящее из смеси продуктов. После экстракции масла гексаном из раствора выделено небольшое количество бесцветных кристаллов, по данным PCA оказавшихся $(Ph_2PO_y)_2$ (x = 1; ЯМР 31 Р{ 1 H} в C₆D₆ 27.6 м.д.). Нерастворившуюся в гексане часть масла экстрагировали диэтиловым эфиром (Et_2O), из раствора постепенно образовалось небольшое количество (0.040 г) кристаллов, по данным РСА оказавшихся t BuC{Ph₂P(O)}NH-(7-Cl-Btd) · 0.5Et₂O (POCN · $0.5 {\rm Et_2} \tilde{\rm O}$). Спектр ЯМР $^{31} {\rm P\{^1H\}}$ (${\rm C_6} \tilde{\rm D_6}$) 29.9 м.д. Спектр ЯМР 1 Н ($C_{6}D_{6}$, м.д.) 7.98 (2H, т), 7.80

(2H, т), 7.50 (3H, м), 7.34 (1H, д), 7.15 (3H, м), 6.26 (1H, д), 5.77 (1H, д), 4.22 (1H, с), 1.16 (9H, с).

Реакция ${}^{t}BuC(Cl)=N-(7-Cl-Btd)$ с Ph_2PSiMe_3 , приводящая к ${}^{t}BuC(Ph_2P)=N-Btd-Cl$ (PC=N). Вариант Б. К смеси ${}^{t}BuC(Cl)=N-(7-Cl-Btd)$ (0.20 г, 0.69 ммоль) и Ph_2PSiMe_3 (0.36 г, 1.39 ммоль) добавляли 5 мл толуола, дегазировали и перемешивали при 75°С в течение 2 нед. Легколетучие вещества удаляли в вакууме, образовалось масло, по данным спектроскопии ЯМР 1 Н и 31 Р состоящее из смеси целевого иминометилфосфина PC=N и исходного Ph_2PSiMe_3 в мольном соотношении 1:3.

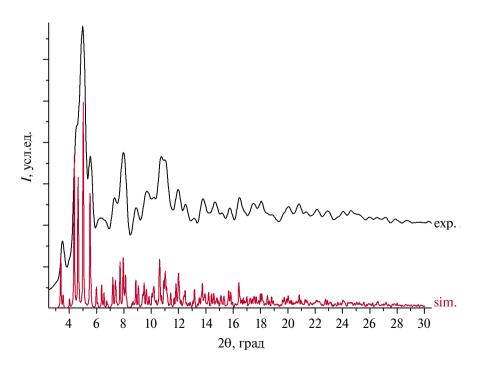
Peaкция ^tBuC(Cl)=N-(7-Cl-Btd) с Ph₂PSiMe₂, приводящая к ^tBuC(Ph₂P)=N-Btd-Cl (PC=N). Baриант *B*. К смеси ${}^{t}BuC(Cl)=N-(7-Cl-Btd)$ (0.20 г, 0.69 ммоль) и Ph_2PSiMe_3 (0.18 г, 0.69 ммоль) добавляли 5 мл хлорбензола, дегазировали и перемешивали при 110°C в течение суток. Легколетучие вещества удаляли в вакууме, образовалось масло, по данным спектроскопии ЯМР ¹Н и ³¹Р состоящее из смеси целевого иминометилфосфина PC=N и исходного Ph₂PSiMe₃ в мольном соотношении 1:0.2. Продукт очищали колоночной хроматографией диэтиловым эфиром на силикагеле (первая фракция). Желтый порошок, выход 0.08 г (25%). Спектр ЯМР 31 Р{ 1 H} (C₆D₆) 4.6 м.д. Спектр ЯМР 1 H (C₆D₆, м.д.) 7.36 (м, 4H), 6.74 (6H, м), 6.61 (1H, д), 6.18 (1H, д), 1.50 (9H, с).

Реакция PC=N с [Pt(COD)Cl₂], приводящая к [PtCl₂(PC=N)₂]. К раствору PC=N (0.050 г, 0.114 ммоль) в 5 мл ацетонитрила добавляли [Pt(COD)Cl₂] (0.043 г, 0.114 ммоль) и перемешивали при $T_{\text{комн}}$ в течение суток. Образовавшийся желтый осадок [PtCl₂(PC=N)₂] отделяли от раствора, промывали двумя порциями по 2 мл ацетонитрила и высушивали в вакууме. Выход 0.023 г (35%).

Найдено, %: С 48.4; Н 3.9; N 6.7; S 5.2. Для $C_{46}H_{42}N_6S_2P_2Cl_4Pt$ (M =1141.8) вычислено, %: С 48.4; Н 3.7; N 7.4; S 5.6.

Занижение содержания по N может свидетельствовать о наличии примесей комплексов с обедненными по N лигандами, например с Ph₂POH. ИК-спектр (v, см⁻¹): 528 с, 549 ср, 565 ср, 619сл, 647сл, 694с, 748с, 831 ср, 837 ср, 886с, 917 ср, 943 ср, 962 ср, 1000 сл, 1034 ср, 1055 р, 1095 с, 1160 сл, 1191 сл, 1241 ср, 1275 сл, 1324 ср, 1362 ср, 1392 ср, 1436 с, 1481 сл, 1527 ср, 1587 сл, 1652 с, 2971 ср, 3053 ср. Кристаллы для PCA отобраны непосредственно из реакционной смеси.

В порошковой дифрактограмме осадка (рис. 1) все наблюдаемые рефлексы соответствуют фазе $[PtCl_2(PC=N)_2]$. Она плохо растворима в ДМ- $CO-d_6-B$ соответствующих спектрах ЯМР $^{31}P\{^1H\}$ и 1H не наблюдается заметных сигналов помимо остаточных протонов растворителя.


Peaкция POCN с [Pt(COD)Cl₂]. К смеси РОСЛ, полученного в варианте реакции А (0.025 г, 0.055 ммоль), и [Pt(COD)Cl₂] (0.021 г, 0.057 ммоль) добавляли 3 мл ацетонитрила и выдерживали без перемешивания при $T_{\text{комн}}$ в течение суток. Дальнейшую обработку реакционного раствора проводили двумя способами. 1. Раствор сконцентрировали до 1 мл и выдерживали при 40°С в течение недели. Постепенно образовалось небольшое количество оранжевых и бесцветных кристаллов, по данным РСА, являющихся [PtCl₂(Ph₂POH)₂](POCN) и [Pt(COD)Cl₂] соответственно. 2. Медленная конденсация диэтилового эфира к раствору в течение месяца привела к образованию красного масла и небольшого количества желтых кристаллов, по данным РСА являющихся $[Pt(CH_3CN) \{ ^tBuC-NH-(7-Cl-Btd) \} Cl]$.

PCA монокристаллов получены в ЦКП ИНХ СО РАН на дифрактометре Bruker D8 Venture с детектором CMOS PHOTON III и микрофокусным источником І μ S 3.0 (Мо K_{α} -излучение

 $(\lambda = 0.71073 \text{ Å})$, фокусирующие зеркала Монтеля) при 150 К. Кристаллические структуры решены с помощью SHELXT [20] и уточнены с помощью программ SHELXL [21] с графическим интерфейсом OLEX2 [22]. Параметры атомного смещения для неводородных атомов уточнены анизотропно. В случае POCN · 0.5Et₂O для атомов С и О диэтилового эфира с небольшой степенью разупорядочения, которое не учтено, наложены ограничения на анизотропию (RIGU). Атомы водорода во всех структурах расположены геометрически и уточнены в модели «наездника» за исключением водорода при аминогруппе в случае $POCN \cdot 0.5Et_2O$, позиция которого уточнена свободно с ограничением на длину связи N-H 0.88 Å. Кристаллографические данные исследованных структур приведены в табл. 1.

Структуры депонированы в Кембриджском банке структурных данных (CCDC № 2335149—2335154; https://www.ccdc.cam.ac.uk/).

Порошковая дифрактограмма $[PtCl_2(PC=N)_2]$ записана на том же дифрактометре $(MoK_{\alpha}$ -излучение) при 150 К. Образец готовили путем перетирания порошка и нанесения его на лавсановую петлю с небольшим количеством эпоксидной смолы. Методом ϕ -сканирования (360°) получены дебаеграммы со сплошными дифрак-

Рис. 1. Экспериментальная (exp.) и симулированная (sim.) порошковые дифрактограммы для $[PtCl_2(PC=N)_2]$ (MoK_{α} -излучение).

Табл. 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения исследованных структур соединений

Параметр	$^{t}BuC(CI)=$ =N-(7-CI-Btd)	POCN · 0.5Et ₂ O	$(\mathrm{Ph}_2\mathrm{PO}_{\mathrm{x}})_2$	[Pt(PC=N) ₂ Cl ₂]	[PtCl ₂ (Ph ₂ POH) ₂] (POCN)	[Pt(CH ₃ CN){'BuC- NH-(7-CI-Btd)}CI]
Брутто-формула	C ₁₁ H ₁₁ N ₃ SCl ₂	C ₂₅ H ₂₈ N ₃ O _{1.5} SPCI	$\mathbf{C_{24}H_{20}O_{1.0}P_{2}}$	$C_{46}H_{42}N_6S_2P_2CI_4Pt$	$C_{47}H_{45}N_3O_3SP_3Cl_3Pt$	$C_{13}H_{14}N_4SCl_2Pt$
M	288.19	492.98	386.50	1141.80	1126.27	524.33
Пр/ группа	C2/c	$P2_1/n$	$P2_1/n$	$P2_1/c$	$P2_1/n$	Pnma
a, Å	18.971(3)	14.3649(7)	9.4029(14)	12.5462(14)	11.2584(12)	14.4686(3)
b, Å	6.0757(7)	11.5870(6)	11.0711(15)	37.284(4)	31.574(4)	6.59470(10)
c, Å	22.480(3)	16.5312(9)	9.4305(11)	10.3399(11)	13.3669(13)	16.9381(3)
в, град	98.031(4)	114.186(2)	91.497(4)	106.167(3)	104.093(4)	06
V, ų	2565.7(6)	2510.0(2)	981.4(2)	4645.5(9)	4608.6(9)	1616.17(5)
Z	8	4	2	4	4	4
ρ(выч.), г/см ³	1.492	1.305	1.308	1.633	1.623	2.155
μ, мм ⁻¹	0.649	0.324	0.233	3.450	3.413	9.139
F(000)	1184.0	1036.0	404.0	2272.0	2248.0	992.0
Излучение	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$	$MoK_{\alpha} (\lambda = 0.71073)$
Дипазон сбора данных по 2θ, град	5.27—48.886	4.434–54.196	6.04-52.788	4.244—46.508	4.066 - 52.044	5.574—57.47
Диапазоны <i>h, k, l</i>	$-22 \leqslant h \leqslant 17, -6 \leqslant k \leqslant 7, -26 \leqslant l \leqslant 25$	$-18 \leqslant h \leqslant 18, -14 \leqslant k \leqslant 14, -21 \leqslant l \leqslant 21$	$-11 \leqslant h \leqslant 8, -13 \leqslant k \leqslant$ $11, -11 \leqslant l \leqslant 10$	$-13 \leqslant h \leqslant 13, -41 \leqslant k \leqslant 41, -11 \leqslant l \leqslant 11$	$-13 \leqslant h \leqslant 13, -38 \leqslant k \leqslant$ 38, $-16 \leqslant l \leqslant 16$	$-19 \leqslant h \leqslant 16, -8 \leqslant k \leqslant$ 7, $-22 \leqslant l \leqslant 22$
Число измеренных рефлексов	2698	43828	5131	32992	61003	16680
Число независимых рефлексов $[R_{\mathrm{int}},R_{\mathrm{o}}]$	2094 [0.0641, 0.0673]	5520 [0.0715, 0.0391]	1953 [0.0371, 0.0485]	6653 [0.1722, 0.1285]	9069 [0.1223, 0.0838]	2253 [0.0203, 0.0129]
Число ограничений/ уточняемых параметров	0/157	22/322	0/167	0/556	0/555	0/126
$\mathrm{GOOF}\:\mathrm{no}\:F^2$	1.068	1.056	1.124	1.032	1.046	1.116
R -фактор $(I>2\sigma(I))$	$R_1 = 0.0676, wR_2 = 0.1887$	$R_1 = 0.0583, wR_2 = 0.1401$	$R_1 = 0.0701, wR_2 = 0.1794$	$R_1 = 0.0635, wR_2 = 0.1401$	$R_1 = 0.0423, wR_2 = 0.0896$	$R_1 = 0.0135, wR_2 = 0.0318$
<i>R</i> -фактор (все данные)	$R_1 = 0.0997, \text{wR}_2 = 0.2090$	$R_1 = 0.0882, wR_2 = 0.1603$	$R_1 = 0.0801, wR_2 = 0.1846$	$R_1 = 0.1003, wR_2 = 0.1649$	$R_1 = 0.0646, wR_2 = 0.1018$	$R_1 = 0.0145, wR_2 = 0.0321$
$\Delta \rho_{\rm max}/\Delta \rho_{\rm min}$, e/Å ³	0.35/-0.67	0.85/-0.88	0.44/-0.30	1.26/-1.45	0.67/-0.68	0.88/-0.84

ционными дугами [23, 24]. Для снижения эффекта преимущественной ориентации было сделано по 5 сканов при разных положениях гониометра по ω от -240° до 0° . Коррекция на внешний стандарт (α -Al₂O₃) и интегрирование проведены с использованием программы Dioptas [25].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Получение 1,3-иминометилфосфина. Синтез 1,3-иминометилфосфина был осуществлен в результате последовательной реализации трех стадий, представленных на схеме 2. Конденсация 4-амино-2,1,3-бензотиадиазола (NH₂-Btd) и пивалоилхлорида ожидаемо привела к соответствующему амиду $^{\rm t}$ BuC(=O)NH-btd с приемлемым выходом. Однако взаимодействие $^{\rm t}$ BuC(=O)NH-Btd с хлорирующим агентом SOCl₂ протекает не столь однозначно: согласно данным спектроскопии ЯМР $^{\rm t}$ H, их реакция при $T_{\rm ком}$ H приводит только к замещению атома H в положении 7 карбоцикла на Cl. Дальнейшее хлорирование

по углероду С(О) протекает при кипячении реакционной смеси. Через сутки соотношение сигналов имидоилхлорида ^tBuC(Cl)=N-(7-Cl-Btd) и исходного амида составило 1: 0.7, а через 3 сут 1: 0.1. Кристаллический ^tBuC(Cl)==N-(7-Cl-Btd) получен удалением легколетучих соединений с последующей экстракцией гексаном. Таким образом, ожидаемый имидоилхлорид ^tBuC(Cl)=N-Btd, не содержащий хлора в карбоцикле, получить в данных условиях нельзя, поскольку соответствующая стадия замещения по карбоциклу протекает значительно быстрее.

Проведен ряд экспериментов по синтезу целевого 1,3-иминометилфосфина PC=N, и выявлены следующие особенности протекания реакции.

1. Реагенты ${}^{t}BuC(Cl)=N-(7-Cl-Btd)$ и $Ph_2P-SiMe_3$ чувствительны к действию кислорода и воды, и даже минимальный контакт с атмосферой воздуха приводит к побочным продуктам окисления и/или гидролиза. Так, при кипячении

NH₂-Btd
$$^{t}BuC(=O)NH-Btd$$
 $^{t}BuC(Cl)=N-(7-Cl-Btd)$ $^{t}BuC(Cl)=N-(7-Cl-Btd)$ $^{t}BuC(Cl)=N-(7-Cl-Btd)$ $^{t}BuC(Cl)=N-(7-Cl-Btd)$

Схема 2. Синтез 1,3-иминометилфосфина РС=N.

CI
$$CI$$

$$N$$

$$C_{6}H_{6}, O_{2}, H_{2}O$$

$$Ph_{2}PSiMe_{3}$$

$$C_{6}H_{6}, O_{2}, H_{2}O$$

$$Ph_{2}P$$

$$NH$$

$$+(Ph_{2}PO_{x})_{2}$$

$$Ph_{2}P$$

$$NH$$

$$POCN$$

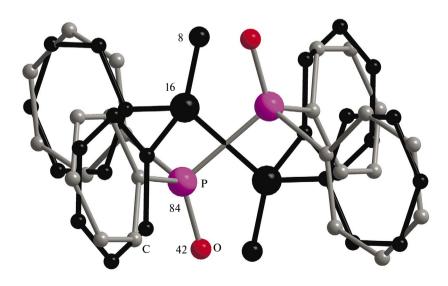
Схема 3. Побочная реакция образования 1,3-аминометилфосфиноксида РОСN, проходящая в присутствии воздуха.

реагентов в толуоле с обратным холодильником и масляным затвором (вариант реакции A, см. экспериментальную часть), допускающим попадание небольшого количества воздуха, были выделены в небольшом количестве кристаллы $(Ph_2PO_x)_2$ (x=1; см. обсуждение структур) и $^tBuC\{Ph_2P(O)\}NH-(7-Cl-Btd)$ (POCN, схема 3), содержащие атом P(V) и идентифицированные методом PCA.

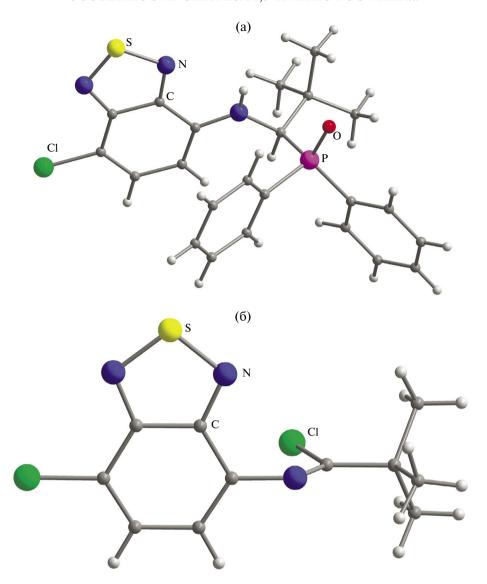
- 2. Проведение реакции возможно в относительнолегкокипящем толуоле (вариант *B*), только оптимальное время кипячения составляет две недели. Вслучаеболеевысококипящегохлорбензола (вариант *B*) время реакции сокращается до суток.
- 3. Введение избытка Ph_2PSiMe_3 в реакционную смесь не приводит к замещению атома Cl в карбоцикле наблюдается замещение только в имидоилхлоридном фрагменте.

4. Целевой 1,3-иминометилфосфин образуется в смеси с исходным Ph_2PSiMe_3 в виде масла; дальнейшее выдерживание смеси при нагревании до $100^{\circ}C$ в динамическом вакууме не приводит к полному испарению Ph_2PSiMe_3 . Попытки очистки продукта перекристаллизацией из гексана или диэтилового эфира не привели к желаемому результату. Наибольшей чистоты удалось добиться хроматографией, но в этом случае конечный выход PC=N оказался низким.

Реакции с [Pt(COD)Cl₂]. Реакция [Pt(COD) Cl₂] с PC=N в ацетонитриле при $T_{\text{комн}}$ приводит к образованию соответствующего комплекса [Pt(PC=N)₂Cl₂] (схема 4), выделенного в кристаллическом виде. В этих условиях лиганд PC=N не претерпевает разрыва связи P—C в присутствии Pt(II), как это наблюдалось в 1,3-аминометилфосфине (PCN-pbt, схема 4) с фенилбензо-


Схема 4. Реакции иминометилфосфина PC=N и аминометилфосфинов PCN-Pbt [26] и POCN с [Pt(COD)Cl₂].

тиазольным заместителем [26, 27]. В том случае в подобных условиях образуются кристаллические фазы, содержащие анион $[Pt(PPh_2)_2Cl_2]^{2-}$. Этот процесс протекает при $T_{\text{комн}}$ в течение часа, а соединения образуются из реакционной смеси через 3-7 дней. В полученном в данной работе 1,3-аминометилфосфиноксиде РОСИ разрыв связи Р-С также происходит, но медленнее. Так, в реакционной смеси методом РСА наряду с исходным [Pt(COD)Cl₂] было установлено строение соединения [PtCl₂(Ph₂POH)₂](POCN), которое свидетельствует о превращении двух эквивалентов POCN в Ph₂POH и сохранении третьего. Кроме того, в смеси продуктов были обнаружены кристаллы [Pt(CH₃CN){^tBuC-NH-(7-Cl-Btd)}Cl], содержащие бензотиадиазольный остаток, депротонированный по карбоциклу.


Кристаллические структуры. В структуре $(Ph_2PO_y)_2$, согласно PCA, имеется разупорядочение всех атомов. По геометрическим характеристикам из наиболее вероятных вариантов структуры можно выбрать единственный вариант, в котором присутствует молекула $Ph_2P(O_{x/2})$ - $-P(O_{x/2})Ph_2$, разупорядоченая по двум позициям с заселенностью 84/16%, как показано на рис. 2. Атомы О имеют меньшую заселенность позиций, чем остальные, что означает частичное окисление фосфина вместо полного. Иными словами, помимо вышеупомянутого ориентационного разупорядочения основной части молекулы имеется позиционное, связанное с наличием фрагментов Ph_2P и $Ph_2P(O)$ в одной позиции. Уточнение заселенности двух независимых атомов О дало примерно 42 и 8%, т.е. в брутто-формуле x = 1. Длины связей P–P (2.20 Å) и P=O (1.38 Å) близки к таковым в опубликованной структуре $Ph_2P(O)-P(O)Ph_2 \cdot C_6H_6$ (код КБСД OCUQIM) [28]. В структурах с неокисленной формой Ph_2P-PPh_2 расстояние P–P 2.22 и 2.25 Å (коды КБСД ВАРВОЈ [29] и ВАРВОЈО1 [30]) несколько длиннее, поэтому наличие в нашей структуре варианта с этой формой менее вероятно, но принципиально тоже возможно.

Общим в строении полученных соединений $POCN \cdot 0.5Et_2O$ (рис. 3), $[PtCl_2(Ph_2POH)_2]$ (POCN) (рис. 4a) и [Pt(CH₃CN){tBuC-NH-(7-Cl-Btd)}Cll (рис. 5a) является наличие внутримолекулярной водородной связи N-H···N в фрагменте NH-Btd. Благодаря ей, а также изза сопряжения неподеленной электронной пары N(H) с ароматической частью Btd, фрагмент C-N-Btd является плоским, т.е. торсионный угол (N)C-C-N-C близок к 180°. Такое строение наблюдается для большинства найденных в КБСД структур с фрагментом {NH-Btd} (около 40). Исключение составляют комплекс [CuCl(Ph₂ $PC(Ph)-NH-Btd)(Py)]_2 (Py = пиридин) [31], в ко$ тором торсионный угол составляет 19.6°, а также хлоридные и нитратные соли производных с пиридиниевыми заместителями (116°-127°) [32]. Такие менее выгодные конформации стабилизированы другими контактами. В структурах [Pt $(PC=N)_2Cl_2$] (рис. 46) и ${}^tBuC(Cl)=N-(7-Cl-Btd)$ (рис. 5б) без протона при атоме N соответствующий торсионный угол близок к 90°.

Строение молекулы в фазе POCN подобно таковому в структурах двух кристаллических мо-

Рис. 2. Строение разупорядоченной молекулы (Ph_2PO_x)₂, атомы H не показаны. Основная позиция показана цветом, минорная — черным. Указаны заселенности атомов P и O.

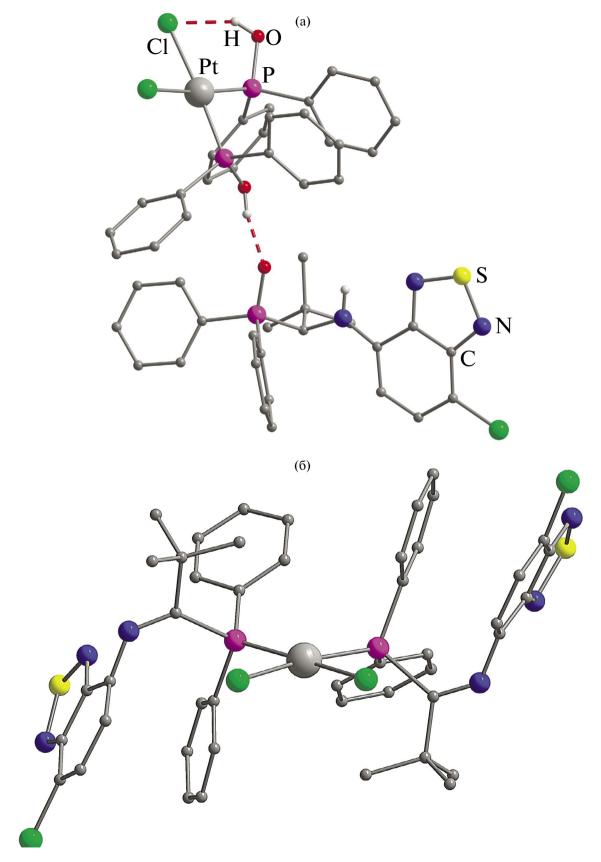
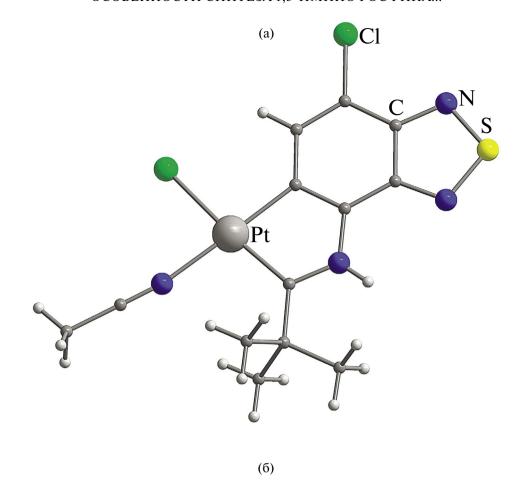
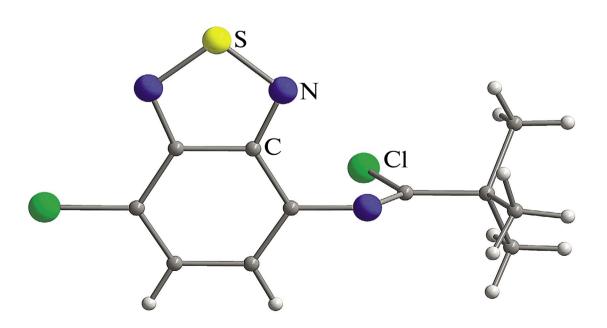


Рис. 3. Строение одиночной молекулы 1,3-аминометилфосфина в $POCN \cdot 0.5Et_2O$ (a) и пары молекул с контактом между атомами (C)H и O (6; остальные атомы H не показаны).


дификаций Ph₂P(O)C(Ph)-NH-Btd с фенильным заместителем вместо трет-бутильного и без атома Cl [33]. В кристаллической упаковке всех этих структур можно выделить одинаковый мотив: атом (С)Н метильного фрагмента одной молекулы направлен на атом О соседней молекулы (рис. 36). Это обусловлено одинаковой формой молекул, которые упаковываются в стопки по принципу «выступ»—«впадина», как обсуждалось ранее [33]. Геометрические параметры молекулы POCN в сокристаллизате [PtCl₂(Ph₂POH)₂](POCN) (рис. 4a) также укладываются в описываемый ряд. В частности, в этой молекуле расстояние Р=О составляет 1.51 Å. В нейтральном комплексе [PtCl₂ $(Ph_2POH)_2$] этой же фазы расстояние P—O заметно длиннее (1.58 и 1.62 Å), что позволяет приписать наличие протона при атомах О. Одна из соответствующих групп (P)OH участвует в межмолекулярной водородной связи с атомом кислорода POCN (расстояние O···O 2.50 Å), а вторая — во внутримолекулярной с хлоридом (расстояние O···Cl 2.98 Å).


В $[Pt(PC=N)_2Cl_2]$ для иминометилфосфина координированы монодентатно атомами P, а атомы N в координации не участвуют (рис. 46). Структур комплексов Pt или Pd с иминометилфосфинами в KBCД не найдено, но с родственными аминометилфосфинами также в большинстве случаев образуются комплексы с координацией только атомом P[1].

В комплексе [$Pt(CH_3CN)$ { $^tBuC-NH-(7-Cl-Btd)$ }Cl] (рис. 5а) хелатный гетероциклический лиганд имеет формальный заряд -1 из соображе-

Рис. 4. Строение $[PtCl_2(Ph_2POH)_2](POCN)$ (а); атомы H за исключением участвующих в водородных связях не показаны, и $[Pt(PC=N)_2Cl_2]$ (б), атомы H не показаны.

Рис. 5. Строение [$Pt(CH_3CN)$ { $^tBuC-NH-(7-Cl-Btd)$ }Cl] (a) и $^tBuC(Cl)=N-(7-Cl-Btd)$ (б).

ний электронейтральности. Атом Pt связан с атомом С бензотиадиазольного фрагмента напрямую (расстояние Pt—С 1.99 Å), т.е. при этом углероде нет водорода. Качество полученных рентгенодифракционных данных для кристалла приемлемое и позволяет однозначно локализовать водород при NHгруппе. При атоме ('Bu)C, в свою очередь, пиков, соответствующих атому H, не обнаружено, а фрагмент {CN-Btd} плоский, что позволяет формально отнести углерод ('Bu)C к карбеновому. Фактически, имеется делокализация электронной плотности по всему фрагменту {CNBtd}, а связь ('Bu)C—N (1.31 Å) близка к двойной.

Таким образом, обнаружен ряд особенностей протекания реакций синтеза 1,3-иминометилфосфина на основе 2,1,3-бензотиадиазола (Btd). При взаимодействии амида ${}^{t}BuC(=O)NH-btd$ с SOCl, наблюдается побочный процесс хлорирования по карбоциклу, протекающий значительно быстрее основного процесса по амилной группе. В результате промежуточный имидоилхлорид ${}^{t}BuC(C1)=N-(7-C1-Btd)$ и иминометилфосфин РС=N содержат хлор-замещенный фрагмент Btd. Имидоилхлорид и Ph₂PSiMe₃, используемые на последней стадии синтеза иминометилфосфина, чувствительны к действию кислорода и воды, и даже минимальный контакт с атмосферой воздуха приводит к побочным продуктам окисления и/или гидролиза. В частности, в небольшом количестве получен побочный продукт — 1,3-аминометилфосфин POCN, выделенный в виде сольвата с диэтиловым эфиром. Кроме того, идентифицирован (Ph₂PO₂)₂ (x = 1), согласно данным PCA представляющий собой твердый раствор $Ph_2P(O_{x/2})-P(O_{x/2})Ph_2$ с частичной занятостью позиций атомов кислорода.

В реакции [Pt(COD)Cl₂] с PC=N образуется ожидаемый комплекс $[Pt(PC=N)_2Cl_2]$, выделенный в кристаллическом виде. В этих условиях лиганд PC=N не претерпевает разрыва связи P-C в присутствии Pt(II), как это наблюдалось ранее в 1,3-аминометилфосфине с фенилбензотиазольным заместителем (PCN-pbt) [26] и в полученном в данной работе РОСМ. В случае последнего методом PCA наряду с исходным [Pt(COD)Cl₂] были обнаружены кристаллы [PtCl₂(Ph₂POH)₂] (POCN), что свидетельствует о превращении двух эквивалентов РОС в Р Ро РОН и сохранении третьего. Кроме того, зафиксированы кри-[Pt(CH₃CN){^tBuC-NH-(7-Cl-Btd)}Cl], содержащего бензотиадиазольный остаток, депротонированный по карбоциклу.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Рентгеноструктурные исследования выполнены при поддержке Министерства науки и высшего образования Российской Федерации (№ 121031700313-8). Авторы благодарны ЦКП ИНХ СО РАН за аналитические измерения и за запись спектров ЯМР, а также лично Л.В. Заргаровой за проведение рентгенодифракционного эксперимента для РОСN · 0.5 Et₂O.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Российского научного фонда (проект № 21-73-10096).

СПИСОК ЛИТЕРАТУРЫ

- 1. Bálint E., Tajti Á., Tripolszky A., Keglevich G. // Dalton Trans. 2018. V. 47. P. 4755.
- 2. Smith M.B. // Molecules. 2022. V. 27. P. 6293.
- 3. Sukhikh T.S., Khisamov R.M., Konchenko S.N. // Symmetry. 2023. V. 15. P. 157.
- 4. Khisamov R.M., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Inorganics. 2022. V. 10. P. 263.
- 5. Khisamov R.M., Ryadun A.A., Konchenko S.N., Sukhikh T.S. // Molecules. 2022. V. 27. P. 8162.
- 6. Baranov A.Y., Sukhikh T.S., Artem'ev A.V. // J. Struct. Chem. 2022. V. 63. P. 658.
- 7. Rogovoy M.I., Bagryanskaya I.Y., Sadykov E.H. // J. Struct. Chem. 2023. V. 64. P. 1654.
- 8. Rong M.K., Holtrop F., Slootweg J.C., Lammertsma K.//Coord. Chem. Rev. 2019. V. 380. P. 1.
- 9. *Huber T., Bauer J.O.* // Chem. Eur. J. 2023. P. e202303760.
- 10. Farkas G., Császár Z., Tóth-Farsang E. et al. // J. Organomet. Chem. 2023. V. 994. P. 122723.
- 11. *Liu R., Liu Y., Yang W., Li X., Feng L.* // ACS Omega. 2023. V. 8. P. 18290.
- 12. Reis Conceição N., Mahmoud A.G., Guedes da Silva M.F.C. et al. // Mol. Catal. 2023. V. 549. P. 113512.
- 13. Radcliffe J.E., Batsanov A.S., Smith D.M., Scott J.A. et al. // ACS Catalysis. 2015. V. 5. P. 7095.
- 14. *van Dijk T., Burck S., Rong M.K. et al.* // Angew. Chem. Int. Ed. 2014. V. 53. P. 9068.
- 15. Rong M.K., van Duin K., van Dijk T. et al. // Organometallics. 2017. V. 36. P. 1079.
- 16. *Kandel R., Huynh K., Dalgliesh L. et al.* // Inorg. Chim. Acta. 2016. V. 445. P. 117.
- 17. *Lee K.-F.*, *Yang T.*, *Tsang L.-Y. et al.* // Organometallics. 2021. V. 40. P. 358.

- 18. *Kandel R., Schatte G., Jessop P.G.* // Dalton Trans. 2019. V. 48. P. 12512.
- 19. Fischer M., Steinert H., Schmidtmann M., Beckhaus R.// Dalton Trans. 2019. V. 48. P. 1936.
- 20. Sheldrick G. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 21. Sheldrick G. // Acta Crystallogr. 2015. V. 71. P. 3.
- 22. *Dolomanov O.V., Bourhis L.J., Gildea R.J. et al.* // J. Appl. Crystallogr. 2009. V. 42. P. 339.
- 23. *Alexeev A.V., Gromilov S.A.* // J. Struct. Chem. 2010. V. 51. P. 156.
- 24. *Alexeev A.V., Gromilov S.A.* // J. Struct. Chem. 2010. V. 51. P. 744.
- 25. *Prescher C., Prakapenka V.B.* // High Pressure Res. 2015. V. 35. P. 223.
- 26. Afonin M.Y., Martynenko P.A., Kolybalov D.S. // Inorg. Chem. 2024. V. 63. P. 369.

- 27. Sukhikh T.S., Kolybalov D.S., Khisamov R.M., Konchenko S.N. // J. Struct. Chem. 2022. V. 63. P. 1446.
- 28. *Nieger M., Schinkels B., Niecke E.* // Experimental Crystal Structure Determination. CCDC 174103. 2002. https://doi.org/10.5517/cc5v57d.
- Dashti-Mommertz A., Neumüller B. // Z. Anorg. Allg. Chem. 1999. V. 625. P. 954.
- 30. *Tam E.C.Y., Maynard N.A., Apperley D.C.* // Inorg. Chem. 2012. V. 51. P. 9403.
- 31. *Khisamov R.M., Konchenko S.N., Sukhikh T.S.* // J. Struct. Chem. 2022. V. 63. P. 2113.
- 32. *Hu C., Wang M., Han X., Fan J.* // J. Phys. Chem. C. 2021. V. 125. P. 22346.
- 33. Khisamov R.M., Ryadun A.A., Konchenko S.N., Sukhikh T.S. // Molecules. 2022. V. 27. P. 3857.

Characteristic Features of the Synthesis of 2,1,3-Benzothiadiazole-Substituted 1,3-Iminophosphine and Platinum Complex of this Compound

R. M. Khisamov^a, S. N. Konchenko^a, and T. S. Sukhikh^a, *

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia *e-mail: sukhikh@niic.nsc.ru

In an attempt to synthesize a new iminomethylphosphine, 'BuC(Ph2P)=N-Btd (Btd = 2,1,3-benzothiadiazole) by a three-step procedure including (1) NH₂-Btd + 'BuC(=O)Cl \rightarrow 'BuC(=O)NH-Btd; (2) 'BuC(=O)NH-Btd + SOCl₂ \rightarrow 'BuC(Cl)=N-Btd; (3) 'BuC(Cl)=N-Btd + Ph₂PSiMe₃ \rightarrow 'BuC(Ph₂P)=N-Btd, it was found that the second step is accompanied by the chlorination of the carbocycle in the benzothiadiazole moiety. The reaction of the imidoyl chloride 'BuC(Cl)=N-(7-Cl-Btd) formed in this reaction with Ph₂PSiMe₃ gave 1,3-iminomethylphosphine 'BuC(Ph₂P)=N-(7-Cl-Btd) (PC=N). The byproducts formed in this step include 1,3-aminomethylphosphine oxide 'BuC{Ph₂P(O)}NH-(7-Cl-Btd) (POCN) and (Ph₂PO_x)₂,, resulting from partial oxidation and hydrolysis. The reactions of PC=N and POCN with [Pt(COD)Cl₂] (COD = 1.3-cyclooctadiene) were studied. In the case of PC=N, the reaction affords the [Pt(PC=N)₂Cl₂] complex. In the latter case, cleavage of the P-C bond in POCN takes place, and [PtCl₂(Ph₂POH)₂](POCN) and [Pt(CH₃CN){'BuC-NH-(7-Cl-Btd)}Cl]. are isolated from the reaction mixture. The structures of the new compounds were established by single-crystal X-ray diffraction ('BuC(Cl)N-(7-Cl-Btd)), 2335152 (POCN · Et₂O), 2335149 (Ph₂PO_x)₂, 2335153 ([Pt(PC=N)₂Cl₂]), 2335154 ([PtCl₂(Ph₂POH)₂](POCN)), 2335151 ([Pt(CH₃CN)('BuC-NH-(7-Cl-Bbtd))Cl]).

Keywords: iminomethylphosphine, benzothiadiazole, Pt complex, aminomethylphosphine oxide

REFERENCES

- 1. Bálint E., Tajti Á., Tripolszky A., Keglevich G. // Dalton Trans. 2018. V. 47. P. 4755.
- 2. Smith M.B. // Molecules. 2022. V. 27. P. 6293.
- 3. Sukhikh T.S., Khisamov R.M., Konchenko S.N. // Symmetry. 2023. V. 15. P. 157.
- 4. Khisamov R.M., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Inorganics. 2022. V. 10. P. 263.
- 5. Khisamov R.M., Ryadun A.A., Konchenko S.N., Sukhikh T.S. // Molecules. 2022. V. 27. P. 8162.

- Baranov A.Y., Sukhikh T.S., Artem'ev A.V. // J. Struct. Chem. 2022. V. 63. P. 658.
- 7. Rogovoy M.I., Bagryanskaya I.Y., Sadykov E.H. // J. Struct. Chem. 2023. V. 64. P. 1654.
- 8. Rong M.K., Holtrop F., Slootweg J.C., Lammertsma K.//Coord. Chem. Rev. 2019. V. 380. P. 1.
- 9. *Huber T., Bauer J.O.* // Chem. Eur. J. 2023. P. e202303760.
- 10. Farkas G., Császár Z., Tóth-Farsang E. et al. // J. Organomet. Chem. 2023. V. 994. P. 122723.
- 11. Liu R., Liu Y., Yang W., Li X., Feng L. // ACS Omega. 2023. V. 8. P. 18290.

- 12. Reis Conceição N., Mahmoud A.G., Guedes da Silva M.F.C. et al. // Mol. Catal. 2023. V. 549. P. 113512.
- 13. Radcliffe J.E., Batsanov A.S., Smith D.M., Scott J.A. et al. // ACS Catalysis. 2015. V. 5. P. 7095.
- 14. *van Dijk T., Burck S., Rong M.K. et al.* // Angew. Chem. Int. Ed. 2014. V. 53. P. 9068.
- 15. Rong M.K., van Duin K., van Dijk T. et al. // Organometallics. 2017. V. 36. P. 1079.
- Kandel R., Huynh K., Dalgliesh L. et al. // Inorg. Chim. Acta. 2016. V. 445. P. 117.
- 17. Lee K.-F., Yang T., Tsang L.-Y. et al. // Organometallics. 2021. V. 40. P. 358.
- 18. *Kandel R., Schatte G., Jessop P.G.* // Dalton Trans. 2019. V. 48. P. 12512.
- 19. Fischer M., Steinert H., Schmidtmann M., Beckhaus R. // Dalton Trans. 2019. V. 48. P. 1936.
- 20. Sheldrick G. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 21. Sheldrick G. // Acta Crystallogr. 2015. V. 71. P. 3.
- 22. *Dolomanov O.V., Bourhis L.J., Gildea R.J. et al.* // J. Appl. Crystallogr. 2009. V. 42. P. 339.
- 23. *Alexeev A.V., Gromilov S.A.* // J. Struct. Chem. 2010. V. 51. P. 156.

- Alexeev A.V., Gromilov S.A. // J. Struct. Chem. 2010.
 V. 51. P. 744.
- 25. *Prescher C., Prakapenka V.B.* // High Pressure Res. 2015. V. 35. P. 223.
- 26. Afonin M.Y., Martynenko P.A., Kolybalov D.S. // Inorg. Chem. 2024. V. 63. P. 369.
- Sukhikh T.S., Kolybalov D.S., Khisamov R.M., Konchenko S.N. // J. Struct. Chem. 2022. V. 63. P. 1446.
- Nieger M., Schinkels B., Niecke E. // Experimental Crystal Structure Determination. CCDC 174103. 2002. https://doi.org/10.5517/cc5v57d
- Dashti-Mommertz A., Neumüller B. // Z. Anorg. Allg. Chem. 1999. V. 625. P. 954.
- 30. *Tam E.C.Y.*, *Maynard N.A.*, *Apperley D.C.* // Inorg. Chem. 2012. V. 51. P. 9403.
- 31. *Khisamov R.M., Konchenko S.N., Sukhikh T.S.* // J. Struct. Chem. 2022. V. 63. P. 2113.
- 32. *Hu C., Wang M., Han X., Fan J.* // J. Phys. Chem. C. 2021. V. 125. P. 22346.
- 33. Khisamov R.M., Ryadun A.A., Konchenko S.N., Sukhikh T.S. // Molecules. 2022. V. 27. P. 3857.

Авторы поздравляют члена-корреспондента РАН В.П. Федина с 70-летием

УЛК 541.49+548.736

СОЕДИНЕНИЯ s-МЕТАЛЛОВ СО СПИН-МЕЧЕННЫМ НИТРОФЕНОЛОМ

© 2024 г. О. В. Кузнецова^{1, *}, Г. В. Романенко¹, П. А. Чернавин¹, Г. А. Летягин¹, А. С. Богомяков¹

¹Институт «Международный томографический центр» СО РАН, Новосибирск, Россия *e-mail: bus@tomo.nsc.ru

Поступила в редакцию 02.04.2024 г. После доработки 08.04.2024 г. Принята для публикации 08.04.24 г.

Синтезирована и выделена в виде кристаллов серия парамагнитных солей *s*-элементов (Li, Na, K, Rb, Cs) с депротонированным нитроксильным радикалом 2-(2-гидрокси-5-нитрофенил)-4,4,5,5-тетраметил-4,5-дигидро-1*H*-имидазол-3-оксид-1-оксилом (L). Рентгеноструктурное исследование показало, что данные соединения представляют собой полимеры различной размерности (ССDС № 2342497—2342506). По данным квантово-химических расчетов и магнитных измерений установлено, что в парамагнитных солях реализуются преимущественно слабые антиферромагнитные обменные взаимодействия, энергия которых уменьшается с увеличением радиуса иона щелочного металла.

Ключевые слова: литий, натрий, калий, рубидий, цезий, нитронилнитроксильные радикалы, полимеры, рентгеноструктурный анализ, магнитные свойства, квантово-химические расчеты.

DOI: 10.31857/S0132344X24100067, **EDN:** LPNIBF

Нитроксильные радикалы 2-имидазолинового ряда (схема 1), как кинетически наиболее устойчивые из всех органических парамагнетиков, благодаря широким возможностям варьирования заместителей R в их молекуле и хорошей растворимости в различных органических растворителях, активно используются при решении различных фундаментальных и прикладных задач [1-5], связанных с дизайном молекулярных магнетиков на основе координационных соединений переходных (d-/f-) металлов [6-9].

Схема 1. Строение нитронилнитроксильных радикалов L^R и HL

Нитроксильные радикалы, содержащие в качестве заместителя фенольный фрагмент, способны депротонироваться и выступать в качестве парамагнитных анионных лигандов, что обусловливает интерес к ним с целью получения гетероспиновых комплексов [10-12]. На примере нитронил- и имино-нитроксилов, содержащих 2-гидрокси-3R-5-нитрофенольный заместитель, показана склонность подобных радикалов к восстановительно-окислительным трансформациям, особенно в присутствии способных достаточно легко изменять степень окисления ионов переходных металлов, например Co(II), Mn(II), Fe(II) [13–16]. Такая особенность позволила разработать новый подход к синтезу многоспиновых координационных соединений. Наличие достаточно кислого протона фенольной группы также значительно осложняет получение комплексов при использовании данных нитроксилов в синтезе в недепротонированной форме. Стабилизации нитроксила в растворе и предотвращению его red-ox трансформаций может способство-

вать его введение в реакцию в анионной форме, например в виде солей щелочных металлов. Природа *s*-металла может оказывать значительное влияние не только на растворимость солей в органических растворителях, но и на особенности их строения и магнитных свойств [17, 18]. Так, было показано влияние природы *s*-металла на упаковку и, соответственно, энергию обменных взаимодействий между неспаренными электронами парамагнитных лигандов в соединениях с такими анион-радикалами, как 3,6-ди-*mpem*-бутил-1,2-бензосемихинонат [19], n-(1-оксил-3-оксидо-4,4,5,5-тетраметил-2-имидазолин-2-ил)бензоат [20], производными 4H,8H-бис(1,2,5-оксадиазоло)[3,4-b:3',4'-e]пиразина [21, 22], тетрацианоэтилен [23]. Следует отметить, что исследования, посвященные систематическому изучению структур и магнитных свойств соединений нитроксильных радикалов или же других парамагнитных лигандов с s-металлами по сравнению с комплексами dи f-металлов, весьма немногочисленны — около 200 записей в Кембриджской базе структурных данных (ноябрь 2023 года) [24]. В настоящей работе мы описываем синтез серии солей Li, Na, K, Rb, Cs с депротонированным 2-(2-гидрокси-5-нитрофенил)-4,4,5,5-тетраметил-4,5-дигидро-1H-имидазол-3-оксид-1-оксилом HL (схема 1), особенности их строения и магнитные свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали нитронилнитроксильный радикал 2-(2-гидрокси-5-нитрофенил)-4,4,5,5-тетраметил-4,5-дигидро-1 H-имида-30л-3-оксид-1-оксил (HL), синтезированный по методике [25], LiOH (x.ч.), KOH (xч), NaHCO $_3$ (ч.д.а.), RbOH (50% в H_2 O, Sigma-Aldrich), Cs_2CO_3 (х.ч.), ацетон (ос.ч.), гептан (ос.ч.), ацетонитрил (ос.ч.) и предварительно перегнанный метанол.

Синтез LiL. При комнатной температуре смесь HL (0.1 г, 0.34 ммоль) и LiOH (0.008 г, 0.34 ммоль) растворяли в 30 мл ацетона в течение 30 мин до полного растворения LiOH. Полученный раствор фильтровывали и на него наслаивали 5 мл гептана. Через 3 сут образовывались сине-зеленые кристаллы LiL призматической формы, которые отфильтровывали, промывали ацетоном и сушили током воздуха. Выход 0.07 г (70%).

Найдено, %: С 51.6; Н 4.9; N 13.6. Для $C_{13}H_{15}N_3O_5Li$ вычислено, %: С 51.9; Н 5.0; N13.9.

Проведение данной реакции в воде с последующей перекристаллизацией образовавшегося

продукта из смеси ацетон—гептан 1 : 1 приводило к образованию смеси, в которой были обнаружены кристаллы LiL и кристаллы двух модификаций гидрата — $[Li(H_2O)(L)]$ -I и $[Li(H_2O)L]$ -II.

Синтез NaL. При комнатной температуре смесь HL (0.1 г, 0.34 ммоль) и NaHCO₃ (0.029 г, 0.34 ммоль) растворяли при перемешивании в 10 мл метанола в течение 2 ч до полного растворения NaHCO₃. Полученный раствор упаривали, сухой остаток растворяли в 60 мл ацетона и раствор фильтровали. Через 3 сут образовывались темно-зеленые призматические кристаллы NaL, которые отфильтровывали, промывали ацетоном и сушили током воздуха. Выход 0.07 г (65 %).

Найдено, %: С 49.9; H 4.7; N 13.1. Для $C_{13}H_{15}N_3O_5Na$ вычислено, %: С 49.4; H 4.8; N 13.2.

Синтез [KL(H_2O)]. При комнатной температуре смесь HL (0.1 г, 0.34 ммоль) и КОН (0.02 г, 0.34 ммоль) растворяли в 15 мл метанола до полного растворения КОН. Полученный раствор упаривали досуха на ротационном испарителе, остаток растворяли в 30 мл ацетонитрила, фильтровали и оставляли при комнатной температуре в открытой колбе. Через ~2 суток кристаллизовался продукт [KL(H_2O)] в виде сростков призматических темно-фиолетовых кристаллов, которые отфильтровывали, промывали ацетонитрилом и сушили током воздуха. Выход 0.1 г (84%).

Найдено, %: С 44.9; Н 4.9; N 11.9. Для $C_{13}H_{17}N_3O_6K$ вычислено, %: С 44.6; Н 4.9; N 12.0.

При проведении данной реакции в MeOH без последующей перекристаллизации из CH_3CN образовался [**KL(MeOH)**] в виде призматических монокристаллов темного цвета, но в чистом виде фазу выделить не удалось.

Если проводить реакцию между КОН и HL в смеси MeOH— CH_2Cl_2 (2 : 1) с последующей перекристаллизацией из смесей ацетон—гептан или ацетон—толуол (~1 : 1), кристаллизовалась неразделяемая смесь $\mathbf{KL} \cdot \mathbf{H_2O}$ и \mathbf{KL} , а при перекристаллизации из $\mathbf{CH_3CN}$ — смесь $[\mathbf{KL}(\mathbf{CH_3CN})]$ и $[\mathbf{KL}(\mathbf{H_2O})]$.

Синтез [RbL(H_2O)]. При комнатной температуре смесь HL (0.05 г, 0.17 ммоль) и RbOH (0.035 г, 0.17 ммоль) растворяли при перемешивании в 10 мл воды в течение 30 мин до полного растворения HL, затем упаривали раствор досуха и экстрагировали 25 мл ацетона. Через ~3 сут

кристаллизовался [RbL(H_2O)] в виде призматических темных кристаллов, которые отфильтровывали, промывали ацетоном и сушили током воздуха. Выход $0.04 \, \Gamma (60\%)$.

Найдено, %: С 39.6; Н 4.3; N 10.5. Для $C_{13}H_{17}N_3O_6Rb$ вычислено, %: С 39.4; Н 4.3; N 10.6.

Синтез CsL. При комнатной температуре смесь HL (0.1 г, 0.34 ммоль) и Cs_2CO_3 (0.055 г, 0.17 ммоль) растворяли при перемешивании в 10 мл метанола в течение часа до полного растворения Cs_2CO_3 , раствор фильтровали и оставляли для испарения растворителя в течение 2 сут в широкогорлой колбе. Затем добавляли 10 мл ацетонитрила и отфильтровывали раствор от порошкообразного белого вещества. В течение 5 сут кристаллизовался CsL в виде крупных призматических темных кристаллов, которые отфильтровывали, промывали ацетонитрилом от примесных продуктов разложения HL и сушили током воздуха. Выход 0.09 г (64%).

Найдено, %: С 36.8; Н 3.5; N 9.8. Для $C_{13}H_{15}N_3O_5Cs$ вычислено, %: С 36.6; Н 3.5; N 9.9.

Использование в качестве стартового реагента CsOH приводило к образованию трудно разделимой смеси кристаллов, в которой в незначительном количестве присутствовали и кристаллы CsL.

РСА. Массивы отражений от монокристаллов получены на дифрактометрах фирмы Bruker AXS-Smart Apex II и Apex Duo (поглощение учтено по программе SADABS, версия 2.10 [26]). Структуры решены прямыми методами, уточнены полноматричным МНК в анизотропном приближении для всех неводородных атомов. Положения атомов Н рассчитаны геометрически и уточнены в модели "наездника". Все расчеты по решению и уточнению структур проведены по комплексу программ SHELX [27, 28]. Кристаллографические характеристики соединений и детали экспериментов приведены в табл. 1 и 2.

Таблица 1. Кристаллографические характеристики, детали эксперимента и уточнения структур солей Li, Rb и Cs

Помозголи	Значение				
Параметр	LiL	[Li(H ₂ O)(L)]-I	[Li(H ₂ O)(L)]-II	[RbL(H ₂ O)]	CsL
Брутто-формула	$C_{13}H_{15}N_3O_5Li$	C ₂₆ H ₃₄ N ₆ O ₁₂ Li ₂	C ₂₆ H ₃₄ N ₆ O ₁₂ Li ₂	$C_{13}H_{17}N_3O_6Rb$	$C_{13}H_{15}N_3O_5Cs$
M	300.22	636.47	636.47	396.76	426.19
<i>T,</i> K	296	296	296	296	296
Излучение	Cu	Cu	Cu	Cu	Мо
Пр. группа; Z	PĪ; 2	$P2_{1}/c; 2$	₽Ī, 1	<i>R</i> 3c, 36	$P2_{1}/n, 4$
a, Å	7.4454(13)	10.6689(4)	7.4543(2)	18.3185(13)	6.9846(2)
b, Å	9.4297(18)	19.2120(7)	10.1317(3)	18.3185(13)	11.4770(2)
c, Å	11.595(2)	7.4246(3)	10.7206(3)	51.325(4)	20.3849(5)
α, град	89.375(10)	90	102.8791(11)	90	90
β, град	72.939(8)	98.8302(18)	100.1804(12)	90	99.312(2)
ү, град	70.038(9)	90	98.4217(11)	120	90
V , $\mathring{\mathbf{A}}^3$	727.9(2)	1503.79(10)	762.16(4)	14916(2)	1612.56(7)
ρ (выч.), г см $^{-3}$	1.370	1.406	1.387	1.590	1.755
$\theta_{ m max}$, град	68.054	67.886	67.709	67.834	27.611
Число измеренных/независимых отражений	8920/2585	11035/2709	9723/9723	55230/2997	13361/3710
$R_{\rm int}$	0.0172	0.0232	0.0312	0.0300	0.0439
Число отражений $I > 2\sigma(I)$	2382	2444	9128	2796	2535
Число уточняемых параметров	244	260	278	278	199
$R_1/wR_2 \ (I \ge 2\sigma(I))$	0.0404/0.1118	0.0349/0.0958	0.0338/0.0909	0.0304/0.0881	0.0319/0.0502
GOOF	1.048	1.036	1.051	1.103	0.872
CCDC	2342497	2342498	2342501	2342505	2342500

Таблица 2. Кристаллографические характеристики, детали эксперимента и уточнения структур солей Na и K

Соединение	NaL	[KL(H ₂ O)]	[KL(MeCN)]	KL	[KL(MeOH)]
Брутто-формула	$C_{13}H_{15}N_3O_5Na$	$C_{13}H_{17}N_3O_6K$	$C_{15}H_{18}N_4O_5K$	$C_{13}H_{15}N_3O_5K$	C ₁₄ H ₁₉ N ₃ O ₆ K
M	316.27	350.39	373.43	332.38	364.42
<i>T,</i> K	296	296	296	296	296
Излучение	Mo	Мо	Мо	Cu	Мо
Пр. группа, Z	$P2_{1}/n, 4$	R3c, 36	<i>Pca</i> 2 ₁ , 8	$P2_{1}/n, 4$	$P2_{1}/c, 4$
$a, ext{Å}$	6.7816(2)	18.1510(7)	18.788(3)	11.4487(7)	11.1391(10)
b, Å	21.5351(8)	18.1510(7)	7.3971(10)	7.6799(5)	10.5388(7)
c, Å	10.2478(4)	50.269(3)	26.060(4)	16.8214(11)	15.4532(10)
α, град	90	90	90	90	90
β, град	92.505(2)	90	90	99.337(4)	110.946(3)
ү, град	90	120	90	90	90
V, Å ³	1495.18(9)	14342.8(14)	3621.8(9)	1459.43(16)	1694.2(2)
ρ(выч.), г см ⁻³	1.405	1.460	1.370	1.513	1.429
$\theta_{ m max}$, град	29.149	29.170	29.359	67.790	28.312
Число отражений измеренных/ независимых	14771/4004	89405/918	18190/6218	12683/2618	15655/4174
$R_{ m int}$	0.0528	0.0857	0.1324	0.0756	0.0538
Число отражений $I > 2\sigma(I)$	2150	2137	1867	2087	1948
Число уточняемых параметров	204	277	451	259	282
$R_1/wR_2 \ (I \ge 2\sigma(I))$	0.0486/0.1115	0.0389/0.0920	0.0441/0.652	0.0385/0.0976	0.0428/0.0797
GOOF	0.908	0.924	0.659	1.014	0.824
CCDC	2342502	2342506	2342504	2342499	2342503

Полная информация по структурам содержится в Кембриджском банке структурных данных (CCDC № 2342497—2342506; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk/data request/cif).

Магнитную восприимчивость поликристаллических образцов измеряли на SQUID-магнетометре MPMSXL (Quantum Design) в интервале температур 2—310 К в магнитном поле 5 кЭ. Парамагнитные составляющие магнитной восприимчивости χ определяли с учетом диамагнитного вклада, оцененного из констант Паскаля. Анализ магнитных свойств проводили с использованием гамильтониана $H = -2\sum J_{ij}S_iS_j$. Анализ экспериментальных данных проводили с помощью программы PHI [29].

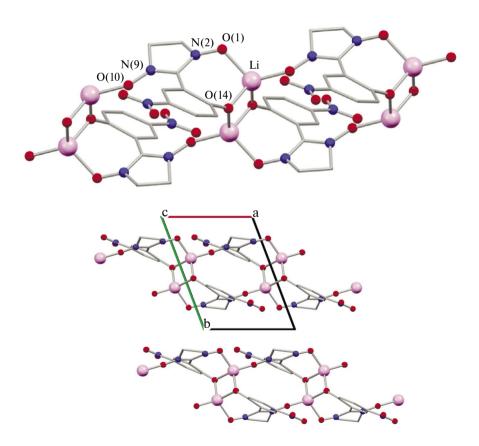
Квантово-химические расчеты выполняли с помощью программного пакета ORCA 5.0.3 [30] в рамках теории функционала плотности с использованием функционала UB3LYP [31, 32]

и базисного набора def2-TZVP [33]. Параметры обменных взаимодействий рассчитывали с помощью метода нарушенной симметрии по схеме Ямагучи [34].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Соли щелочных металлов Li, Na, K, Rb, Cs получали при взаимодействии HL с соответствующими гидроксидами, но в случае соединений Na и Cs более удобным оказалось использование гидрокарбоната NaHCO $_3$ или карбоната $\mathrm{Cs_2CO_3}$ соответственно. Получение кристаллических фаз соединений s-металлов с нитроксилом L в индивидуальном виде и с большими выходами требовало тщательного подбора условий проведения реакции и последующей кристаллизации.

В реакции HL с LiOH при получения основного продукта LiL в качестве растворителя использовали ацетон с последующим наслаивани-


ем на полученный раствор гептана. Проведение данной реакции в воде с последующей перекристаллизацией продукта из ацетона с добавлением гептана приводило к образованию смеси кристаллов LiL и двух полиморфных модификаций гидрата [LiL(H_2O)]-I и [LiL(H_2O)]-II.

Структура LiL образована полимерными лентами (рис. 1), в которых каждый L, реализуя тритопную функцию μ_3 - O_{NO} , O_{NO} , O_{Ph} , связывает три атома лития так, что нитронилнитроксильный фрагмент $\{O \cdot -N - C = N \rightarrow O\}$ и атом O_{Ph} служат мостиками между парами атомов Li. Окружение атома Li — незначительно искаженный тетраэдр из двух атомов O_{Ph} депротонированной фенольной группы и двух атомов O_{NO} нитронилнитроксильного фрагмента L с расстояниями Li- O_{Ph} 1.891(3) и 1.924(3) и Li- O_{NO} 1.916(3) и 1.993(3) Å (табл. 1). Длины связей в N-O-группах нитроксила близки (1.291(1) и 1.283(2) Å), но значения углов LiON при этих атомах различны (118.1(1)° и 140.7(1)°; табл. 3).

Две полиморфные модификации [LiL(${
m H_2O}$)] образованы однотипными биядерными молеку-

лами I и II (рис. 2). В этих молекулах атом О_{рь} аниона L соединяет два атома Li, один из которых связан также с атомом O_{NO} того же парамагнитного аниона, образуя 7-членный хелатный цикл. Дополняют окружение атома Li до тетраэдра атом O_{Ph} второго L и атом O_W молекулы воды (табл. 3). Различия в геометрии молекул I и II в значениях длин связей $L-O_{NO}$ 2.011 и 1.958 Å, углов $MO_{NO}N$ 117.8° и 122.2° и углов в центросимметричном фрагменте $\{Li(O_{Ph})_2Li\}$ 89.1° и 85.9° (табл. 3) — приводят к изменению их упаковки. В обоих случаях — это слоистые структуры, построенные на водородных связях между молекулами воды и атомами O_{NO2} нитрогрупп. Кроме того, следует отметить внутрислоевые H-связи $O_{NO}...O_{W}$ (~2.85 Å). Значительно различающиеся магнитно важные контакты между «свободными» атомами нитроксилов $O_{NO}...O_{NO}$, равные 3.806 Å в I и 4.146 Å в II находятся, соответственно, внутри и между слоями.

Соль NaL удалось получить в виде твердой фазы только после перекристаллизации из ацетона продукта взаимодействия HL с NaHCO₃ в метаноле. В кристалле искаженно-октаэдриче-

Рис. 1. Фрагмент структуры LiL и расположение лент в кристалле. Здесь и далее серым цветом показан углеродный скелет, красным — O, синим — N, розовым — Li. Атомы H и CH_3 -группы HL не показаны.

 $O_{NO2}...O_{W}$

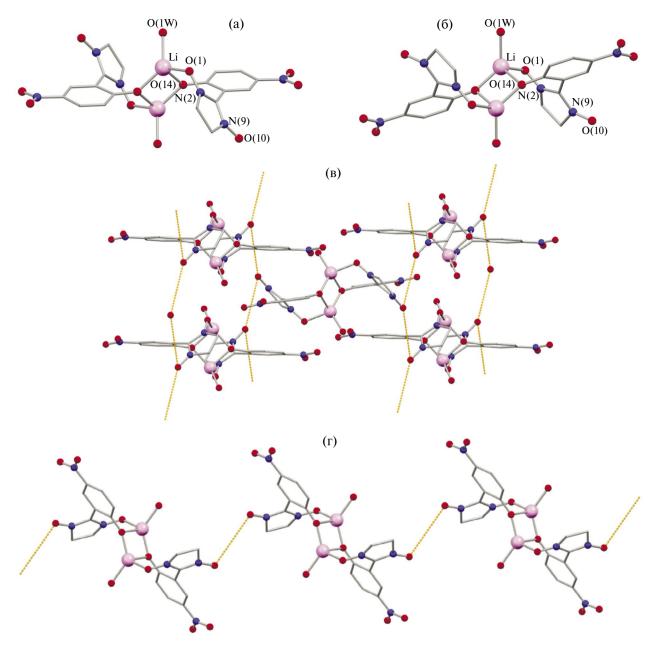
C	[LiL]	[LiL(H ₂ O)]-I	[LiL(H ₂ O)]-II	[NaL]		
Связь	d, Å					
M-O _{NO}	1.993(3), 1.916(3)	2.011(3) 1.958(3)		2.360(1) 2.376(1)		
$1-O_{\mathrm{Ph}}$	1.891(3), 1.924(3)	1.921(3), 1.967(3)	1.877(2), 1.973(2)	2.282(1) 2.373(1)		
$M-O_{Ow}$		1.960(3)	1.937(3)			
)–N	1.291(1), 1.283(2)	1.295(1), 1.275(2)	1.292(1), 1.275(2)	1.289(2), 1.283(2)		
гол	ω, град					
10 _{NO} N	118.1(1), 140.7(1)	117.8(1)	122.2(1)	131.3(1) 117.4(1)		
$MO_{Ph}M$	87.4(1)	89.1(1)	85.9(1)	110.06(5)		
$O_{NO}M$				100.36(5)		
асстояние		ď	, Å			
1M	2.636(5)	2.729(5)	2.621(5)	3.576(1), 3.880(1)		
$O_{NO}O_{NO}$	3.288(2)	3.806(2)	4.146(2)	2.714(1)		
$O_{NO}O_{W}$		2.849(1)	2.864(2)			
) 0		2.997(2),	2.997(2),			

2.916(2)

Таблица 3. Стереохимические характеристики (Å, град) соединений Li и Na

ское окружение атома Na образуют шесть атомов кислорода — $2O_{Ph} + 2O_{NO} + 2O_{NO2}$ с расстояниями 2.282(1)-2.376(1) Å (табл. 2). При этом O_{Ph} и O_{NO} связывают по два атома Na (рис. 3) в плоских центросимметричных циклах $\{Na(O)_2Na\}$ с углами при атомах кислорода, равными 110.1° при O_{Ph} и 100.4° при O_{NO} . В окружении атома Na расстояние $O_{NO}...O_{NO}$ равно 2.714 Å, тогда как между «свободными» атомами O_{NO} — это атомы из соседних слоев — они превышают 6 Å.

Соль KL легко кристаллизуется в виде сольватов. Так при проведении реакции между KOH и HL в MeOH была получена соль состава [KL(MeOH)]. При взаимодействии KOH с HL в смеси MeOH/CH $_2$ Cl $_2$ после перекристаллизации образовавшегося продукта из ацетонитрила или смесей ацетон/гептан и ацетон/толуол в массе кристаллов были обнаружены соответственно [KL(CH $_3$ CN)], [KL(H $_2$ O)] и KL.


Структуры KL, [KL(MeOH)] и [KL(CH $_3$ CN)] слоистые. В KL анион L связывает пять атомов K (рис. 4) с расстояниями K $_{-}$ O $_{NO}$ и K $_{-}$ O $_{Ph}$ 2.655 $_{-}$ 2.822 Å, дополняющих его окружение до триго-

нальной призмы $K-O_{NO2}$ 2.901 и 2.930 Å (табл. 4). В структуре колонки атомов K разделены нитрофенольными фрагментами L. Внутри колонок нитронилнитроксильные фрагменты являются мостиками между атомами K со слегка отличающимися расстояниями $K-O_{NO}$ (2.750 и 2.822 Å) и значениями углов $KO_{NO}N$ (113.8 и 135.7°), но эти различия не влияют на длины связей в группах N-O.

2.930(2)

В структурах [KL(CH $_3$ CN)] и [KL(MeOH)] в окружение атомов К входят молекулы растворителя — MeCN или MeOH. В 6- ([KL(MeOH)]) и 7-вершинниках ([KL(CH $_3$ CN)]) атомов К значения длин связей К—О и К—N находятся в интервале 2.648—3.162 Å. В структуре [KL(CH $_3$ CN)] атомы К образуют колонки (рис. 4 и 5а), тогда как в [KL(MeOH)] анионы L связывают между собой биядерные фрагменты {K(O) $_4$ K} (рис. 5б), в которых расстояния К…К наиболее короткие в данной серии соединений и равны 3.860 Å (табл. 4).

Структура гидрата [$KL(H_2O)$] представляет собой сложный каркас (рис. 5в). В нем четыре

Рис. 2. Строение молекул [Li(H_2O)(L)]-I (a) и [Li(H_2O)(L)]-II (б) и фрагменты структур с кратчайшими контактами $O_{NO}...O_{NO}$ (в, I) и (г, II).

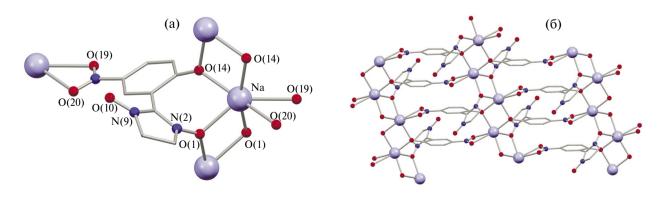


Рис. 3. Фрагмент структуры NaL (а) и слоя (б).

независимых атома K, располагающихся на оси 3, имеют различное окружение: у K(1) — это $3O_{NO}$ (2.752 Å) и $3O_{NO2}$ (2.899 Å); у K(2) — $3O_{NO3}$ (2.832 Å) и $3O_{Ph}$) $_3$ (2.994 Å); у K(3) — $6O_w$ (2.732 Å) и у K(4) — $6O_{NO2}$ (2.675 Å). Аналогичное строение имеет изоструктурная соль рубидия [RbL(H₂O)] (рис. 6, табл. 5). Так же как [KL(H₂O)], кристаллы [RbL(H₂O)] были получены в результате перекристаллизации из ацетона продукта взаимодействия RbOH с HL в воле.

Качественные кристаллы соли цезия CsL удалось получить только при проведении реакции HL и Cs_2CO_3 в метаноле с последующей перекристаллизацией продукта из ацетонитрила. Структура данной соли необычна, поскольку, несмотря на наличие катиона с самым большим ионным радиусом, его окружение формируют всего семь атомов кислорода (рис. 7, табл. 5), причем три из них находятся на существенно более коротких расстояниях (2.837—3.011Å), чем

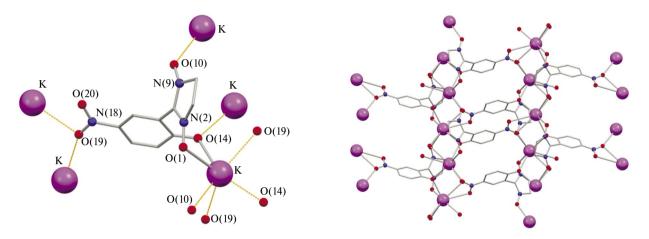
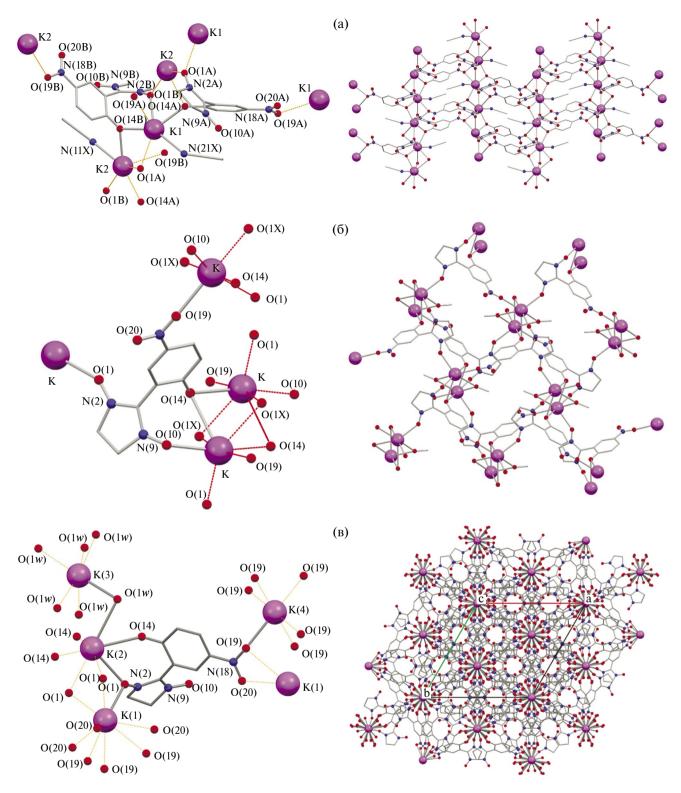



Рис. 4. Окружение атома К, аниона L и фрагмент слоя в структуре KL.

Таблица 4. Стереохимические характеристики (Å, град) соединений К

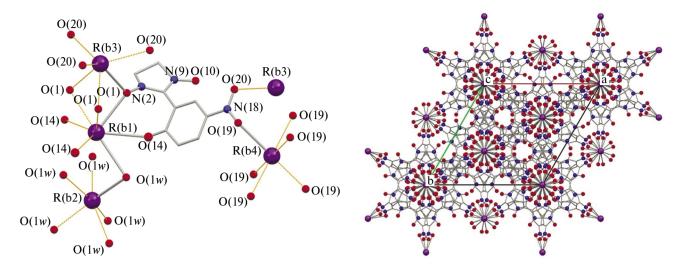

Cnaar	KL	[KL(MeCN)]	[KL(MeOH)]	[KL(H ₂ O)]
Связь		d, Å		
м о	2.750(1)	2.736(7), 2.826(7)	2.750(1)	2.752(2)
$M-O_{NO}$	2.822(2)	2.718(7), 2.788(8)	2.636(2)	2.832(2)
M. O	2.655(1)	2.648(7), 2.693(7)	2.824(1)	2.994(2)
$\mathrm{M-O_{Ph}}$	2.711(1)	2.649(7), 2.690(7)	3.162(2)	2.994(2)
M O		2.019(12), 2.062(12)	2.708(2)	2.722(2)
$M-O_{Ow/Nx}$		3.018(12), 3.063(13)	3.032(3)	2.732(2)
М	2.901(2)	2.872(7), 3.000(8)	2.712(2)	2.900(2)
$M-O_{NO2}$	2.930(2)	2.882(7), 3.003(8)	2./12(2)	2.675(2)
0-N	1.283(2)	1.283(8), 1.274(9)	1.284(2)	1.283(2)
O-N	1.282(2)	1.269(9), 1.288(9)	1.284(2)	1.281(2)
Угол		ω, гр	рад	
MO N	113.8(1)	133.6(6), 133.2(6)	135.5(1)	126.3(1)
$MO_{NO}N$	135.7(1)	130.9(6), 134.2(6)	142.6(1)	131.6(1)
$MO_{Ph}M$	110.89(5)	96.6(2), 95.7(2)	80.08(4)	
$MO_{NO}M$		91.1(2), 92.5(2)		96.68(5)
$MO_{Ow}M$			84.31(6)	92.53(6)
Расстояние		d,	Å	•
$O_{NO}O_{NO}$	3.262(2)	3.430(9)	3.824(2)	3.212(2), 3.929(2)
MM	4.4197(5)	3.959(4),	2 960(1)	4.2317(9)
IVIIVI	4.4198(5)	3.990(4)	3.860(1)	4.1725(9)

Рис. 5. Окружение L, атомов K и фрагменты структур $[KL(CH_3CN)]$ (а), [KL(MeOH)] (б) и $[KL(H_2O)]$ (в).

остальные (3.296—3.648 Å). При этом расположение атома Cs относительно бензольного кольца L таково, что пара расстояний Cs—C оказывается близки к расстояниям Cs—O из второй группы.

Температурные зависимости эффективного магнитного момента ($\mu_{\text{эфф}}$) для LiL, NaL, [KL(H2O)] и [RbL(H2O)] представлены на рис. 8 и 9. Значения $\mu_{\text{эфф}}$ в интервале темпе-

Рис. 6. Окружение L, атомов Rb и фрагмент структуры [RbL(H_2O)].

Таблица 5. Стереохимические характеристики (Å, град) соелинений Rb и Cs

A					
C	[RbL(H ₂ O)]	CsL			
Связь	d, Å				
M-O _{NO}	2.920(1), 2.853(1)	3.011(2), 3.296(2)			
$M{-}O_{Ph}$	3.083(1)	2.837(2), 3.521(3), 3.648(3)			
$M-O_{Ow}$	2.874(1)				
$M-O_{NO2}$	3.008(1), 2.8371(2)	2.954(2)			
O-N	1.280(2), 1.281(2)	1.282(3), 1.279(3)			
Угол	ω,	град			
$MO_{NO}N$	126.5(1), 132.7(1)	137.89(15), 108.51(17), 90.90(15)			
$MO_{Ph}M$		113.73(7), 84.36(6)			
$MO_{NO}M$	96.16(3)	87.4(1)			
$MO_{Ow}M$	89.84(4)				
Расстояние	d	, Å			
$O_{NO}O_{NO}$	3.339(3), 4.039(2)	4.122(3), 4.847(3)			
MM	4.2639(4), 4.2955(5)	4.3954(4), 5.3369(3)			

ратуры $50-300~{\rm K}$ близки к теоретической чисто спиновой величине $1.73~{\mu_B}$ для монорадикала. Уменьшение ${\mu_{9\varphi\varphi}}$ в области низких температур указывает на наличие слабых антиферромагнитных обменных взаимодействий между спинами анион-радикалов в твердых фазах солей.

Согласно квантово-химическим расчетам спиновая плотность в анион-радикалах сосредоточена преимущественно на фрагментах

 $\{O \cdot -N - C = N \to O\}$ (рис. 10). Кратчайшие магнитно важные контакты межлу этими фрагментами приведены в табл. 3-5. В случае соединения LiL в структуре можно выделить обменно-связанные ленты (рис. 8а), внутри которых присутствуют ферромагнитно связанные пары анион-радикалов (С...О_{NO} 3.707 Å). Между парами реализуются антиферромагнитные обменные взаимодействия через атомы Li (O_{NO}...O_{NO} 3.288 и 5.609 Å), которые приводят к уменьшению $\mu_{\text{эфф}}$ при понижении температуры. Оптимальные значения параметров обменного взаимодействия J_1 , J_2 и J_3 составляют 6.35, -2.03 и -2.00 см $^{-1}$ при g = 2.011 и коррелируют с расчетными значениями 17.0, -1.26 и 1.47 см⁻¹. В случае соединения NaL в структуре можно выделить пары обменно-связанных анион-радикалов ($O_{NO}...O_{NO}$ 2.714 Å), зависимость $\mu_{\text{эфф}}(T)$ хорошо описывается моделью димера (спин-Гамильтониан H = $-2JS_1S_2$) с оптимальными параметрами *g*-фактора и J, равными 1.97 и -6.71 см⁻¹ соответственно (рассчитанное квантово-химически значение обмена составляет -5.77 см⁻¹).

Геометрия была взята из кристаллических структур соединений без оптимизации, спиновая плотность с положительным знаком отображена оранжевым цветом, с отрицательным знаком — фиолетовым.

В изоструктурных солях [KL(H_2O)] и [RbL(H_2O)] выделяются обменно-связанные тримеры с расстояниями $O_{NO}...O_{NO}$, соответственно, 3.212 и 3.339 Å (на рис. 9 в качестве примера показан тример в структуре [KL(H_2O)]), в которых обменные взаимодействия между анион-радикалами

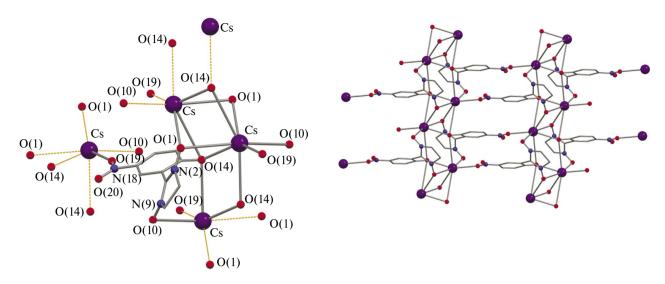
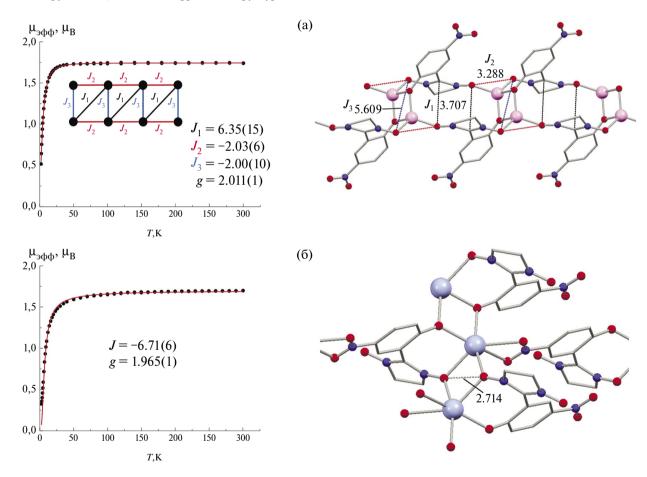



Рис. 7. Окружение L, атомов Cs и фрагмент структуры CsL.

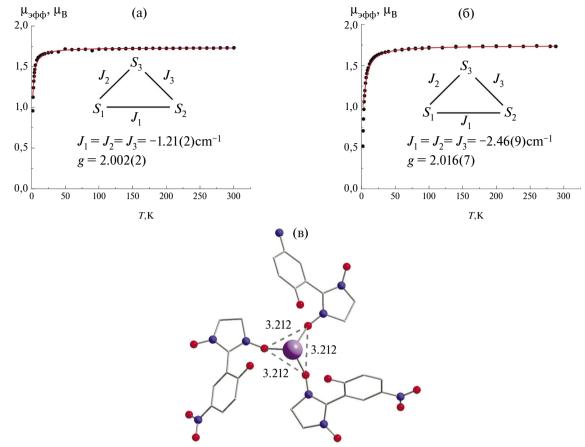
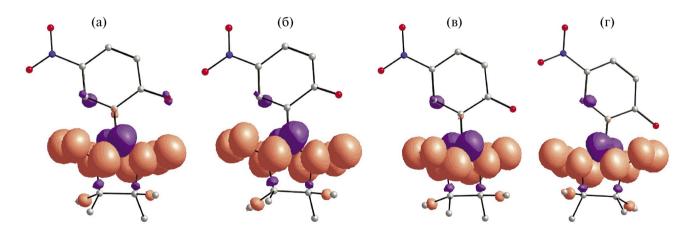


Рис. 8. Экспериментальные зависимости $\mu_{\text{эф}}(T)$ и фрагменты структуры с наиболее эффективными каналами обменных взаимодействий для LiL (a) и NaL (б).


реализуются через ион щелочного металла. Оптимальные значения g-факторов и параметров обменного взаимодействия, полученные при анализе экспериментальных зависимостей $\mu_{9\varphi\varphi}(T)$ составляют 2.016 и -2.46 см $^{-1}$ для [KL(H₂O)]

и 2.002 и $-1.21~{\rm cm^{-1}}$ для [RbL(H $_2$ O)] (спин-Гамильтониан $H=-2J(S_1S_2+S_2S_3+S_3S_1)).$

Таким образом, в результате проведенного исследования синтезирована и структурно

Рис. 9. Экспериментальные зависимости $\mu_{\text{эфф}}(T)$ для [KL(H₂O)] (а) и [RbL(H₂O)] (б) и фрагмент структуры [KL(H₂O)] (в) с наиболее эффективными каналами обменных взаимодействий.

Рис. 10. Распределение спиновой плотности (поверхности с изозначением 0.0025 е/ų) в анион-радикалах L в соединениях LiL (a), NaL (б), [KL(H_2O)] (в) и [RbL(H_2O)] (г). Спиновая плотность с положительным знаком показана оранжевым цветом, с отрицательным — фиолетовым. Атомы H были не показаны.

охарактеризована серия парамагнитных солей *s*-элементов со спин-меченным нитрофенолом. Методом рентгеноструктурного анализа показано, что в соединениях состава ML, не содержащих молекулы растворителя, анион-радикал

реализует максимально возможную дентатность и образует 7-членные хелатные циклы за счет связывания одним атомом M атомов кислорода нитроксила O_{NO} и депротонированной фенольной группы O_{Ph} . Несмотря на существенные

различия в размерах ионов металлов, в соединениях Na, K, Rb и Cs их координационное число не превышает 6 + 1, при этом в формировании окружения атомов металла принимают участие атомы кислорода нитрогруппы O_{NO2} . С увеличением радиуса иона металла происходит и увеличение средних значений длин связей М-О_{NO} (1.969, 2.368, 2.761, 2.886, 3.153 Å для L, Na, K, Rb и Cs). Парамагнитные соли имеют слоисто-полимерное или каркасное строение (молекулярные соединения получены только для Li) как за счет мостиковой функции нитронилнитроксильного фрагмента $-M-\{O \cdot -N-C=N\to O\}-M-$, так и водородных связей. В твердых фазах синтезированных солей реализуются преимущественно слабые антиферромагнитные обменные взаимодействия, энергия которых уменьшается с увеличением радиуса иона щелочного металла.

Авторы заявляют, что у них нет конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках грантов РНФ 23-13-00014 (синтез, РСА и магнетохимия) и 23-73-01224 (квантово-химические расчеты).

СПИСОК ЛИТЕРАТУРЫ

- 1. Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds / Ed. Hicks R.G., Chichester (UK): John Wiley & Sons, Ltd., 2010.
- Wang, Y., Frasconi, M., Stoddart, J.F.//ACS Cent. Sci. 2017. V. 3. P. 927. DOI: 10.1021/acscentsci.7b00219
- 3. Volodarsky, L.B. Reznikov, V.A., Ovcharenko, V.I. Synthetic Chemistry of Stable Nitroxides. CRC Press, 2017. DOI: 10.1201/9780203710159
- Tretyakov E.V, Ovcharenko V.I. // Russ. Chem. Rev. 2009. V. 78. P. 971.
 DOI: 10.1070/RC2009v078n11ABEH004093
- Likhtenshtein G.I. Nitroxides. Brief History, Fundamentals, and Recent Developments. Springer Series in Materials Science. Cham: Springer International Publishing, 2020. V. 292. DOI: 10.1007/978-3-030-34822-9
- 6. Ovcharenko V., Bagryanskaya E. // Spin-Crossover Materials / Ed. Halcrow M.A. Oxford (UK): John Wiley & Sons Ltd., 2013. P. 239.
- Demir S., Jeon I.-R., Long J.R., Harris T.D. // Coord. Chem. Rev. 2015. V. 289–290. P. 149. DOI: 10.1016/j.ccr.2014.10.012
- 8. *Luneau*, *D*. // Eur. J. Inorg. Chem. 2020. V. 2020. № 7. P. 597. DOI: 10.1002/ejic.201901210
- Meng X., Shi W. // Coord. Chem. Rev. 2019. V. 378.
 P. 134. DOI: 10.1016/j.ccr.2018.02.002

- 10. *Calancea S., Carrella L., Mocanu T. et al.* // Eur. J. Inorg. Chem. 2021. V. 2021. № 6. P. 567. DOI: 10.1002/ejic.202000954
- Răducă M., Martins D.O.T.A., Spinu C.A. et al. // Eur. J. Inorg. Chem. 2022. V. 202 2. № 16. Art. e202200128.
 DOI: 10.1002/eiic.202200128
- Vaz M.G.F. // Coord. Chem. Rev. 2021. V. 427.
 P. 213611.
 DOI: 10.1016/j.ccr.2020.213611
- 13. Ovcharenko V., Kuznetsova O., Fursova E. et al. // Inorg. Chem. 2014. V. 53. P. 10033. DOI: 10.1021/ic501787m
- Ovcharenko V., Kuznetsova O., Fursova E. et al. // Crystals. 2015. V. 5. P. 634.
 DOI: 10.3390/cryst5040634
- Ovcharenko V., Kuznetsova O., Fursova E. et al. // Inorg. Chem. 2017. V. 56. P. 14567.
 DOI: 10.1021/acs.inorgchem.7b02308
- Kuznetsova O.V.. Fursova E.Y.. Romanenko G.V. et al. // Russ. Chem. Bull. 2016. V. 65. P. 1167. DOI: 10.1007/s11172-016-1432-x.
- Blinou D.O., Zorina-Tikhonova E.N., Voronina J.K. et al. // Cryst. Growth Des. 2023. V. 23. P. 5571. DOI: 10.1021/acs.cgd.3c00201
- Bazhina E.S., Shmelev M.A., Kiskin M.A., Eremenko I.L. // Russ. J. Coord. Chem. 2021. V. 47. P. 186. DOI: 10.1134/S1070328421030015.
- Fokin S. ., Letyagin G.A., Romanenko G.V. et al. // Russ. Chem. Bull. 2018. V. 67. P. 61. DOI: 10.1007/s11172-018-2038-2
- Inoue K., Iwamura H. // Chem. Phys. Lett. 1993.
 V. 207. P. 551.
 DOI: 10.1016/0009-2614(93)89046-K
- 21. *Ovcharenko V.I.*, *Sheremetev A.B.*, *Strizhenko K.V. et al.* // Mendeleev Commun. 2021. V. 31. P. 784. DOI: 10.1016/j.mencom.2021.11.005.
- Ovcharenko V.I., Fokin S.V., Sheremetev A.B. et al. // J. Struct. Chem. 2022, V. 63. P. 1697. DOI: 10.1134/ S0022476622100158.
- 23. *Her J.-H., Stephens P.W., Davidson R.A. et al.* // J. Am. Chem. Soc. 2013. V. 135. P. 18060. DOI: 10.1021/ja410818e.
- 24. *Groom C.R.*, *Bruno I.J.*, *Lightfoot M.P.*, *Ward S.C.* // Acta Crystallogr. B. 2016. V. 72. P. 171. DOI: 10.1107/S2052520616003954
- 25. *Tretyakov E.V.*, *Eltsov I.V.*, *Fokin S.V. et al.* // Polyhedron. 2003. V. 22. P. 2499. DOI: 10.1016/S0277-5387(03)00228-6
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3, DOI: 10.1107/S1600576714022985
- 27. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3. DOI: 10.1107/S2053273314026370

- 28. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. DOI: 10.1107/S2053229614024218
- 29. *Chilton N.F.*, *Anderson R.P.*, *Turner L.D. et al.* // J. Comput. Chem. 2013. V. 34. № 13. P. 1164. DOI: 10.1002/jcc.23234
- 30. *Neese F.* // WIREs Comput. Mol. Sci. *2*022. V.12. № 5. Art e1606. DOI: 10.1002/wcms.1606
- 31. *Becke A.D.* // Phys. Rev. A. 1988 V. 38. P. 3098. DOI: 10.1103/PhysRevA.38.3098

- 32. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P.785.
 - DOI: 10.1103/PhysRevB.37.785
- 33. *Weigend F.* // Phys. Chem. Chem. Phys. 2006. V. 8. P. 1057.
 - DOI: 10.1039/b515623h
- Shoji M., Koizumi K., Kitagawa Y. et al. // Phys. Lett. 2006. V. 432. P. 343.
 DOI: 10.1016/j.cplett.2006.10.023

Compounds of s-Metals with Spin-Labeled Nitrophenol

O. V. Kuznetsova^{a, *}, G. V. Romanenko^a, P. A. Chernavin^a, G. A. Letyagin^a, and A. S. Bogomyakov^a

^a International Tomography Center, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia *e-mail: bus@tomo.nsc.ru

A series of paramagnetic salts of *s*-elements (Li, Na, K, Rb, Cs) with deprotonated nitroxide radical, 2-(2-hydroxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1*H*-imidazol-1-oxyl 3-oxide (L), were synthesized and isolated as crystals. According to X-ray diffraction data, these compounds are polymers of different dimensionality (CCDC nos. 2342497–2342506). As indicated by the results of quantum chemical calculations and magnetic measurements, weak antiferromagnetic exchange interactions predominate in the paramagnetic salts, with the interaction energy decreasing with increasing radius of the alkali metal ion.

Keywords: lithium, sodium, potassium, rubidium, cesium, nitronyl nitroxides, polymers, X-ray diffraction analysis, magnetic properties, quantum chemical calculations

REFERENCES

- 1. Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds / Ed. Hicks R.G., Chichester (UK): John Wiley & Sons, Ltd., 2010.
- Wang, Y., Frasconi, M., Stoddart, J.F. // ACS Cent. Sci. 2017. V. 3. P. 927. DOI: 10.1021/acscentsci.7b00219
- 3. Volodarsky, L.B. Reznikov, V.A., Ovcharenko, V.I. Synthetic Chemistry of Stable Nitroxides. CRC Press, 2017. DOI: 10.1201/9780203710159
- Tretyakov E.V, Ovcharenko V.I. // Russ. Chem. Rev. 2009. V. 78. P. 971. DOI: 10.1070/RC2009v078n11ABEH004093
- Likhtenshtein G.I. Nitroxides. Brief History, Fundamentals, and Recent Developments. Springer Series in Materials Science. Cham: Springer International Publishing, 2020. V. 292. DOI: 10.1007/978-3-030-34822-9
- Ovcharenko V., Bagryanskaya E. // Spin-Crossover Materials / Ed. Halcrow M.A. Oxford (UK): John Wiley & Sons Ltd., 2013. P. 239.
- 7. *Demir S., Jeon I.-R., Long J.R., Harris T.D.* // Coord. Chem. Rev. 2015. V. 289—290. P. 149. DOI: 10.1016/j.ccr.2014.10.012

- 8. *Luneau*, *D*. // Eur. J. Inorg. Chem. 2020. V. 2020. No. 7. P. 597. DOI: 10.1002/ejic.201901210
- Meng X., Shi W. // Coord. Chem. Rev. 2019. V. 378.
 P. 134.
 DOI: 10.1016/j.ccr.2018.02.002
- Calancea S., Carrella L., Mocanu T. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 6. P. 567. DOI: 10.1002/ejic.202000954
- 11. *Răducă M., Martins D.O.T.A., Spinu C.A. et al.* // Eur. J. Inorg. Chem. 2022. V. 202 2. № 16. Art. e202200128. DOI: 10.1002/ejic.202200128
- Vaz M.G.F. // Coord. Chem. Rev. 2021. V. 427. P. 213611. DOI: 10.1016/j.ccr.2020.213611
- Ovcharenko V., Kuznetsova O., Fursova E. et al. // Inorg. Chem. 2014. V. 53. P. 10033. DOI: 10.1021/ic501787m
- 14. *Ovcharenko V., Kuznetsova O., Fursova E.* et al. // Crystals. 2015. V. 5. P. 634. DOI: 10.3390/cryst5040634
- Ovcharenko V., Kuznetsova O., Fursova E. et al. // Inorg. Chem. 2017. V. 56. P. 14567. DOI: 10.1021/acs.inorgchem.7b02308

- 16. *Kuznetsova O.V.*. *Fursova E.Y.*. *Romanenko G.V. et al.* // Russ. Chem. Bull. 2016. V. 65. P. 1167. DOI: 10.1007/s11172-016-1432-x
- 17. *Blinou D.O., Zorina-Tikhonova E.N., Voronina J.K.* et al. // Cryst. Growth Des. 2023. V. 23. P. 5571. DOI: 10.1021/acs.cgd.3c00201
- Bazhina E.S., Shmelev M.A., Kiskin M.A., Eremenko I.L. // Russ. J. Coord. Chem. 2021. V. 47. P. 186. DOI: 10.1134/S1070328421030015
- Fokin S. ., Letyagin G.A., Romanenko G.V. et al. // Russ. Chem. Bull. 2018. V. 67. P. 61. DOI: 10.1007/s11172-018-2038-2
- Inoue K., Iwamura H. // Chem. Phys. Lett. 1993.
 V. 207. P. 551.
 DOI: 10.1016/0009-2614(93)89046-K
- 21. Ovcharenko V.I., Sheremetev A.B., Strizhenko K.V. et al. // Mendeleev Commun. 2021. V. 31. P. 784. DOI: 10.1016/j.mencom.2021.11.005
- Ovcharenko V.I., Fokin S.V., Sheremetev A.B. et al. // J. Struct. Chem. 2022, V. 63. P. 1697. DOI: 10.1134/S0022476622100158
- 23. Her J.-H., Stephens P.W., Davidson R.A. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 18060. DOI: 10.1021/ja410818e
- 24. *Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C.* // Acta Crystallogr. B. 2016. V. 72. P. 171. DOI: 10.1107/S2052520616003954

- 25. Tretyakov E.V., Eltsov I.V., Fokin S.V. et al. // Polyhedron. 2003. V. 22. P. 2499. DOI: 10.1016/S0277-5387(03)00228-6
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3, DOI: 10.1107/S1600576714022985
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. DOI: 10.1107/S2053273314026370
- 28. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3. DOI: 10.1107/S2053229614024218
- 29. *Chilton N.F., Anderson R.P., Turner L.D. et al.* // J. Comput. Chem. 2013. V. 34. № 13. P. 1164. DOI: 10.1002/jcc.23234
- 30. *Neese F.* // WIREs Comput. Mol. Sci. *2*022. V.12. № 5. Art e1606. DOI: 10.1002/wcms.1606
- 31. *Becke A.D.* // Phys. Rev. A. 1988 V. 38. P. 3098. DOI: 10.1103/PhysRevA.38.3098
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988.
 V. 37. P.785.
 DOI: 10.1103/PhysRevB.37.785
- Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8.
 P. 1057.
 DOI: 10.1039/b515623h
- Shoji M., Koizumi K., Kitagawa Y. et al. // Phys. Lett. 2006. V. 432. P. 343.
 DOI: 10.1016/j.cplett.2006.10.023

Посвящается профессору В.П. Федину по случаю его 70-летия

УДК 542.06; 546.24; 546.266; 546.719; 546.65

СЛОИСТЫЕ КООРДИНАЦИОННЫЕ ПОЛИМЕРЫ НА ОСНОВЕ КЛАСТЕРНЫХ КОМПЛЕКСОВ [$Re_6Q_8(CN)_6$]⁴⁻ (Q = S ИЛИ Se) И ДИМЕРНЫХ КАТИОНОВ $\{(Ag(Dppe))_2(\mu-Dppe)\}^{2+}$

© 2024 г. Ю. М. Литвинова¹, Я. М. Гайфулин¹, Т. С. Сухих¹, К. А. Брылев¹, Ю. В. Миронов^{1,*}

¹ Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия
^{*}e-mail: vuri@niic.nsc.ru

Поступила в редакцию 21.03.2024 г. После доработки 19.04.2024 г. Принята к публикации 21.04.2024 г.

Изучено взаимодействие солей кластерных анионов $[Re_6Q_8(CN)_6]^{4-}$ с дицианоаргентат-анионом $[Ag(CN)_2]^-$ в присутствии 1,2-бис (дифенилфосфино) этана. В условиях сольвотермального синтеза были получены два новых координационных полимера $[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6S_8(CN)_6\}]^-$ (I) и $[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6S_8(CN)_6\}]_{0,85}[\{(Ag(Dppe))(Ag(DppeSe))(\mu-Dppe)\}_2\{Re_6S_8(CN)_6\}]_{0,15}$ (II). Исследование монокристаллов соединений методом PCA (CCDC № 2341356 (I) и 2341355 (II)) показало, что они имеют слоистую структуру. Изучение кристаллических порошков соединений методом порошковой дифракции показало, что синтез соединения II приводит к образованию двух кристаллических фаз, одна из которых изоструктурна соединению I. Параметры люминесценции соединений в твердом теле (квантовые выходы, времена жизни эмиссии) схожи с параметрами других координационных полимеров на основе ионов $[Re_6Q_8(CN)_6]^{4-}$.

Ключевые слова: рений, кластер, серебро, кристаллическая структура, координационные полимеры, люминесценция

DOI: 10.31857/S0132344X24100072, EDN: LPNGRC

Синтез и исследование октаэдрических кластерных соединений тяжелых переходных металлов активно ведутся, начиная с 1960-х гг. [1-4]. Интерес к этим соединениям не исчез и по сей день благодаря разнообразию структурных характеристик и практически значимых физико-химическим свойств [5-10]. В частности, октаэдрические халькогенидные кластерные комплексы рения обладают яркой фосфоресценцией в красной области спектра и стабильностью в двух зарядовых состояниях, переход между которыми сопровождается изменением спектральных и магнитных свойств [11–13]. Такое сочетание делает гексарениевые кластеры хорошими кандидатами для получения сенсоров с люминесцентным откликом и люминесцентных материалов. Кроме того, высокая термическая и гидролитическая стабильность, а также устойчивость в широком диапазоне рН позволяют проводить реакции с участием таких кластерных комплексов не только в мягких условиях растворного синтеза, но и в сольвотермальных условиях [14] и в расплавах реагентов [15].

Халькоцианидные кластерные комплексы рения $[Re_6Q_8(CN)_6]^{4-}$ (Q = S, Se или Te) имеют шесть апикальных циано-лигандов и представляют собой объемные жесткие высоко симметричные металлолинкеры. Было показано, что эти кластерные анионы могут быть использованы для синтеза координационных полимеров различной размерности на основе катионов 3d- [16, 17] и 4f- [14, 18] металлов. Благодаря сочетанию свойств, присущих кластерным анионам и катионным координационным узлам, такие полимеры могут демонстрировать мультифункциональные свойства, повышая их потенциальную применимость в качестве компонентов различных материалов.

В последние годы активно исследуются координационные комплексы на основе катионов Ag⁺. Было показано, что они могут обладать электропроводностью [19], биологической активностью [20] и проявлять интересные люминесцентные свойства [21-23]. Способность к образованию аргентофильных взаимодействий, способных радикально влиять на люминесцентные свойства [24–26], механохромизм [27], а также возможность получать соединения, проявляющие термоактивируемую замедленную флуоресценцию (thermally activated delayed fluorescence, TADF) [28-30], делает комплексы серебра идеальными координационными узлами для получения полимеров с «улучшенными» фотофизическими свойствами.

Ранее нами было показано [31], что прикомплексов серебра сутствие катионных с люминесцентными N-донорными ароматическими лигандами в структурах координационных полимеров на основе кластерных комплексов $[Re_6Q_8(CN)_6]^{4-}$ (Q = S или Se) приводит к увеличению значений характеристик квантового выхода и времени жизни люминесценции в сравнении с исходными солями кластерных комплексов. В данной работе получены и исследованы люминесцентные свойства двух новых слоистых координационных полимеров $[{(Ag(Dppe))_2(\mu-Dppe)}_2{Re_6S_8(CN)_6}] \cdot H_2O(I)$ и $[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2(\mu-Dppe)]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2(\mu-Dppe)]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2(\mu-Dppe)]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2(\mu-Dppe)]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2(\mu-Dppe)]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2(\mu-Dppe)]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)]_{0.85}[\{(Ag(Dppe$ (Dppe))(Ag(DppeSe))(μ -Dppe) $_{2}$ {Re₆Se₈(CN)₆}]_{0.15} (II) на основе кластерных комплексов и катионов Ag⁺ с бидентатным Р-донорным лигандом 1,2-бис(дифенилфосфино) этаном (**Dppe**).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соли $Cs_3K[Re_6S_8(CN)_6]\cdot 2H_2O$ и $K_4[Re_6Se_8(CN)_6]\cdot 3.5H_2O$ получали по описанным методикам [32, 33]. Коммерчески доступные реагенты и растворители использовали без дополнительной очистки.

Соотношение элементов C, H, N определялось на анализаторе EuroVector EA3000.

Соотношение тяжелых элементов в полученных комплексах определяли методом энергодисперсионного рентгеновского анализа на электронном микроскопе HitachiTM-3000 с ЭДС анализатором BrukerNano.

Спектры возбуждения, фотолюминесценции и времена жизни возбужденных состояний

поликристаллических образцов I и II записывали на спектрофлуориметре Horiba Fluorolog 3 (Horiba Jobin Yvon). Значения абсолютного квантового выхода были определены при 298 К с использованием интегрирующей сферы Fluorolog 3 Ouanta-phi.

Синтез $[{(Ag(Dppe))_2(\mu-Dppe)}_2{Re_6S_8(CN)_6}]$: H_2O (I). В ампулу с закручивающейся крышкой помещали растворы: Dppe (40 мг, 0,101 ммоль) в 1 мл EtOH и 1 мл CH₃CN, K[Ag(CN)₂] (10 мг, 0.051 ммоль) в 1 мл H_2O и $Cs_3K[Re_6S_8(CN)_6]$ $2H_2O$ (28 мг, 0,014 ммоль) в 1 мл H_2O . Ампулу помещали в сушильный шкаф, нагретый до 120 °C, и выдерживали 96 ч. По истечении этого времени ампулу извлекали из сушильного шкафа и переворачивали, чтобы образовавшиеся оранжевые игольчатые кристаллы оставались на дне ампулы, а горячий маточный раствор перемещался в противоположный ее конец. После остывания ампулы из маточного раствора выпадал бесцветный аморфный осадок. Крышку откручивали, затем маточный раствор с бесцветным порошком декантировали. Кристаллический продукт извлекали из ампулы на фильтр Шотта и промывали смесью воды и ацетонитрила (1:1 об.), затем водой. Полученные кристаллы соединения І высушивали на воздухе. Выход 34 мг (55,5%). ЭДС: Re: S: Ag = 6.0:8.1:4.1.

Найдено, %: С 44,7; Н 3,5; N 1,9; S 5,9. Для $C_{162}H_{146}N_6OP_{12}S_8Ag_4Re_6$ Вычислено, %: С 44,5; Н 3,4; N 1,9; S 5,9.

Синтез [{(Ag(Dppe))₂(μ -Dppe)}₂{Re₆Se₈(CN)₆}]_{0,85} [{(Ag(Dppe))(Ag(DppeSe))(μ -Dppe)}₂{Re₆Se₈ (CN)₆}]_{0,15} (II) выполняли по методике, аналогичной методике получения соединения I. Вместо Cs₃K[Re₆S₈(CN)₆] · 2H₂O взяли K₄[Re₆Se₈(CN)₆]·3,5H₂O (30 мг, 0,014 ммоль). Выход 35 мг (52,8%). ЭДС: Re : Se : Ag = 6,0 : 8,2 : 4,1.

Найдено, %: С 41,0; Н 3,3; N 1,8. Для $C_{324}H_{290}N_{12}OP_{24}Se_{16,3}Ag_8Re_{12}$ вычислено, %: С 41,0; Н 3,1; N 1,8 (рассчитано для соотношения фаз 1 : 1).

РСА для монокристаллов I и II проведен в ЦКП ИНХ СО РАН на дифрактометре Bruker D8 Venture с детектором СМОЅ PHOTON III и микрофокусным источником $I\mu S 3,0 \, (Mo K_{\alpha}$ -излучение, $\lambda = 0,71073$ Å, фокусирующие зеркала Монтеля) при 150 К. Кристаллические структуры решены с помощью SHELXT [34] и уточнены с помощью программ SHELXL [35] с графическим интерфейсом OLEX2 [36]. Параметры атомного смещения для неводородных атомов

уточнены анизотропно за исключением минорной части разупорядоченных лигандов Dppe в II. Атомы Н локализованы геометрически и уточнены в модели «наездника». Кристаллографические характеристики соединений I и II приведены в табл. 1.

Кристаллографические параметры комплексов I и II депонированы в Кембриджском банке структурных данных (ССDС № 2341356 и 2341355 соответственно) и могут быть получены у авторов или по адресу https://www.ccdc.cam. ac.uk).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

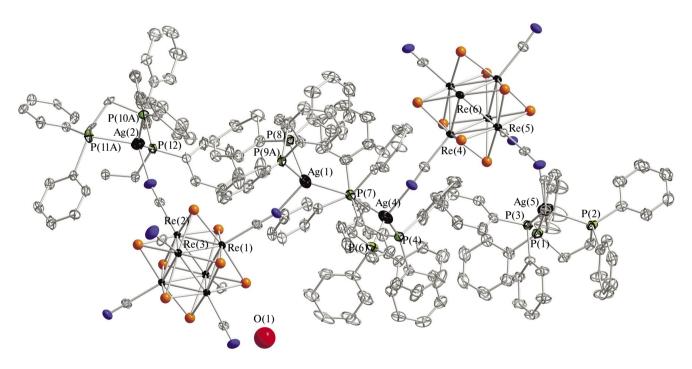
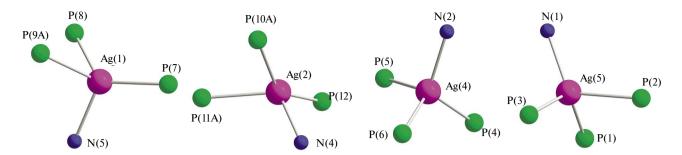

Соединение I кристаллизуется в пространственной группе $P2_1/n$. Независимый фрагмент включает шесть атомов рения, восемь атомов серы, по шесть атомов С и N шести цианолигандов, четыре атома Ag и атомы шести молекул Dppe (12 атомов P, 162 атома C, 144 атома H) (рис. 1). Также независимый фрагмент включает в себя атом кислорода сольватной молекулы H_2 O. Кластерный фрагмент в структуре соединения имеет геометрию, типичную для координационных полимеров на его основе [31]. Длины

Таблица 1. Кристаллографические характеристики, детали эксперимента и уточнения структур I и II

п	Значение				
Параметр	I	II			
Брутто-формула	$C_{162}H_{145}N_6O_{0,5}P_{12}S_8Ag_4Re_6$	$C_{81}H_{72,5}N_3O_{0,25}P_6Se_{4,14}Ag_2Re_3$			
M	4360,63	2379,36			
Гемпература, <i>К</i>	150(2)	150(2)			
Пр. группа	$P2_1/n$	$P2_1/c$			
ı, Å	28,6620(7)	16,5603(4)			
, Å	16,5801(4)	17,5968(3)			
, Å	33,4322(8)	28,8534(6)			
3, град	95,2930(10)	101,2840(10)			
′, ų	15819,9(7)	8245,6(3)			
Z	4	4			
Р(выч.), г/см ³	1,831	1,917			
, MM ⁻¹	5,333	6,844			
7(000)	8436,0	4526,0			
азмер кристалла	$0.12 \times 0.04 \times 0.02$	$0.18 \times 0.18 \times 0.07$			
(иапазон сбора данных по 20, град	3,144-61,016	3,412-61,056			
Циапазоны <i>h, k, l</i>	$-40 \le h \le 40, -23 \le k \le 23,$ $-42 \le l \le 47$	$-23 \le h \le 23, -25 \le k \le 25,$ $-36 \le l \le 41$			
Іисло измеренных рефлексов	213171	101524			
Іисло независимых рефлексов ($R_{ m int},R_{ m o}$)	48287 (0,0625, 0,0592)	25192 (0,0502, 0,0513)			
Нисло данных/ограничений/уточняемых параметров	48287/700/2074	25192/140/916			
GOOF по <i>F</i> ²	1,014	1,021			
$R_1, wR_2 (I \ge 2\sigma(I))$	0,0364, 0,0665	0,0478, 0,0929			
R_1 , wR_2 (все данные)	0,0640, 0,0754	0,0743, 0,1033			
$\Delta \rho_{\rm max}/\Delta \rho_{\rm min}, {\rm e}/{\rm \mathring{A}}^3$	1,39/–1,22	2,47/-1,46			

связей Re-Re, Re-S и Re-C приведены в табл. 2. Каждый атом серебра включает в свою координационную сферу один атом N цианогруппы кластерного комплекса и три атома Р двух молекул лиганда. Таким образом, координационное число (**КЧ**) атома катиона Ag⁺ равно 4. Координационный полиэдр — искаженный тетраэдр (рис. 2). Для атомов серебра Ag(1) и Ag(2) хелатные молекулы Орре разупорядочены по двум позициям с заселенностью 0.56 и 0.44, 0.64 и 0.36 соответственно. Два атома серебра образуют димерный катионный фрагмент {(Ag(Dppe))₂(µ-Dppe)²⁺ (рис. 3). Каждый атом серебра димерного катионного комплекса связан с одним атомом азота цианогруппы кластера. Каждый кластер, в свою очередь, предоставляет четыре цианолиганда в экваториальном положении для связи с атомами серебра. Таким образом образуется слой (рис. 4). В упаковке слои располагаются параллельно друг другу, образуя многочисленные π - π - взаимодействия между фенильными кольцами соседних слоев.


Соединение II кристаллизуется в пространственной группе $P2_1/c$. Характерной особенностью структуры соединения является наличие частично заселенной позиции атома Se на расстоянии ковалентной связи как от ближайшего атома Ag (2,534 Å), так и от атома фосфора (2,039 Å). Расстояния между атомами фосфора и селена является типичным для селенофосфинов [37—39], что отвечает частичному превра-

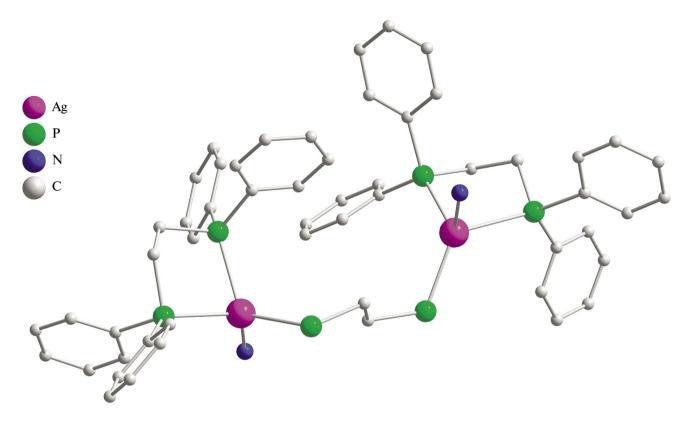

Рис. 1. Фрагмент структуры соединения I с нумерацией симметрически независимых атомов (приведены тепловые эллипсоиды 75%-ной вероятности, атомы водорода не показаны).

Таблица 2. Основные длины связей в соединениях I и II

Связь]	[II		
	Интервал	Среднее	Интервал	Среднее	
Re-Re	2,5927(2)-2,6100(2)	2,603(5)	2,26316(3)-2,6393(3)	2,59(4)	
Re-Q	2,3989(9)-2,4167(11)	2,408(4)	2,5147(7)-2,536(7)	2,524(5)	
Re-C	2,104(4)-2,122(4)	2,113(5)	2,097(6)-2,105(7)	2,100(3)	
Ag-P	2,360(4)-2,656(2)	2,50(7)	2,31(2)-2,568(2)	2,48(8)	
Ag-N	2,264(4)-2,289(4)	2,27(1)	2,021(7)-2,296(6)	2,1(2,1)	
Ag-Se			2,05(2)		

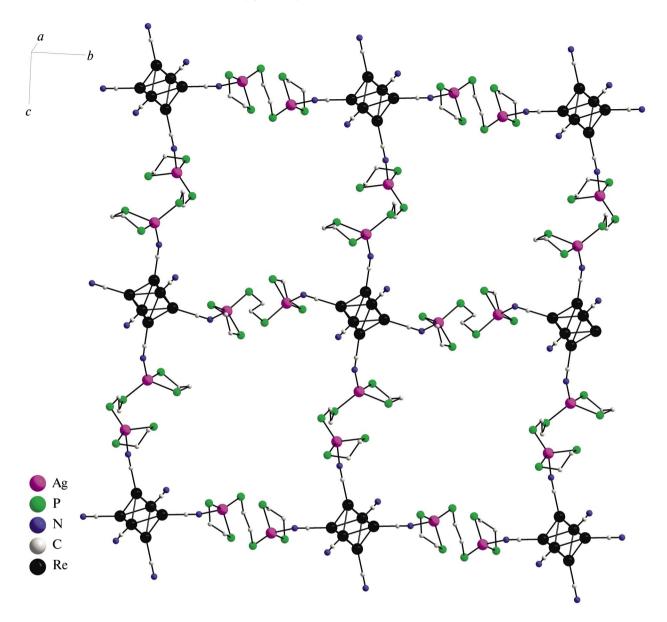

Рис. 2. Координационное окружение атомов Ag(1), Ag(2), Ag(4) и Ag(5).

Рис. 3. Строение димерного фрагмента $[{Ag(Dppe)}_2\mu$ -Dppe $]^{2+}$ в соединении I. Атомы водорода, а также фенильные кольца мостиковой молекулы Dppe не показаны.

щению одного из хелатирующих лигандов Dppe в DppeSe в процессе сольвотермального синтеза. Таким образом, независимый фрагмент соединения включает в себя половину кластерного комплекса (три атома Re, четыре атома Se и по три атома N и C трех цианолигандов), два атома Ag и атомы трех молекул Dppe (6 атомов P, 78 атомов C, 72 атома H), а также позицию атома селена с заселенностью 0,15 (рис. 5). Координационная сфера атома Ag(1) включает в себя три атома P двух молекул Dppe и один атом N цианолиганда кластерного комплекса (рис. 6). Второй атом Ag разупорядочен по двум позициям Ag(2A)

и Ag(2B) с заселенностями 0,85 и 0,15 соответственно. Молекулы Dppe, связанные со вторым атомом серебра, также демонстрируют разупорядочение. Молекула, связанная с атомом Ag(2B), представляет собой 1,2-бис(дифенилфосфин) этан селенид. Заселенность позиций, соответствующих этому лиганду, составляет 0,15. Причем в данном случае атом серебра координирован только атомом селена молекулы DppeSe, в то время как атом фосфора остается свободным (рис. 5б). Таким образом, KЧ атома Ag(2B) равно 3 (рис. 6). Атом Ag(2A) имеет KЧ, равное 4, и включает в свою координационную сферу

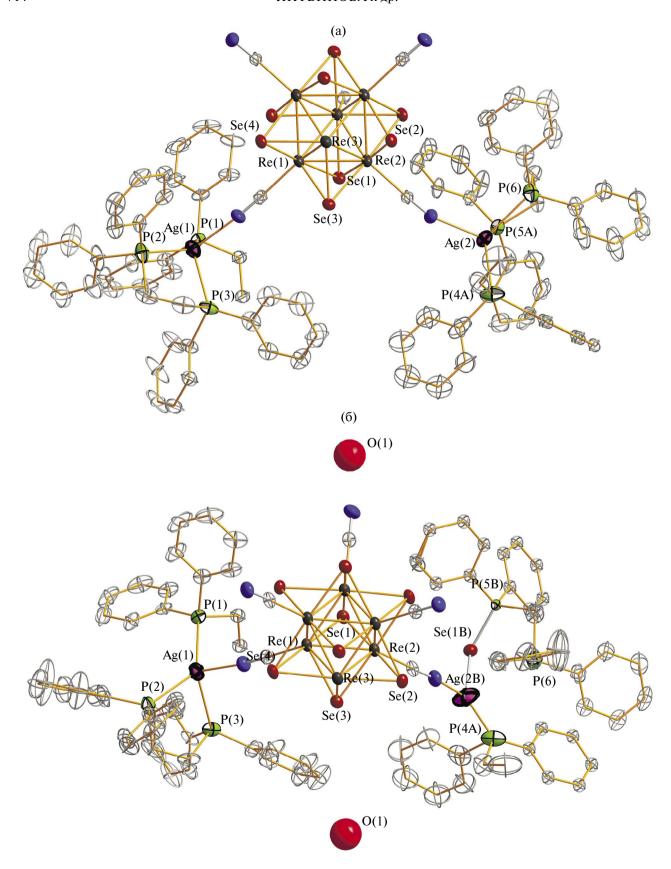
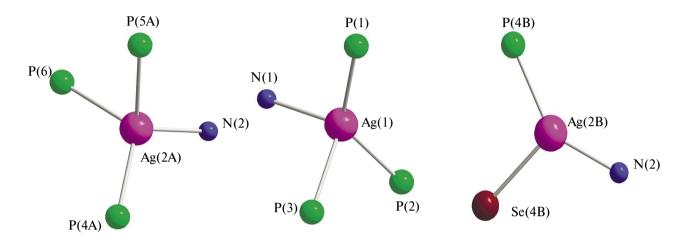
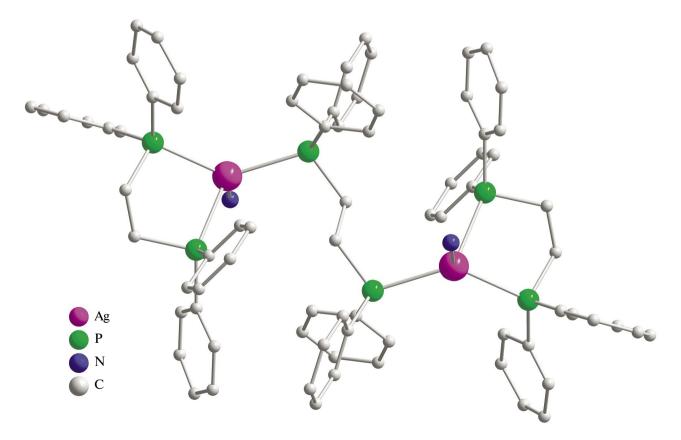


Рис. 4. Фрагмент слоистой структуры соединения I. Атомы S, молекулы фенильных колец Dppe и сольватные молекулы H_2O не показаны.

два атома Р хелатной молекулы Dppe, один атом Р мостиковой молекулы Dppe и атом N цианогруппы (рис. 6). В структуре соединения II присутствуют димерные фрагменты {(Ag(Dppe))₂(µ-Dppe)}²⁺, однако его геометрия отличается от геометрии аналогичного фрагмента структуры соединения I из-за присутствия лиганда DppeSe в позиции одной из хелатирующих молекул Dppe (рис. 7). Изменение геометрии катионной части не приводит к изменению типа структуры: как и в структуре I, каждый кластерный комплекс в структуре II связывает по четыре катионных димера посредством цианолигандов, образуя слой (рис. 8). В обеих структурах центры кла-

стерных анионов расположены в узлах квадратных ячеек сетки со сторонами 16,5 х 17,5 Å, а димерные комплексы зигзагообразно пересекают ребра сетки. Однако расположение хелатных молекул Dppe в димерном комплексе относительно плоскости слоя для структур I и II неодинаково.


В литературе для синтеза соединений на основе серебра и фосфиновых лигандов в качестве источника Ag⁺ в большинстве случаев используют различные ионные неорганические соли серебра. В ряде работ описано влияние противоиона на структуру полученных соединений, что может быть критичным при образовании полия-


Рис. 5. Независимый фрагмент структуры соединения II с нумерацией тяжелых симметрически независимых атомов с отображением лигандов Dppe (а) и DppeSe (б), координированных к разупорядоченному атому Ag(2) (а) или Ag(2B) (б) соответственно. Приведены тепловые эллипсоиды 75%-ной вероятности. Атомы водорода не показаны.

дерных комплексов серебра, демонстрирующих аргентофильные взаимодействия [40]. В данной работе в качестве источника серебра был использован $K[Ag(CN)_2]$. В литературе описаны синтетические подходы с применением дицианоаргентата и цианида серебра для получения люминесцентных комплексов серебра с органическими лигандами, но число таких работ отно-

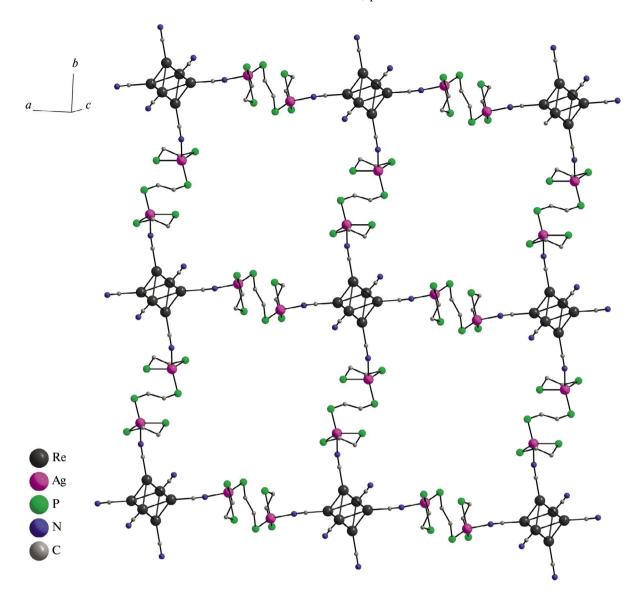

сительно невелико. В случае соединений I и II выбор растворимого в воде дицианоаргентата является критичным для получения кристаллического продукта. Взаимодействие кластерных комплексов с водными растворами солей серебра, диссоциирующими с образованием Ag⁺, приводит к мгновенному образованию аморфного осадка.

Рис. 6. Координационное окружение атомов Ag(1), Ag(2A) и Ag(2B) в соединении II.

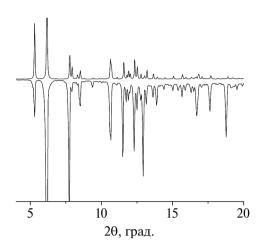

Рис. 7. Строение димерного фрагмента $\{(Ag(Dppe))_2(\mu-Dppe)\}^{2+}$ в соединении II. Атомы водорода не показаны.

Рис. 8. Фрагмент слоистой структуры соединения II. Атомы Se, фенильные кольца молекул Dppe и атомы водорода не показаны.

Длительный сольвотермальный синтез соединений I и II в смеси растворителей приводит к медленному образованию кристаллической фазы. Соединения I и II кристаллизуются в разных пространственных группах, однако имеют похожую структуру полимерных слоев, обладают схожей геометрией узлов и демонстрируют аналогичные упаковки. Фазовая чистота соединения I была подтверждена методом рентгенофазового анализа (рис. 9). Дифрактограмма массы вещества (поликристаллического порошка), выделенного из синтеза соединения II, демонстрирует, что в результате синтеза было получено две кристаллические фазы, одна из которых соответствует соединению II, а вторая изоструктурна

соединению I (рис. 10). Эти данные указывают на то, что в процессе синтеза соединения II параллельно протекают несколько процессов: кристаллизация неохарактеризованного соединения, изоструктурного соединению I, частичное разложение кластерных анионов [$Re_6Se_8(CN)_6$]⁴ с высвобождением в раствор селенид-аниона, взаимодействие селенид-аниона с растворенным Dppe с образованием DppeSe и, наконец, кристаллизация соединения II. Варьирование условий синтеза не позволило селективно получить одну из фаз, однако изменение температуры в диапазоне 100-120 °C приводит к изменению соотношения этих фаз по данным рентгенофазового анализа.

Рис. 9. Экспериментальная порошковая дифрактограмма соединения I в поликристаллическом образце (снизу) в сравнении с расчетной по структуре монокристалла (сверху).

Атомы серебра обладают высокой аффинностью к атому фосфора и, как следствие, производные трифенилфосфина являются распространенными лигандами для синтеза координационных соединений на основе катионов серебра. Исключением не являются и бис (дифенил)фосфины и, в частности, 1,2-бис(дифенилфосфин)этан. В литературе таких соединений представлено более ста. Однако для большей части соединений молекула Dppe выступает в качестве линкера, не образуя хелатный комплекс с катионом серебра. В структуре соединений I и II в качестве катионной части выступает димерный фрагмент $\{(Ag(Dppe))_2(\mu-Dppe)\}^{2+}$. Интересно, что в литературе был найден всего один подобный фрагмент в структуре дискретного соединения $[Ag(Dppe)(\mu-Dppe)]_2^{2+}$ [41], где по две молекулы Dppe выступают в качестве мостиковых и хелатных лигандов. Также анализ литературы показал, что Dppe достаточно редко выступает в качестве хелатирующего лиганда в подобных соединениях. На данный момент в Кембриджском банке структурных данных нашлось всего 11 таких соединений [41-52]. Также в структурах соединений, представленных в литературе, можно найти димерные катионные фрагменты ${Ag_2(\mu\text{-}Dppe)}^{2+}$ и ${Ag(\mu\text{-}Dppe)}_2^{2+}$, где два атома серебра связаны одной или двумя молекулами **Орре**, координированными бидентатно. Среди опубликованных структур есть дискретные соединения, где атомы серебра имеют в своем координационном окружении дополнительные терминальные лиганды [53-55], и ряд цепочечных соединений, где лигандом-линкером выступает Орре [56-59]. В большинстве же

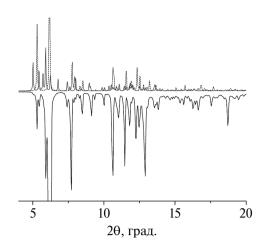


Рис. 10. Экспериментальная порошковая дифрактограмма соединения II в поликристаллическом образце (снизу) в сравнении с расчетными по структурам монокристаллов соединений I (сверху, сплошная линия) и II (сверху, пунктирная линия).

случаев атомы серебра связываются в цепочки через Dppe. В таких цепочках атомы серебра могут быть дополнительно координированы различными терминальными лигандами [56, 60–65]. Добавление полидентатных лигандов в ряде случаев приводит к образованию двумерных полимерных структур за счет связывания цепочек {Ag(µ-Dppe)} молекулами-линкерами в слои [66–68]. В случае соединений I и II кластерные комплексы выступают в качестве тетрадентатных металлолинкеров, соединяющих димерные катионные фрагменты серебра, образуя димерную структуру.

Халькоцианидные кластерные комплексы $[Re_6Q_8(CN)_6]^{4-}$ (Q = S или Se) обладают яркой фосфоресценцией в красной области спектра [11]. Ранее было показано, что координационные полимеры на основе таких анионных кластерных комплексов и катионов серебра с N-донорными лигандами демонстрируют люминесцентные характеристики, превосходящие характеристики исходных солей кластерных комплексов с катионами щелочных металлов [30]. Спектры эмиссии соединений I и II демонстрируют полосы, характерные для кластеров $[Re_6Q_8(CN)_6]^{4-}$, без заметного вклада комплекса Ад⁺ с лигандом (рис. 11). Квантовые выходы и времена жизни эмиссии сопоставимы с характеристиками твердотельных образцов соответствующих солей $(Bu_4N)_4[Re_6Q_8(CN)_6]$ (Q = S или Se) [69] (табл. 3).

Авторы заявляют, что у них нет конфликта интересов.

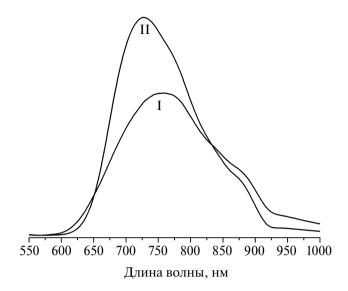


Рис. 11. Спектры фотолюминесценции соединений I и II.

Таблица 3. Основные люминесцентные характеристики твердотельных образцов соединений I и II и солей кластерных комплексов ($\lambda_{\scriptscriptstyle 3M}$ — длина волны, соответствующая максимуму спектра люминесценции, $\tau_{\scriptscriptstyle 3M}$ — время жизни эмиссии, $\Phi_{\scriptscriptstyle 3M}$ — квантовый выход эмиссии)

Соотиномио	Эмиссия порошка					
Соединение	τ _{эм} , нм	$\tau_{_{9M}}$, MKC	$oldsymbol{\Phi}_{\scriptscriptstyle{\mathrm{9M}}}$			
I	760	13	0,02			
II	726	15	0,03			
$(Bu_4N)_4[Re_6S_8(CN)_6][69]$	746	5,8	0,021			
$(Bu_4N)_4[Re_6Se_8(CN)_6][69]$	737	14,1	0,049			

БЛАГОДАРНОСТИ

Авторы благодарят Министерство науки и высшего образования Российской Федерации за поддержу Центр коллективного пользования Института неорганической химии им. А.В. Николаева СО РАН.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке гранта Российского научного фонда (проект № 23-13-00081). Люминесцентные свойства были изучены в ресурсном центре «Оптические и лазерные методы исследования вещества» Научного парка Санкт-Петербургского государственного университета при финансовой поддержке гранта Российского научного фонда (проект № 19-73-20196-П).

СПИСОК ЛИТЕРАТУРЫ

- 1. Sheldon J.C. // J. Chemi. Soc. (Resumed). 1962. P. 410.
- 2. *McCarley R.E.* // Brown T.M., Inorg. Chem. 1964. Vol. 3. № 9. P. 1232.
- 3. *Kuhn P.J., McCarley R.E.* // Inorg. Chem. 1965. Vol. 4. № 10. P. 1482.
- 4. *Spangenberg M. Bronger W.* //Angew. Chem. Int. Ed. 1978. Vol. 17. № 5. P. 368.
- 5. *Robin M., Dumait N., Amela-Cortes M., et al.* // Chem. Eur. J. 2018. Vol. 24. № 19. P. 4825.
- 6. *Sokolov M.N., Brylev K.A., Abramov P.A., et al.* // Eur. J. Inorg. Chem. 2017. Vol. 2017. № 35. P. 4131.
- 7. *Muravieva V.K.*, *Gayfulin Y.M.*, *Ryzhikov M.R.*, *et al.* // Dalton Trans. 2018. Vol. 47. № 10. P. 3366.
- 8. *Vorotnikova N.A., Vorotnikov Y.A., Shestopalov M.A.* // Coord. Chem. Rev. 2024. Vol. 500. №, P. 215543.
- 9. *Kirakci K., Shestopalov M.A., Lang K. //* Coord. Chem. Rev. 2023. Vol. 481. P. 215048.
- 10. Nguyen N.T.K., Lebastard C., Wilmet M., et al. // Sci. Technol. Adv. Mater. 2022. Vol. 23. № 1. P. 547.
- 11. *Yoshimura T., Ishizaka S., Sasaki Y., et al.* // Chem. Lett. 1999. Vol. 28. № 10. P. 1121.
- 12. *Ларина Т.В., Икорский В.Н., Васенин Н.Т. и др.* // Коорд. химия. 2002. Т. 28. № 8. С. 591.
- 13. Litvinova Y.M., Gayfulin Y.M., Kovalenko K.A., et al. // Inorg. Chem. 2018. Vol. 57. № 4. P. 2072.
- 14. *Litvinova Y.M.*, *Gayfulin Y.M.*, *Van Leusen J.*, *et al.* // Inorg. Chem. Front. 2019. Vol. 6. № 6. P. 1518.
- 15. *Ulantikov A.A., Gayfulin Y.M., Sukhikh T.S., et al.* // J. Struct. Chem. Engl. Tr. 2021. Vol. 62. № 7. P. 1009.
- 16. *Naumov N.G., Virovets A.V., Sokolov M.N., et al.* // Angew. Chem. Int. Ed. 1998. Vol. 37. № 13-14. P. 1943.
- 17. *Naumov N.G., Virovets A.V., Artemkina S.B., et al.* // J. Solid State Chem. 2004. Vol. 177. № 6. P. 1896.
- 18. Artemkina S.B., Naumov N.G., Virovets A.V., et al. // Inorg. Chem. Commun. 2001. Vol. 4. № 8. P. 423.
- 19. *Niu G.-H.*, *Wentz H.C.*, *Zheng S.-L.*, *Campbell. M.G.* // Inorg. Chem. Commun. 2019. Vol. 101. P. 142.
- 20. *Medici S., Peana M., Crisponi G., et al.* // Coord. Chem. Rev. 2016. Vol. 327–328. P. 349.
- 21. *Hamze R.*, *Shi S.*, *Kapper S.C.*, *et al.* // J. Am. Chem. Soc. 2019. Vol. 141. № 21. P. 8616.
- 22. *Kakizoe D., Nishikawa M., Degawa T., Tsubomura T.* // Inorg. Chem. Front. 2016. Vol. 3. № 11. P. 1381.
- 23. *Romanov A.S., Jones S.T.E., Yang L., et al.* // Adv. Opt. Mate. 2018. Vol. 6. № 24. P. 1801347.
- 24. *Lin Y.-Y.*, *Lai S.-W.*, *Che C.-M.*, *et al.* // Inorg. Chem. 2005. Vol. 44. № 5. P. 1511.
- 25. *Schmidbaur H., Schier A.* // Angew. Chem. Int. Ed. 2015. Vol. 54. № 3. P. 746.
- 26. Wing-Wah Yam V., Kam-Wing Lo. K., et al. // Coord. Chem. Rev. 1998. Vol. 171. P. 17.

- 27. *Tsukuda T., Kawase M., Dairiki A., et al.* // Chem. Commun. 2010. Vol. 46. № 11. P. 1905.
- 28. Chen J., Teng T., Kang L., et al. // Inorg. Chem. 2016. Vol. 55. № 19. P. 9528.
- 29. *Osawa M., Hashimoto M., Kawata I., Hoshino M. //* Dalton Trans. 2017. Vol. 46. № 37. P. 12446.
- 30. *Artem'ev A.V.*, *Shafikov M.Z.*, *Schinabeck A.*, *et al.* // Inorg. Chem. Front. 2019. Vol. 6. № 11. P. 3168-3176.
- 31. *Litvinova Y.M.*, *Gayfulin Y.M.*, *Sukhikh T.S.*, *et al.* // Molecules. 2022. Vol. 27. № 22. P. 7684.
- 32. *Наумов Н.Г., Вировец А.В., Подберезская Н.В., Федеров В.Е.* // Журн. структур. химии. 1997. Vol. 38. № 5. Р. 1018.
- 33. *Mironov Y.V.*, *Virovets A.V.*, *Fedorov V.E.*, *et al.* // Polyhedron. 1995. Vol. 14. № 20. P. 3171.
- 34. *Sheldrick G.M. et al.* // Acta Crystallogr. A. 2015. Vol. 71. P. 3.
- 35. *Sheldrick G. et al.* // Acta Crystallogr. C. 2015. Vol. 71. № 1. P. 3.
- 36. *Dolomanov O.V.*, *Bourhis L.J.*, *Gildea R.J.*, *et al.* // Appl. Crystallogr. 2009. Vol. 42. № 2. P. 339.
- 37. *Zhao Q.*, *Freeman J.L.*, *Wang J.*, *et al.* // Inorg. Chem. 2012. Vol. 51. № 4. P. 2016.
- 38. Canales S., Villacampa M.D., Laguna A., Gimeno M.C. // J. Organomet. Chem. 2014. Vol. 760. P. 84.
- 39. *Sekar P., Ibers J.A., et al.* // Inorg. Chim. Acta. 2001. Vol. 319. № 1. P. 117.
- 40. Effendy, Di Nicola C., Nitiatmodjo M., et al. // Inorg. Chim. Acta. 2005. Vol. 358. № 3. P. 73547.
- 41. *Huahui Y., Lansun Z., Yunjie X., Qianer Z.* // Chin. J. Inorg. Chem. 1992. Vol. 8. №, P. 65.
- 42. Fournier E., Sicard S., Decken A., Harvey. P.D. // Inorg. Chem. 2004. Vol. 43. № 4. P. 1491.
- 43. *Wang Y.-F., Cui Y.-Z., Li Z.-F., et al.* // Chin. J. Struct. Chem. 2017. Vol. 36. P. 812.
- 44. Zhang Y.-R., Wang M.-Q., Cui Y.-Z., et al. // Chin. J. Inorg. Chem. 2015. Vol. 31. P. 2089.
- 45. *Wei X., Xu C., Li H., et al.* // Chem. Sci. 2022. Vol. 13. № 19. P. 5531.
- 46. *Gao S., Li Z.-F., Liu M., et al.* // Polyhedron. 2014. Vol. 83. P. 10.
- 47. *Harker C.S.W.*, *Tiekink E.R.T.* // J. Coord. Chem. 1990. Vol. 21. № 4. P. 287.

- 48. *Healy P.C., Loughrey B.T., Williams M.L.* // Aust. J. Chem. 2012. Vol. 65. P. 811.
- 49. *Lin S., Li. Y., Cui Y.-Z., et al.* // Chin. J. Inorg. Chem. 2016. Vol. 32. P. 2165.
- 50. *Chee C.F., Lo K.M., Ng S.W.* // Acta Crystallogr. E. 2003. Vol. 59. № 5. P. m273.
- Teo Y.Y., Lo. K., Ng S. // Acta Crystallogr. E. 2008. Vol. 64. P. m819.
- 52. *Teo Y.Y., Lo K., Ng. S.* // Acta Crystallogr. E. 2007. Vol. 63. №, P. M1365-M1367.
- 53. *Shafaei-Fallah M., Anson C.E., Fenske D., Rothenberger A.* // Dalton Trans. 2005. Vol., № 13. P. 2300.
- 54. *Kühnert J., Hahn H., Rüffer T., et al.* // J. Organomet. Chem. 2013. Vol. 725. P. 60.
- 55. *Li L.-L.*, *Ren Z.-G.*, *Wang J.*, *et al.* // J. Mol. Struct. 2008. Vol. 886. № 1. P. 121.
- 56. Wang X.-J., Langetepe T., Fenske D., Kang. B.-S. // Z. Anorg. Allg. Chem. 2002. Vol. 628. № 5. P. 1158.
- 57. Effendy, di Nicola C., Pettinari C., Pizzabiocca A., et al. // Inorg. Chim. Acta. 2006. Vol. 359. № 1. P. 64.
- 58. *Teo P., Koh L.L., Hor T.S.A.* // Chem. Commun. 2007. Vol., № 41. P. 4221.
- 59. *Deng L.-R., Wang X.-J., Xiao W., et al.* // Chem. Res. Chin. Univ. 2000. № 4. P. 375.
- 60. Aslanidis P., Cox P.J., Divanidis S., Karagiannidis P. // Inorg. Chim. Acta. 2004. Vol. 357. № 9. P. 2677.
- 61. *Jin Q.-H.*, *Yuan Y.*, *Yang Y.-P.*, *et al.* // Polyhedron. 2015. Vol. 101. P. 56.
- 62. *Crespo O., Gimeno M.C., Laguna A., et al.* // Dalton Trans. 2014. Vol. 43. № 32. P. 12214.
- 63. Fenske D., Rothenberger A., Shafaei Fallah M. // Eur. J. Inorg. Chem. 2005. Vol. 2005. № 1. P. 59.
- 64. *Zhang L., Lü X.-Q., Zhang Q., et al.* // Trans. Met. Chem. 2005. Vol. 30. № 1. P. 76.
- 65. Dennehy M., Quinzani O.V., Mandolesi S.D., Burrow R.A. // J. Mol. Struct. 2011. Vol. 998. № 1. P. 119.
- Yang X., Isaac I., Persau C., et al. // Inorg. Chim. Acta. 2014. Vol. 421. P. 233.
- 67. *Mingsheng H., Peng Z., Ying Z., et al.* // Acta Phys. Chim. Sin. 1991. Vol. 7. P. 694.
- 68. *Shawkataly O.B., Sani N.F.A., Rosli M.M., Razali M.R.* // Z. Anorg. Allg. Chem. 2016. Vol. 642. № 5. P. 419.
- 69. *Gray T.G.*, *Rudzinski C.M.*, *Meyer E.E.*, *et al.* // J. Am. Chem. Soc. 2003. Vol. 125. № 16. P. 4755.

Layered Coordination Polymers Based on the Cluster Complexes $[Re_6Q_8(CN)_6]^{4-}$ (Q = S or Se) and Dimeric Cations $\{(Ag(Dppe))_2(\mu-Dppe)\}^{2+}$ Yu. M. Litvinova^a, Ya. M. Gaifulin^a, T. S. Sukhikh^a, K. A. Brylev^a, and Yu. V. Mironov^a, *

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia *e-mail: yuri@niic.nsc.ru

The reactions of salts of cluster anions $[Re_6Q_8(CN)_6]^{4-}$ with the $[Ag(CN)_2]^{-}$ dicyanoargentate anion in the presence of 1,2-bis(diphenylphosphino)ethane are studied. Two new coordination polymers, $[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.85}[\{(Ag(Dppe))_2(\mu-Dppe)\}_2\{Re_6Se_8(CN)_6\}]_{0.15}$ (II), are prepared by the solvothermal synthesis. The XRD study of single crystals of the compounds (CIF files CCDC nos. 2341356 (I) and 2341355 (II)) shows their layered structures. The XRD study of crystalline powders of the compounds shows that the synthesis of compound II leads to the formation of two crystalline phases, one of which is isostructural to compound I. The luminescence parameters of the solid-state compounds (quantum yields, emission lifetimes) resemble the parameters of other coordination polymers based on the $[Re_6Q_8(CN)_6]^{4-}$ ions.

Keywords: rhenium, cluster, silver, crystal structure, coordination polymers, luminescence

REFERENCES

- 1. Sheldon J.C. // J. Chemi. Soc. (Resumed). 1962. P. 410.
- McCarley R.E. // Brown T.M., Inorg. Chem. 1964. Vol. 3. № 9. P. 1232.
- 3. *Kuhn P.J., McCarley R.E.* // Inorg. Chem. 1965. Vol. 4. № 10. P. 1482.
- 4. *Spangenberg M. Bronger W.* //Angew. Chem. Int. Ed. 1978. Vol. 17. № 5. P. 368.
- 5. *Robin M., Dumait N., Amela-Cortes M., et al.* // Chem. Eur. J. 2018. Vol. 24. № 19. P. 4825.
- 6. *Sokolov M.N., Brylev K.A., Abramov P.A., et al.* // Eur. J. Inorg. Chem. 2017. Vol. 2017. № 35. P. 4131.
- 7. *Muravieva V.K.*, *Gayfulin Y.M.*, *Ryzhikov M.R.*, *et al.* // Dalton Trans. 2018. Vol. 47. № 10. P. 3366.
- 8. *Vorotnikova N.A., Vorotnikov Y.A., Shestopalov M.A.* // Coord. Chem. Rev. 2024. Vol. 500. №, P. 215543.
- 9. *Kirakci K., Shestopalov M.A., Lang K. //* Coord. Chem. Rev. 2023. Vol. 481. P. 215048.
- 10. *Nguyen N.T.K., Lebastard C., Wilmet M., et al.* // Sci. Technol. Adv. Mater. 2022. Vol. 23. № 1. P. 547.
- 11. *Yoshimura T., Ishizaka S., Sasaki Y., et al.* // Chem. Lett. 1999. Vol. 28. № 10. P. 1121.
- 12. Ларина Т.В., Икорский В.Н., Васенин Н.Т. и др. // Коорд. химия. 2002. Т. 28. № 8. С. 591.
- 13. *Litvinova Y.M.*, *Gayfulin Y.M.*, *Kovalenko K.A.*, *et al.* // Inorg. Chem. 2018. Vol. 57. № 4. P. 2072.
- 14. *Litvinova Y.M.*, *Gayfulin Y.M.*, *Van Leusen J.*, *et al.* // Inorg. Chem. Front. 2019. Vol. 6. № 6. P. 1518.
- 15. *Ulantikov A.A.*, *Gayfulin Y.M.*, *Sukhikh T.S.*, *et al.* // J. Struct. Chem. Engl. Tr. 2021. Vol. 62. № 7. P. 1009.
- 16. *Naumov N.G.*, *Virovets A.V.*, *Sokolov M.N.*, *et al.* // Angew. Chem. Int. Ed. 1998. Vol. 37. № 13-14. P. 1943.
- 17. *Naumov N.G., Virovets A.V., Artemkina S.B., et al.* // J. Solid State Chem. 2004. Vol. 177. № 6. P. 1896.

- 18. Artemkina S.B., Naumov N.G., Virovets A.V., et al. // Inorg. Chem. Commun. 2001. Vol. 4. № 8. P. 423.
- 19. *Niu G.-H.*, *Wentz H.C.*, *Zheng S.-L.*, *Campbell. M.G.* // Inorg. Chem. Commun. 2019. Vol. 101. P. 142.
- 20. *Medici S., Peana M., Crisponi G., et al.* // Coord. Chem. Rev. 2016. Vol. 327—328. P. 349.
- 21. *Hamze R., Shi S., Kapper S.C., et al.* // J. Am. Chem. Soc. 2019. Vol. 141. № 21. P. 8616.
- 22. *Kakizoe D., Nishikawa M., Degawa T., Tsubomura T. //* Inorg. Chem. Front. 2016. Vol. 3. № 11. P. 1381.
- 23. *Romanov A.S.*, *Jones S.T.E.*, *Yang L.*, *et al.* // Adv. Opt. Mate. 2018. Vol. 6. № 24. P. 1801347.
- 24. *Lin Y.-Y.*, *Lai S.-W.*, *Che C.-M.*, *et al.* // Inorg. Chem. 2005. Vol. 44. № 5. P. 1511.
- 25. *Schmidbaur H., Schier A.* // Angew. Chem. Int. Ed. 2015. Vol. 54. № 3. P. 746.
- 26. *Wing-Wah Yam V., Kam-Wing Lo. K., et al.* // Coord. Chem. Rev. 1998. Vol. 171. P. 17.
- 27. *Tsukuda T., Kawase M., Dairiki A., et al.* // Chem. Commun. 2010. Vol. 46. № 11. P. 1905.
- 28. Chen J., Teng T., Kang L., et al. // Inorg. Chem. 2016. Vol. 55. № 19. P. 9528.
- 29. *Osawa M., Hashimoto M., Kawata I., Hoshino M.* // Dalton Trans. 2017. Vol. 46. № 37. P. 12446.
- 30. *Artem'ev A.V., Shafikov M.Z., Schinabeck A., et al.* // Inorg. Chem. Front. 2019. Vol. 6. № 11. P. 3168-3176.
- 31. *Litvinova Y.M.*, *Gayfulin Y.M.*, *Sukhikh T.S.*, *et al.* // Molecules. 2022. Vol. 27. № 22. P. 7684.
- 32. Naumov N.G., Virovets A.V., Podberezskaya N.V., Federov V.E. // Zh. Strukt. Khim. 1997. № 5. P. 1018.
- 33. *Mironov Y.V.*, *Virovets A.V.*, *Fedorov V.E.*, *et al.* // Polyhedron. 1995. Vol. 14. № 20. P. 3171.
- 34. *Sheldrick G.M. et al.* // Acta Crystallogr. A. 2015. Vol. 71. P. 3.

- 35. *Sheldrick G. et al.* // Acta Crystallogr. C. 2015. Vol. 71. № 1. P. 3.
- 36. *Dolomanov O.V.*, *Bourhis L.J.*, *Gildea R.J.*, *et al.* // Appl. Crystallogr. 2009. Vol. 42. № 2. P. 339.
- 37. *Zhao Q., Freeman J.L., Wang J., et al.* // Inorg. Chem. 2012. Vol. 51. № 4. P. 2016.
- 38. Canales S., Villacampa M.D., Laguna A., Gimeno M.C. // J. Organomet. Chem. 2014. Vol. 760. P. 84.
- 39. *Sekar P., Ibers J.A., et al.* // Inorg. Chim. Acta. 2001. Vol. 319. № 1. P. 117.
- 40. *Effendy, Di Nicola C., Nitiatmodjo M., et al.* // Inorg. Chim. Acta. 2005. Vol. 358. № 3. P. 73547.
- 41. *Huahui Y., Lansun Z., Yunjie X., Qianer Z.* // Chin. J. Inorg. Chem. 1992. Vol. 8. №, P. 65.
- 42. Fournier E., Sicard S., Decken A., Harvey. P.D. // Inorg. Chem. 2004. Vol. 43. № 4. P. 1491.
- 43. Wang Y.-F., Cui Y.-Z., Li Z.-F., et al. // Chin. J. Struct. Chem. 2017. Vol. 36. P. 812.
- 44. *Zhang Y.-R.*, *Wang M.-Q.*, *Cui Y.-Z.*, *et al.* // Chin. J. Inorg. Chem. 2015. Vol. 31. P. 2089.
- 45. *Wei X., Xu C., Li H., et al.* // Chem. Sci. 2022. Vol. 13. № 19. P. 5531.
- 46. *Gao S., Li Z.-F., Liu M., et al.* // Polyhedron. 2014. Vol. 83. P. 10.
- 47. *Harker C.S.W.*, *Tiekink E.R.T.* // J. Coord. Chem. 1990. Vol. 21. № 4. P. 287.
- 48. *Healy P.C., Loughrey B.T., Williams M.L.* // Aust. J. Chem. 2012. Vol. 65. P. 811.
- 49. *Lin S., Li. Y., Cui Y.-Z., et al.* // Chin. J. Inorg. Chem. 2016. Vol. 32. P. 2165.
- 50. *Chee C.F., Lo K.M., Ng S.W.* // Acta Crystallogr. E. 2003. Vol. 59. № 5. P. m273.
- 51. *Teo Y.Y., Lo. K., Ng S. //* Acta Crystallogr. E. 2008. Vol. 64. P. m819.
- 52. *Teo Y.Y., Lo K., Ng. S.* // Acta Crystallogr. E. 2007. Vol. 63. №, P. M1365-M1367.

- 53. *Shafaei-Fallah M., Anson C.E., Fenske D., Rothenberger A.* // Dalton Trans. 2005. Vol., № 13. P. 2300.
- 54. *Kühnert J.*, *Hahn H.*, *Rüffer T.*, *et al.* // J. Organomet. Chem. 2013. Vol. 725. P. 60.
- 55. *Li L.-L.*, *Ren Z.-G.*, *Wang J.*, *et al.* // J. Mol. Struct. 2008. Vol. 886. № 1. P. 121.
- 56. *Wang X.-J.*, *Langetepe T.*, *Fenske D.*, *Kang. B.-S.* // Z. Anorg. Allg. Chem. 2002. Vol. 628. № 5. P. 1158.
- 57. Effendy, di Nicola C., Pettinari C., Pizzabiocca A., et al. // Inorg. Chim. Acta. 2006. Vol. 359. № 1. P. 64.
- 58. *Teo P., Koh L.L., Hor T.S.A.* // Chem. Commun. 2007. Vol., № 41. P. 4221.
- 59. *Deng L.-R., Wang X.-J., Xiao W., et al.* // Chem. Res. Chin. Univ. 2000. № 4. P. 375.
- 60. Aslanidis P., Cox P.J., Divanidis S., Karagiannidis P. // Inorg. Chim. Acta. 2004. Vol. 357. № 9. P. 2677.
- 61. *Jin Q.-H., Yuan Y., Yang Y.-P., et al.* // Polyhedron. 2015. Vol. 101. P. 56.
- 62. *Crespo O., Gimeno M.C., Laguna A., et al.* // Dalton Trans. 2014. Vol. 43. № 32. P. 12214.
- 63. Fenske D., Rothenberger A., Shafaei Fallah M. // Eur. J. Inorg. Chem. 2005. Vol. 2005. № 1. P. 59.
- 64. *Zhang L., Lü X.-Q., Zhang Q., et al.* // Trans. Met. Chem. 2005. Vol. 30. № 1. P. 76.
- 65. *Dennehy M., Quinzani O.V., Mandolesi S.D., Burrow R.A.* // J. Mol. Struct. 2011. Vol. 998. № 1. P. 119.
- 66. Yang X., Isaac I., Persau C., et al. // Inorg. Chim. Acta. 2014. Vol. 421. P. 233.
- 67. *Mingsheng H., Peng Z., Ying Z., et al.* // Acta Phys. Chim. Sin. 1991. Vol. 7. P. 694.
- 68. *Shawkataly O.B.*, *Sani N.F.A.*, *Rosli M.M.*, *Razali M.R.* // Z. Anorg. Allg. Chem. 2016. Vol. 642. № 5. P. 419.
- 69. *Gray T.G.*, *Rudzinski C.M.*, *Meyer E.E.*, *et al.* // J. Am. Chem. Soc. 2003. Vol. 125. № 16. P. 4755.

К 70-летию проф. В.П. Федина

УДК 541.49+548.736+539.19

КОМПЛЕКСЫ ЛАНТАНОИДОВ(III) НА ОСНОВЕ *mpuc*(2-ПИРИДИЛ)ФОСФИНОКСИДА: ПЕРВЫЕ ПРИМЕРЫ

© 2024 г. Ю. А. Брылева^{1,*} Л. А. Глинская¹, К. М. Ыжикова¹, А. В. Артемьев¹, М. И. Рахманова¹, А. Ю. Баранов¹

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия *e-mail: bryleva@niic.nsc.ru

Поступила в редакцию 27.03.2024 г. После доработки 02.04.2024 г. Принята к публикации 02.04.2024 г.

Синтезирована и исследована серия одноядерных комплексов [$Ln(Py_3PO)_2(NO_3)_3$] · 1.5 Me_2CO (Ln=Sm, Eu, Gd, Tb, Dy) и [$Ln(Py_3PO)(TTA)_3$] (Ln=Eu, Tb; $TTA^-=$ теноилтрифторацетонат-ион) на основе $\mathit{mpuc}(2$ -пиридил)фосфиноксида (Py_3PO). В полученных соединениях Py_3PO выступает в качестве N, O-хелатного лиганда, что приводит к формированию координационных полиэдров N_2O_8 и NO_7 атома Ln в комплексах [$Ln(Py_3PO)_2(NO_3)_3$] · 1.5 Me_2CO и [$Ln(Py_3PO)(TTA)_3$] соответственно. Комплексы ионов Sm^{3+} , Eu^{3+} , Tb^{3+} и Dy^{3+} проявляют лантаноид-центрированную фотолюминесценцию в твердой фазе при 300 К. Из спектра лиганд-центрированной фосфоресценции комплекса Gd(III) при 77 К определена энергия триплетного уровня T_1 Py_3PO , равная 21900 см $^{-1}$. Найдено, что среди комплексов с ионами $NO_3^ Py_3PO$ проявляет лучшую сенсибилизирующую способность по отношению к Tb^{3+} , а в комплексах с ионами TTA^- лигандное окружение наиболее эффективно сенсибилизирует люминесценцию иона Eu^{3+} .

Ключевые слова: лантаноиды, комплексы, фосфиноксид, структура, фотолюминесценция

DOI: 10.31857/S0132344X24100081, **EDN:** LPKWML

Синтез и исследование люминесцирующих комплексных соединений трехвалентных лантаноидов (Ln) представляет интерес как с точки зрения получения функциональных материалов, так и с фундаментальной точки зрения, связанной с поиском оптимального координационного окружения иона Ln³⁺ и исследованием его влияния на наблюдаемые фотофизические свойства образующихся комплексов [1-7]. Ввиду высоких координационных чисел ионов Ln³⁺ и их гибкого координационного окружения, рациональный дизайн комплексных соединений является важной задачей, а выбор подходящих лигандов-антенн, способных эффективно сенсибилизировать люминесценцию ионов Ln³⁺, — ключевой фактор для успешного получения комплексов с перспективными люминесцентными свойствами. К основным требованиям к лигандам-антеннам относят их способность насыщать координационную сферу иона Ln³⁺, предотвращая координацию молекул растворителя, эффективно передавать поглощенную энергию иону Ln³⁺,

а также формировать низкочастотное и асимметричное окружение вокруг него, позволяющее уменьшить константу скорости безызлучательных процессов и увеличить константу скорости излучательных процессов [8-10].

Фосфиноксиды (ФО), содержащие заместители с высокими коэффициентами экстинкции, представляют собой важный класс сенсибилизаторов люминесценции Ln(III) ввиду малой колебательной энергии связи Р=О, а также возможности сравнительно легкой модификации структуры ФО за счет введения различных заместителей [11-14]. В частности, введение в молекулу ФО азагетероциклических заместителей — перспективный подход к дизайну полидентатных лигандов-антенн, способных эффективно сенсибилизировать люминесценцию лантаноидов(III), формировать жесткое лигандное окружение, а также экранировать ион Ln³⁺ от внешних тушителей за счет хелатной координации. Полидентатные ФО, содержащие различные азотистые гетероциклы, зарекомендовали себя как перспективные лиганды для получения молекулярных комплексов и координационных полимеров Ln(III), обладающих интересными люминесцентными свойствами [15–17].

Ранее нами была исследована координационная способность ряда фосфиноксидов Ph₂P(O) R, содержащих азагетероциклические заместители (R = 2-пиридил, 2-пиримидил, 2-пиразил), по отношению к ионам Ln^{3+} [18,19]. Было найдено, что способ координации этих ФО зависит от природы N-гетероцикла, анионного лиганда и иона Ln³⁺. В данной работе на основе *трис* (2-пиридил)фосфиноксида (Ру₃РО), мы синтезировали серию одноядерных комплексов нитратов и теноилтрифторацетонатов Ln(III). Исследована сенсибилизирующая способность этого лиганда по отношению к различным ионам Ln³⁺, а также рассмотрено влияние противоиона на наблюдаемые фотофизические свойства синтезированных комплексов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза комплексов использовали $Ln(NO_3)_3 \cdot 6H_2O$ (Ln = Sm, Gd, Tb, Dy) квалификации "х.ч.", Me_2CO и MeCN "ос.ч.", $Eu(NO_3)_3 \cdot 6H_2O$ "ч.". Комплексы $[Ln(TTA)_3(H_2O)_2]$ ($Ln = Eu, Tb; TTA^- =$ теноилтрифторацетонат-ион) синтезировали по известной методике [20]. *Трис* (2-пиридил)фосфиноксид (Py_3PO) получали окислением соответствующего фосфина [2] в системе $H_2O_2-H_2O-Me_2CO$.

Синтез [Ln(Py₃PO)₂(NO₃)₃] · 1.5Me₂CO (Ln = Sm (I), Eu (II), Gd (III), Tb (IV), Dy (V)). К раствору Ру₃PO (0.05 ммоля, 0.014 г для Ln = Sm, Eu, Gd и 0.075 ммоля, 0.021 г для Ln = Tb, Dy) в 3 мл Ме₂CO добавляли раствор Ln(NO₃)₃ · 6H₂O (0.025 ммоля, 0.011 г) в 1.5 мл Ме₂CO. Осадок белого цвета образовался при перемешивании полученного раствора в течение 1.5 ч. Продукт отфильтровывали, промывали с помощью Ме₂CO (2 раза по 3 мл) и сушили в эксикаторе над безводным перхлоратом магния при комнатной температуре. Выход 0.013 г (54%), 0.018 г (75%), 0.020 г (82%), 0.016 г (67%) и 0.018 г (75%) для комплексов I—V соответственно.

Найдено, %: С 41.1; Н 3.2; N 12.7. Для $C_{30}H_{24}N_9O_{11}P_2Sm \cdot 1.5C_3H_6O$ (I) вычислено, %: С 42.0; Н 3.4; N 12.8.

ИК-спектр (v, см⁻¹): 3060 сл, 1711 сл, 1584 сл, 1576 сл, 1484 с, 1472 с, 1455 ср, 1428 ср, 1385 сл,

1360 сл, 1313 с, 1284 ср, 1251 сл, 1223 сл, 1175 ср, 1147 сл, 1110 ср, 1090 сл, 1051 сл, 1031 сл, 1001 сл, 989 сл, 817 сл, 775 сл, 750 с, 738 сл, 629 сл, 550 с, 510 сл, 456 сл, 447 сл, 414 сл.

Найдено, %: С 41.7; Н 3.7; N 12.8. Для $C_{30}H_{24}N_9O_{11}P_2Eu \cdot 1.5C_3H_6O$ (II) вычислено, %: С 42.0; Н 3.4; N 12.8.

ИК-спектр (v, см⁻¹): 3079 сл, 1710 сл, 1584 сл, 1572 сл, 1485 с, 1473 с, 1455 ср, 1423 ср, 1385 сл, 1360 сл, 1315 с, 1284 с, 1249 сл, 1224 сл, 1177 с, 1146 ср, 1111 ср, 1091 сл, 1050 сл, 1030 сл, 1000 сл, 989 ср, 816 сл, 776 сл, 751 с, 736 сл, 629 сл, 552 с, 508 сл, 456 сл, 444 сл, 414 сл.

Найдено, %: С 40.8; Н 3.2; N 12.7. Для $C_{30}H_{24}N_9O_{11}P_2Gd \cdot 1.5C_3H_6O$ (III) вычислено, %: С 41.7; Н 3.3; N 12.7.

ИК-спектр (v, см⁻¹): 3070 сл, 1710 ср, 1584 ср, 1574 ср, 1488 с, 1473 с, 1455 ср, 1428 ср, 1386 сл, 1360 сл, 1316 с, 1286 с, 1251 сл, 1224 сл, 1177 с, 1146 с, 1109 с, 1092 ср, 1052 ср, 1032 ср, 1000 ср, 990 ср, 818 сл, 776 ср, 751 с, 739 ср, 627 сл, 552 с, 510 сл, 456 сл, 444 сл, 416 сл.

Найдено, %: С 41.5; Н 3.4; N 12.7. Для $C_{30}H_{24}N_9O_{11}P_2Tb \cdot 1.5C_3H_6O$ (IV) вычислено, %: С 41.7; Н 3.3; N 12.7.

ИК-спектр (v, см⁻¹): 3076 сл, 1710 ср, 1584 сл, 1574 сл, 1495 ср, 1476 с, 1456 ср, 1426 ср, 1386 сл, 1360 сл, 1316 с, 1286 с, 1251 сл, 1224 сл, 1177 ср, 1146 ср, 1109 ср, 1092 сл, 1050 сл, 1032 сл, 1000 сл, 988 ср, 818 сл, 776 сл, 751 с, 740 ср, 628 сл, 552 с, 508 сл, 457 сл, 444 сл, 417 сл.

Найдено, %: С 41.2; Н 3.2; N 12.6. Для $C_{30}H_{24}N_{9}O_{11}P_{2}Dy \cdot 1.5C_{3}H_{6}O$ (V) вычислено, %: С 41.5; Н 3.3; N 12.6.

ИК-спектр (v, см⁻¹): 3076 сл, 1710 ср, 1584 сл, 1574 сл, 1495 ср, 1479 с, 1455 ср, 1424 ср, 1384 сл, 1360 сл, 1318 с, 1289 ср, 1250 сл, 1223 сл, 1177 ср, 1147 ср, 1109 сл, 1090 сл, 1050 сл, 1033 сл, 999 сл, 987 сл, 818 сл, 777 сл, 751 ср, 739 сл, 628 сл, 552 с, 507 сл, 456 сл, 446 сл, 417 сл.

Синтез [Ln(Py₃PO)(TTA)₃] (Ln = Eu (VI), Tb (VII)). К раствору Py_3PO (0.05 ммоля, 0.014 г) в 4 мл МеСN при перемешивании добавляли раствор [Ln(TTA)₃(H₂O)₂] (0.05 ммоля, 0.043 г) в 3 мл МеСN. Медленное испарение полученного раствора при 6°C в течение 2 сут привело к образованию осадка в виде желтоватых кристаллов. Кристаллы отфильтровывали, промывали с помощью MeCN (2 раза по 3 мл) и сушили в эксикаторе над безводным перхлоратом магния при комнатной температуре. Выход 0.027 г (49%) и 0.029 г (52%) для комплексов VI и VII соответственно.

Найдено, %: С 42.30; Н 2.22; N 3.61; F 15.50. Для $C_{39}H_{24}N_4O_7F_9P_1S_3$ Eu (VI) вычислено, %: С 42.71; Н 2.21; N 3.83; F 15.59.

ИК-спектр (v, см⁻¹): 3070 сл, 1629 ср, 1602 с, 1585 ср, 1538 ср, 1506 сл, 1467 сл, 1459 сл, 1433 сл, 1426 сл, 1410 ср, 1354 сл, 1305 с, 1249 сл, 1232 сл, 1187 с, 1141 ср, 1133 с, 1086 сл, 1062 сл, 1052 сл, 1005 сл, 990 сл, 934 сл, 861 сл, 800 сл, 783 сл, 768 сл, 751 ср, 727 сл, 712 сл, 680 сл, 641 сл, 629 сл, 606 сл, 581 сл, 553 ср, 549 ср, 522 сл, 493 сл, 462 сл, 445 сл, 409 сл

Найдено, %: С 42.04; H 2.33; N 3.52; F 15.61. Для $C_{39}H_{24}N_4O_7F_9P_1S_3Tb$ (VII) вычислено, %: С 42.44; H 2.19; N 3.81; F 15.49.

ИК-спектр (v, см⁻¹): 3070 сл, 1630 ср, 1604 с, 1588 ср, 1539 ср, 1507 сл, 1470 сл, 1458 сл, 1435 сл, 1427 сл, 1411 ср, 1356 сл, 1308 с, 1249 сл, 1231 сл, 1188 ср, 1142 ср, 1134 ср, 1086 сл, 1061 сл, 1053 сл, 1005 сл, 990 сл, 934 сл, 861 сл, 801 сл, 783 сл, 768 сл, 750 сл, 727 сл, 713 сл, 682 сл, 642 сл, 630 сл, 605 сл, 581 сл, 556 сл, 549 ср, 527 сл, 495 сл, 464 сл, 446 сл, 411 сл.

Элементный анализ комплексов I-V на содержание С, Н, N выполняли на анализаторе MICRO cube, комплексов VI и VII — на анализаторе Euro EA 3000. Определение фтора проводили спектрофотометрически на спектрофотометре Varian 50 Scan [21]. ИК-спектры соединений в области 4000-400 см $^{-1}$ записывали в таблетках KBr на спектрофотометре Scimitar FTS2000. Рентгенофазовый анализ образцов проводили на дифрактометре Bruker D8 Advance (CuK_{α} -излучение, линейный детектор LYNXEYE XE-T, диапазон 3° -40° 2 θ , шаг 0.03° 2 θ , накопление 1 с в точке). Образцы для исследования готовили следующим образом: поликристаллы истирали в агатовой ступке в присутствии гептана; полученную суспензию наносили на полированную сторону пластиковой кюветы; после высыхания гептана образец представлял собой тонкий ровный слой (толщина ~100 мкм). Термическое исследование комплексов I-V проводили на термоанализаторе NETZSCH TG 209 F1 в интервале температур 20-600°С в атмосфере Не (скорость потока газа 30 мл/мин, скорость нагрева 10 град./ мин, навеска 5-6 мг).

При медленном испарении раствора комплекса II в Me_2CO и растворов комплексов VI,

VII в MeCN выращены монокристаллы, пригодные лля PCA.

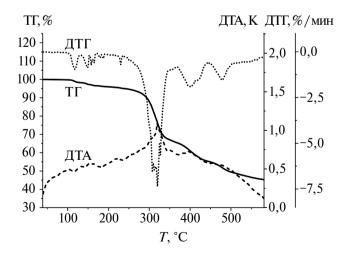
PCA II, VI и VII проведен при 150 K на дифрактометре Bruker D8 Venture (0.5° ω- и φ-сканирование, трехкружный гониометр с фиксированным х, КМОП-детектор PHOTON III, Мо-IμS 3.0 микрофокусный источник, фокусировка с помощью зеркал Монтеля, $\lambda = 0.71073 \text{ Å}$ МоК_а-излучение, азотный термостат). Обработка первичных данных выполнена в пакете программ АРЕХ 3 [22]. Кристаллические структуры решены с помощью ShelXT [23] и уточнены с помощью ShelXL [24] с графическим интерфейсом Olex2 [25]. Атомные смещения для неводородных атомов уточнены в гармоническом анизотропном приближении. Положения атомов Н рассчитаны геометрически и уточнены в модели «наездника». Кристаллографические характеристики, детали рентгеновских дифракционных экспериментов и уточнения структур II, VI и VII приведены в табл. 1, значения основных межатомных расстояний и валентных углов в табл. 2.

Кристаллографические параметры комплексов депонированы в Кембриджском центре кристаллографических данных (ССDС № 2341498 (II), 2341499 (VI), 2341500 (VII); deposit@ccdc.cam.ac.uk; www: http://www.ccdc.cam.ac.uk).

Спектры возбуждения фотолюминесценции ($\Phi \Pi$) и эмиссии соединений, а также времена жизни люминесценции регистрировали при 300 K на спектрофлуориметре Fluorolog-3 (Horiba Jobin Yvon) с охлаждаемым модулем регистрации фотонов PC177CE-010, оснащенным Φ ЭУ R2658. Для измерения абсолютного квантового выхода (Φ_{TOT}) твердых образцов использовалась интегрирующая сфера Quanta- φ . Квантовые выходы люминесценции комплексов I, II, IV—VII измеряли при длине волны возбуждения $\Phi \Pi$ (λ_{ev}) 320 нм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Взаимодействием нитратов Ln(III) с *трис*-(2-пиридил)фосфиноксидом в ацетоне синтезирована серия комплексов [Ln(Py_3PO)₂(NO_3)₃] · 1.5Me₂CO (Ln = Sm (I), Eu (II), Gd (III), Tb (IV), Dy (V)). Найдено, что использование 50%-ного избытка Py_3PO при синтезе IV и V приводит к увеличению выхода продукта реакции, тогда как избыток Py_3PO не влияет на выходы I—III. Выдерживание ком-


Таблица 1. Кристаллографические характеристики, детали эксперимента и уточнения структур комплексов II, VI и VII

Попоможе	Значение					
Параметр	II	VI	VII			
Эмпирическая формула	C _{34.5} H ₃₃ EuN ₉ O _{12.5} P ₂	$C_{39}H_{24}EuF_9N_3O_7PS_3$	$C_{39}H_{24}F_9N_3O_7PS_3Tb$			
M	987.60	1096.72	1103.68			
Сингония	Моноклинная	Моноклинная	Моноклинная			
Пр. группа	P2/c	$P2_1/n$	$P2_1/n$			
a, Å	21.3650(8)	11.9337(4)	11.9258(2)			
$b, ext{Å}$	8.4242(3)	19.2580(6)	19.2153(4)			
$c, ext{Å}$	22.6793(8)	18.9764(8)	18.9426(4)			
β, град	98.623(1)	103.467(1)	103.287(1)			
V , $\mathring{\mathbf{A}}^3$	4035.7(3)	4241.2(3)	4224.65(14)			
Z , ρ (выч.), r /см 3	4, 1.774	4, 1.760	4, 1.752			
μ , mm^{-1}	1.71	1.76	1.95			
Размеры кристалла, мм	$0.08 \times 0.02 \times 0.01$	$0.12 \times 0.04 \times 0.02$	$0.26 \times 0.18 \times 0.1$			
Число измеренных отражений	74190	47501	48824			
Число независимых отражений	10069	10529	13970			
Число отражений с $I > 2\sigma(I)$	8485	7486	10837			
$R_{\rm int}$	0.056	0.086	0.042			
GOOF no F^2	1.04	1.02	1.11			
Число уточняемых параметров	537	568	568			
$R_1/wR_2 \ (I \ge \sigma(I))$	0.066/ 0.163	0.043/ 0.085	0.034/ 0.075			
R_1/wR_2 (по всем $I_{ m hkl}$)	0.075/ 0.17	0.076/ 0.095	0.054/ 0.080			
Остаточная электронная плотность (max/min) e/Å 3	10.88/ -1.35	0.83/-0.61	0.78/-0.83			

плексов I–V при температуре 90°C в течение 4 ч не приводит к существенному удалению сольватных молекул ацетона, что свидетельствует об их достаточно прочном удерживании в кристаллических решетках комплексов. Исследование термических свойств соединений I-V в инертной атмосфере в интервале температур 25-550°C показало, что на кривой ТГ имеются две ступени. На рис. 1 представлены кривые ТГ, ДТА и ДТГ для соединения I, для соединений II-V наблюдаются подобные кривые. Потеря массы при нагревании комплексов начинается лишь при 110°C и продолжается до ~180°C. При завершении этой ступени потеря массы составляет около 5%, что несколько меньше расчетного значения (8.7%). При ~250°C начинается дальнейшее разложение.

Комплексы [Ln(Py₃PO)(TTA)₃] (Ln = Eu (VI), Тb (VII)) образуются в результате реакции [Ln(TTA)₃(H₂O)₂] с Py₃PO в MeCN при мольном соотношении Ln³⁺: лиганд = 1 : 1. Из-

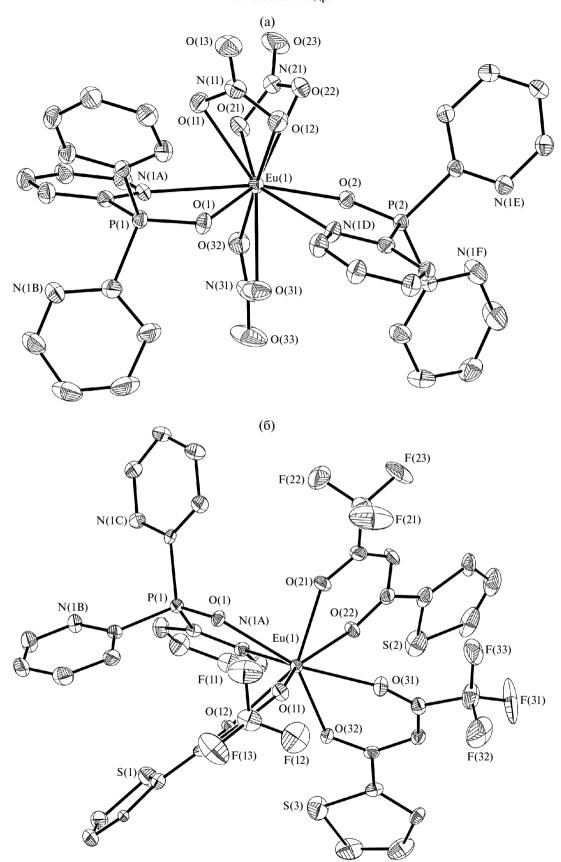
быток Py_3PO в реакционной смеси не приводит к включению в состав комплексов дополнительных молекул лиганда.

Рис. 1. Кривые ТГ, ДТА и ДТГ для комплекса I.

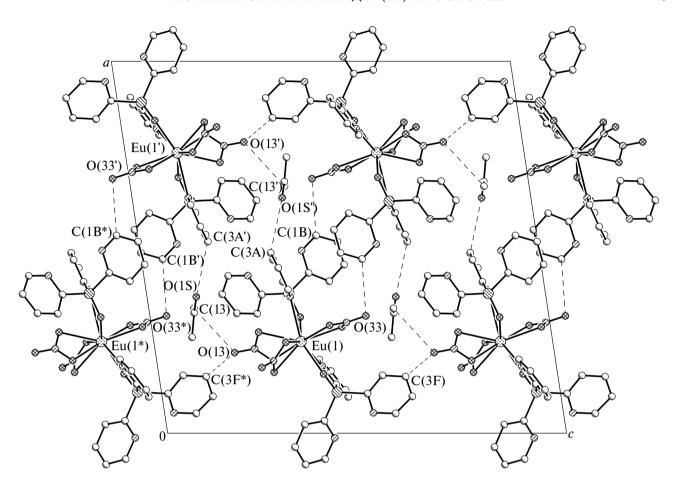
Таблица 2. Основные межатомные расстояния d (Å) и валентные углы ω (град) в структурах комплексов II, VI и VII

II		V	VI	VII		
Связь	d, Å	Связь	d, Å	Связь	d, Å	
Eu(1)—O(1)	2.357(3)	Eu(1)—O(1) 2.411(3)		Tb(1)—O(1)	2.386(2)	
Eu(1)—O(2)	2.357(4)	Eu(1)—O(32)	2.357(3)	Tb(1)—O(32)	2.339(2)	
Eu(1)—O(11)	2.501(4)	Eu(1)—O(11)	2.357(3)	Tb(1)—O(11)	2.325(2)	
Eu(1)—O(12)	2.490(4)	Eu(1)—O(31)	2.373(3)	Tb(1)—O(31)	2.350(2)	
Eu(1)—O(21)	2.472(4)	Eu(1)—O(12)	2.360(2)	Tb(1)—O(12)	2.330(2)	
Eu(1)—O(22)	2.599(4)	Eu(1)—O(22)	2.402(3)	Tb(1)—O(22)	2.372(2)	
Eu(1)—O(31)	2.483(4)	Eu(1)—O(21)	2.353(3)	Tb(1)—O(21)	2.336(2)	
Eu(1)—O(32)	2.549(4)	Eu(1)—N(1A)	2.651(3)	Tb(1)—N(1A)	2.630(2)	
Eu(1)—N(1A)	2.700(4)					
Eu(1)—N(1D)	2.727(4)					
Угол	ω, град	Угол	ω, град	Угол	ω, град	
O(1)Eu(1)O(11)	75.1(1)	O(1)Eu(1)N(1A)	68.36(9)	O(1)Tb(1)N(1A)	68.91(6)	
O(1)Eu(1)O(12)	75.1(1)	O(11)Eu(1)O(1)	79.39(9)	O(11)Tb(1)O(1)	79.19(6)	
O(1)Eu(1)O(21)	139.1(1)	O(11)Eu(1)O(31)	77.75(9)	O(11)Tb(1)O(31)	77.26(6)	
O(1)Eu(1)O(22)	138.1(1)	O(11)Eu(1)O(12)	72.51(9)	O(11)Tb(1)O(12)	73.18(6)	
O(1)Eu(1)O(31)	74.0(1)	O(11)Eu(1)O(21)	91.06(6)	O(11)Tb(1)O(21)	89.74(6)	
O(1)Eu(1)O(32)	110.5(1)	O(11)Eu(1)O(22)	150.89(9)	O(11)Tb(1)O(22)	150.41(6)	
O(1)Eu(1)N(1A)	67.8(1)	O(11)Eu(1)N(1A)	137.3(1)	O(11)Tb(1)N(1A)	137.93(6)	
O(1)Eu(1)N(1D)	115.5(1)	O(12)Eu(1)O(1)	74.07(9)	O(12)Tb(1)O(1)	74.20(6)	
O(2)Eu(1)(O1)	136.6(1)	O(12)Eu(1)O(31)	122.49(9)	O(12)Tb(1)O(31)	122.93(6)	
O(2)Eu(1)O(11)	137.3(1)	O(12)Eu(1)O(22)	133.71(9)	O(12)Tb(1)O(22)	133.57(6)	
O(2)Eu(1)O(12)	102.6(1)	O(12)Eu(1)N(1A)	72.22(9)	O(12)Tb(1)N(1A)	72.26(6)	
O(2)Eu(1)O(21)	83.3(1)	O(21)Eu(1)N(1A)	105.3(1)	O(21)Tb(1)N(1A)	105.86 (1)	
O(2)Eu(1)O(22)	70.0(1)	O(21)Eu(1)O(1)	73.68(9)	O(21)Tb(1)O(1)	73.33(6)	
O(2)Eu(1)O(31)	78.1(1)	O(21)Eu(1)O(32)	140.22(9)	O(21)Tb(1)O(32)	140.22(9)	
O(2)Eu(1)O(32)	73.9(1)	O(21)Eu(1)O(11)	91.1(1)	O(21)Tb(1)O(11)	89.74(6)	
O(2)Eu(1)N(1A)	142.0(1)	O(21)Eu(1)O(31)	80.7(1)	O(21)Tb(1)O(31)	80.7(1)	
O(2)Eu(1)N(1D)	66.8(1)	O(21)Eu(1)O(12)	146.0(1)	O(21)Tb(1)O(12)	145.57(6)	
O(11)Eu(1)O(22)	68.4(1)	O(21)Eu(1)O(22)	71.97(9)	O(21)Tb(1)O(22)	72.76(6)	
O(11)Eu(1)O(32)	128.9(1)	O(22)Eu(1)N(1A)	71.31(9)	O(22)Tb(1)N(1A)	71.09(6)	
O(11)Eu(1)N(1A)	66.7(1)	O(22)Eu(1)O(1)	116.26(9)	O(22)Tb(1)O(1)	116.46(6)	
O(11)Eu(1)N(1D)	115.5(1)	O(31)Eu(1)O(22)	76.29(9)	O(31)Tb(1)O(22)	76.31 (6)	
O(12)Eu(1)O(11)	51.0(1)	O(31)Eu(1)O(1)	145.04(9)	O(31)Tb(1)O(1)	144.19(6)	
O(12)Eu(1)O(22)	66.2(1)	O(31)Eu(1)N(1A)	142.97(9)	O(31)Tb(1)N(1A)	143.04(9)	
O(12)Eu(1)O(32)	174.4(1)	O(32)Eu(1)O(1)	141.14(9)	O(32)Tb(1)O(1)	141.19(5)	
O(12)Eu(1)N(1A)	113.3(1)	O(32)Eu(1)O(11)	110.64(9)	O(32)Tb(1)O(11)	110.86(6)	
O(12)Eu(1)N(1D)	67.3(1)	O(32)Eu(1)O(31)	72.48(9)	O(32)Tb(1)O(31)	73.24(6)	
·		O(32)Eu(1)O(22)	73.50(9)	O(32)Tb(1)O(22)	73.64(6)	
		O(32)Eu(1)N(1A)	81.44(9)	O(32)Tb(1)N(1A)	81.19(6)	

ИК-спектры I-V содержат полосы поглощения, относящиеся к валентным антисимметричным колебаниям v_4 и v_1 групп NO_3 при ~1475 и ~1315 см⁻¹ соответственно, а также валентным симметричным колебаниям $v_2(NO_3)$ при ~1030 см⁻¹. Значительная величина $\Delta = v_4 - v_1$, равная ~175 см⁻¹, свидетельствует о бидентатно-хелатной координации нитратионов [26, 27]. Полоса поглощения при 1711 см⁻¹ в ИК-спектрах I-V, принадлежащая валентным колебаниям С=О сольватных молекул Ме₂СО, подтверждает их присутствие в поликристаллических образцах [28]. Полосы, соответствующие валентным колебаниям связей С=О (1604 см⁻¹) и C=C (1539 см⁻¹) β -дикетонат-иона, в ИК-спектрах VI и VII смещены на 55 и 93 см $^{-1}$ в коротковолновую область по сравнению с таковыми в ИК-спектре свободной молекулы НТТА [29, 30], что указывает на координацию ионов ТТАк Ln³⁺. Интенсивная полоса в ИК-спектрах VI и VII при 1133 см⁻¹ относится к колебаниям связей C-F групп CF_3 . Полоса при 1210 см⁻¹ в спектре некоординированного РузРО, относящаяся к валентным колебаниям группы Р=О, смещается на ~25 см⁻¹ в коротковолновую область в ИК-спектрах комплексов I-VII, что свидетельствует о координации молекул ФО к ионам Ln³⁺ [31]. Полосы в областях 1360-1455 и 1484—1588 см⁻¹ в ИК-спектрах I-VII соответствуют валентным колебаниям связей С=С и C=N пиридиновых колец Py_3PO [27].


Согласно РСА, кристаллическая структура II образована молекулами одноядерного комплекса $[Eu(Py_3PO)_2(NO_3)_3]$ (рис. 2a) и некоординированными молекулами Ме₂СО. В координационную сферу атома Еи входят два атома N и два атома О двух бидентатно-хелатных лигандов Ру₃РО (Eu-O 2.357 Å, Eu-N 2.700 и 2.727 Å) и шесть атомов О трех бидентатно-хелатных ионов NO_3^- (Eu-O 2.472-2.599 Å), что приводит к образованию вокруг атома Еи координационного полиэдра N_2O_8 (искаженный десятивершинник). Один из двух пятичленных хелатных металлоциклов EuOPCN, образующихся при координации РузРО к атому Ец, имеет практически плоское строение (среднее отклонение атомов от их среднеквадратичной плоскости равно 0.02 Å), тогда как второй металлоцикл EuOPCN имеет конформацию «конверта» с отклонением атома Eu на 0.546 Å от плоскости четырех других атомов цикла. Угол между плоскостями двух металлоциклов EuOPCN составляет 168.8°. Углы перегиба пиридиновых циклов с металлоциклами EuOPCN (по связи C-N) равны 2.5°

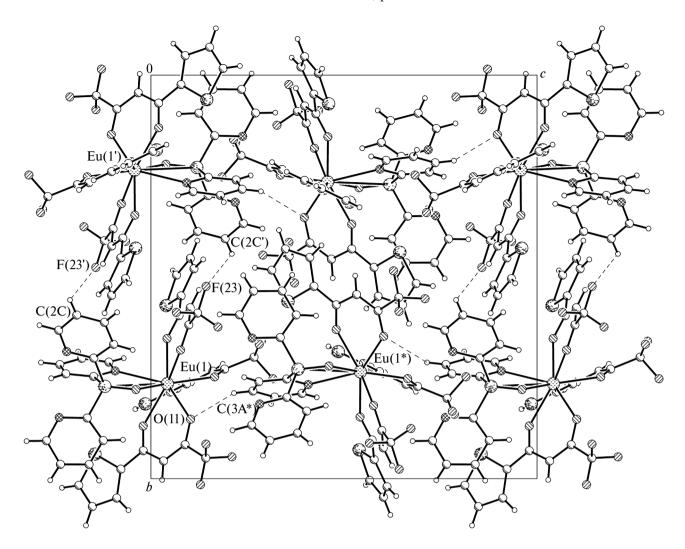
и 2.8°. Все три металлоцикла EuO₂N, образующиеся при координации нитратогрупп к атому Еи, практически плоские (среднее отклонение от среднеквадратичной плоскости не превышает 0.02 Å). Значения двугранных углов между плоскостями хелатных циклов EuO2N лежат в интервале 36.9°-68.5°. Следует отметить, что молекулярная структура комплекса II схожа с таковой ранее описанного комплекса [Eu{Ph₂P(O) $Pym_{2}(NO_{3})_{3}$] ($Ph_{2}P(O)Pym = дифенил(пирими$ дин-2-ил)фосфиноксид), кристаллизующегося в пространственной группе $P2_1/c$ [19]. В обоих комплексах фосфиноксиды проявляют бидентатно-хелатную функцию с вовлечением атома N азотистого гетероцикла в координацию с атомом Ец, в результате чего образуется координационный полиэдр N_2O_8 , при этом значения длин связей Eu-O и Eu-N в комплексах отличаются несущественно.


В кристаллической структуре II между соседними молекулами комплекса имеются короткие контакты С-Н...О (3.167 Å) в плоскости *ас* (рис. 3). Молекулы Ме₂СО также образуют слабые взаимодействия С-Н...О с молекулами комплекса. Расстояние между ближайшими атомами Eu составляет 8.424 Å.

Экспериментальные рентгенодифрактограммы I—V близки к дифрактограмме, симулированной на основе данных PCA для II, что свидетельствует об изоструктурности этих соединений.

По данным РСА, одноядерные молекулярные комплексы VI и VII изоструктурны (табл. 1). Поскольку строение молекул обоих соединений аналогично, на рис. 2б приведена только молекулярная структура комплекса VI. В отличие от II, присутствие объемных ионов ТТА- в VI и VII приводит к включению в состав комплексов лишь одной молекулы Ру₃РО. Таким образом, атомы Ln в VI и VII координируют один атом N и один атом О одного бидентатно-хелатного лиганда Ру₃РО (Ln-O 2.411 Å для VI и 2.386 Å для VII; Ln-N 2.651 Å для VI и 2.630 Å для VII), а также шесть атомов О трех бидентатно-хелатных ионов ТТА⁻ (Ln-O 2.325-2.402 Å). Координационные узлы LnNO₇ принимают искаженную квадратно-антипризматическую геометрию. Среднее отклонение атомов в четырехугольных гранях призмы O(1)N(1A)O(21)O(22)и O(11)O(12)O(31)O(32) равно 0.11°. Грани расположены под углом 2.2° в VI и 2.8° в VII друг к другу. При координации лиганда Ру₃РО к атому Ln образуется один пятичленный металло-

Рис. 2. Молекулярные структуры комплексов II (а) и VI (б). Атомы H не приведены. Термические эллипсоиды показаны на уровне 40%-ной вероятности.

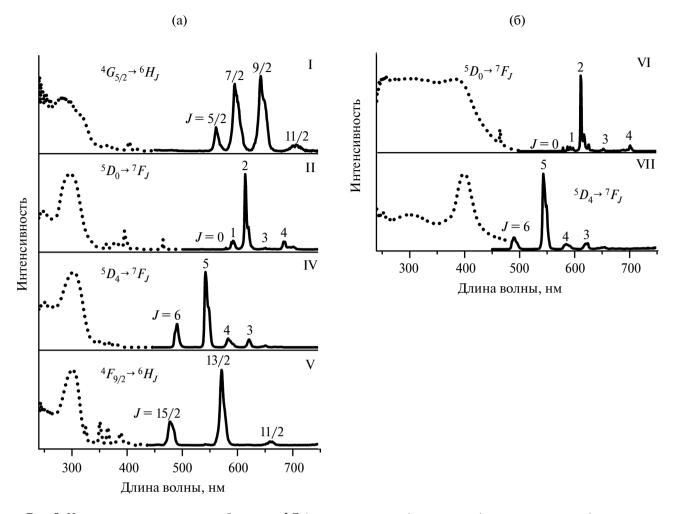

Рис. 3. Проекция кристаллической структуры II на плоскость (010), иллюстрирующая короткие контакты (показаны пунктиром). Атомы H не приведены.

цикл LnOPCN (рис. 26), имеющий практически плоское строение (среднее отклонение атомов от их среднеквадратичной плоскости не превышает 0.05 Å). Угол перегиба (по связи C-N) пиридинового цикла с металлоциклом LnOPCN составляет 6.9° в VI и 6.8° в VII. Один из трех шестичленных хелатных циклов МО₂С₃, образующихся вследствие координации ионов ТТАк Ln, практически плоский: среднее отклонение от среднеквадратичной плоскости не превышает 0.04 Å. Два других цикла LnO₂C₃ имеют конформацию «конверта» с отклонением атомов Ln от плоскости пяти других атомов циклов (-0.685 и 0.502 Å для VI; -0.667 и 0.498 Å для VII). Значения двугранных углов между плоскостями шестичленных хелатных металлоциклов EuO₂C₃ лежат в интервале $35.5^{\circ}-57.9^{\circ}$ для VI и $35.1^{\circ}-58.1^{\circ}$ для VII. Расстояние между ближайшими атомами Ln равно 9.592 Å в VI и 9.572 Å в VII.

В кристаллических упаковках VI и VII имеются короткие контакты $F(23)...C(2C') = 3.135 \, \text{Å}$

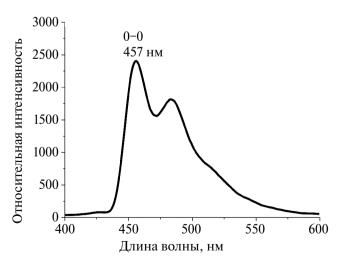
для VI и 3.141 Å для VII между двумя соседними молекулами комплекса, что приводит к образованию димерных ансамблей (рис. 4). Более слабые контакты между соседними ансамблями (O(11)...C(3A*) = 3.438 Å для VI и 3.447 Å для VII) объединяют их в бесконечные цепочки, тянущиеся вдоль оси c.

Спектры возбуждения ФЛ комплексов I–V и VI, VII в твердой фазе при 300 К содержат широкую полосу в областях 240—350 и 240—500 нм соответственно, относящуюся к электронным переходам в молекулах лигандов (рис. 5). В спектрах возбуждения ФЛ комплексов также наблюдаются малоинтенсивные узкие полосы, соответствующие f—f-переходам в ионах Ln^{3+} . Комплексы I, II, IV—VII проявляют Ln^{3+} -центрированную эмиссию в видимой области спектра (рис. 5). Их спектры ФЛ содержат узкие полосы, обусловленные переходами ${}^4G_{5/2} {}^{\rightarrow} {}^6H_{\rm J} (J=5/2,7/2,9/2,11/2)$ в ионе ${\rm Sm}^{3+}$ (I), ${}^7F_0 {}^{\rightarrow} {}^5D_1$ и ${}^5D_0 {}^{\rightarrow} {}^7F_{\rm J} (J=6-3)$ в ионе ${\rm Eu}^{3+}$ (II и VI), ${}^5D_4 {}^{\rightarrow} {}^7F_{\rm J} (J=6-3)$


Рис. 4. Проекция кристаллической структуры VI на плоскость (100), иллюстрирующая короткие контакты между молекулами комплекса (показаны пунктиром).

в ионе Tb³⁺ (IV и VII) и ${}^4F_{9/2} \rightarrow {}^6H_{\rm J}$ (J=15/2, 13/2, 11/2) в ионе Dy³⁺ (V). Интенсивности электродипольных переходов (${}^4G_{5/2} \rightarrow {}^6H_{9/2}$ при 642 нм для Sm³⁺, ${}^5D_0 \rightarrow {}^7F_2$ при ~ 613 нм для Eu³⁺, ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ при 572 нм для Dy³⁺) больше интенсивностей магнитодипольных переходов (${}^4G_{5/2} \rightarrow {}^6H_{7/2}$ при 595 нм для Sm³⁺, ${}^5D_0 \rightarrow {}^7F_1$ при 592 нм для Eu³⁺, ${}^4F_{9/2} \rightarrow {}^6H_{15/2}$ при 478 нм для Dy³⁺), что свидетельствует о том, что ионы Ln³⁺ расположены в низкосимметричных кристаллографических позициях без центров инверсии и согласуется с данными PCA для II и VI [15, 32, 33]. Наличие лишь одной полосы при 579 нм (переход ${}^5D_0 \rightarrow {}^7F_0$) говорит о существовании единого химического окружения вокруг иона Eu³⁺ [34, 35].

Комплекс иона Gd^{3+} III проявляет лиганд-центрированную $\Phi \Pi$. Его спектр эмиссии в твердой фазе при 77 К содержит широкую поло-


су в области 435—600 нм с хорошо разрешенной колебательной структурой (рис. 6). Времена релаксации возбужденного триплетного состояния для всех трех компонент с максимумами при 457, 485 и 520 нм близки и составляют 8.2, 8.4 и 8.1 мс соответственно. Энергия уровня T_1 , равная 21900 см $^{-1}$, была определена по максиму коротковолновой полосы (457 нм) в спектре фосфоресценции III.

Среди синтезированных комплексов Ln(III) с ионами NO_3^- I—V наибольшим абсолютным квантовым выходом ФЛ обладает комплекс Tb^{3+} IV, тогда как Φ_{TOT} комплекса Eu(III) VI с ионами TTA^- более чем на порядок выше Φ_{TOT} комплекса Tb(III) VII аналогичного состава (табл. 3). Согласно эмпирическому правилу Латвы, для эффективной передачи энергии от лиганда к иону Ln^{3+} разница между энергиями триплетного

Рис. 5. Нормированные спектры возбуждения $\Phi \Pi$ (пунктирная линия) и эмиссии (непрерывная линия) комплексов I, II, IV, V (а) и VI, VII (б) в твердой фазе при 300 K с обозначением *f*—*f*-переходов в ионах Ln^{3+} .

энергетического уровня (T_1) лиганда и резонансного уровня иона Ln^{3+} должна находиться в интервале $\Delta E=1500-4000$ см $^{-1}$ [37]. Разница энергий между резонансными уровнями $\operatorname{Sm}^{3+}(^4G_{5/2}=17700\text{ см}^{-1})$, $\operatorname{Eu}^{3+}(^5D_0=17300\text{ см}^{-1})$, $\operatorname{Tb}^{3+}(^5D_4=20500\text{ см}^{-1})$ и $\operatorname{Dy}^{3+}(^4F_{9/2}=21000\text{ см}^{-1})$ и уровнем T_1 Ру $_3$ РО составляет 4200, 4600, 1400 и 900 см $^{-1}$ соответственно. Таким образом, Py_3 РО способен эффективно сенсибилизировать лишь люминесценцию Tb^{3+} , что подтверждается относительно высоким квантовым выходом комплекса IV (табл. 3). Значение $\Delta E=E(^5D_0)-E(T_1)$ для иона Eu^{3+} достаточно велико, что приводит к неэффективной передаче энергии $\operatorname{Py}_3\operatorname{PO} \to \operatorname{Eu}^{3+}$ и низкому $\Phi_{\operatorname{TOT}}$ комплекса II. В то же время ион TTA^- , очевидно, принимает участие в переносе энергии лиганд \to металл в комплексах VI и VII. Энергия его триплетного уровня T_1 , равная 20600 см $^{-1}$ [38], близка к энергии уровня 5D_4 иона Tb^{3+} , что, по-видимому, вызывает безызлуча-

Рис. 6. Спектр фосфоресценции комплекса III в твердой фазе при 77 К.

тельные процессы обратного переноса энергии металл \rightarrow лиганд и приводит к низкому квантовому выходу комплекса VII. Вместе с тем разница энергий между уровнем 5D_0 иона $\mathrm{Eu^{3+}}$ и уровнем $T_1(\mathrm{TTA^-})$, равная $3300~\mathrm{cm^{-1}}$, входит в благоприятный интервал и способствует эффективной сенсибилизации люминесценции иона европия лигандами, в результате чего Φ_{TOT} комплекса VI превышает таковой комплекса II почти в 5 раз (табл. 3).

Кинетики затухания ФЛ комплексов I, II, IV—VII в твердой фазе при 300 К аппроксимируются одноэкспоненциальным приближением. Времена жизни ФЛ (τ_{obs}) комплексов Eu(III) и Tb(III) с ионами NO₃⁻ и TTA⁻ составляют порядка 1.5 и 1.0 мс соответственно (табл. 3) и характерны для нитратных и β -дикетонатных координационных соединений этих лантаноидов [39–42]. Время жизни ФЛ комплексов Sm³⁺ (I) и Dy³⁺ (V) составляют менее 100 мкс и сопоставимы с наблюдаемыми значениями τ_{obs} , описанными в литературе для комплексов этих ионов [43, 44].

Внутренние квантовые выходы Φ_{Ln} II и VI близки и сопоставимы с наблюдаемыми литературными значениями [45]. Эффективность сенсибилизации (η_{sens}) увеличивается в 5 раз при переходе от II к VI, что связано с увеличением эффективности перехода энергии от лигандов к иону Eu^{3+} в присутствии ионов TTA^- . Довольно большие константы скоро-

сти излучательных процессов ($\mathbf{k}_{\rm r}$) обусловлены низкосимметричным координационным окружением вокруг ионов ${\rm Eu}^{3+}$. Наличие множественных межмолекулярных контактов в II и VI приводит к низким константам скорости безызлучательных процессов ($\mathbf{k}_{\rm nr}$) за счет уменьшения колебаний фрагментов молекул комплексов.

В результате проведенной работы получена и исследована серия одноядерных комплексов нитратов и теноилтрифторацетонатов лантанидов(III) на основе *mpuc*(2-пиридил)фосфиноксида, выступающего в роли N,О-хелатного лиганда. Найдено, что переход от иона ТТАк менее объемному иону NO_3^- приводит к включению в координационную сферу лантаноида дополнительной молекулы фосфиноксида. Исследование фотолюминесцентных свойств комплексов Ln(III) с нитрат-ионами показало, *mpuc*(2-пиридил)фосфиноксид наиболее эффективно сенсибилизирует люминесценцию тербия(III) за счет существования благоприятной разницы энергий между низшим триплетным уровнем РузРО и резонансным уровнем иона Ть3+, а в комплексах с ионами ТТА- лигандное окружение проявляет лучшую сенсибилизирующую способность по отношению к иону Eu^{3+} .

Авторы заявляют, что у них нет конфликта интересов.

Таблица 3	. Фотоф	изические параметры для к	омплексов I, II, IV	V–VII i	в твердой фазе при 300 К
-----------	---------	---------------------------	---------------------	---------	--------------------------

Комплекс	τ _{obs} , MKC ^a	τ _{rad} , MKC ^b	Ф _{Ln} , % с	$\Phi_{ ext{TOT}},\%$ d	η_{sens}^{e}	$k_{\rm r}$, c ^{-1 f}	$k_{\rm nr},{ m c}^{-1{ m g}}$
$[Sm(Py_3PO)_2(NO_3)_3] \cdot 1.5Me_2CO(I)$	85			<0.5			
$[Eu(Py_3PO)_2(NO_3)_3] \cdot 1.5Me_2CO (II)$	1471	2351	63	7	0.11	425	255
$[Tb(Py_3PO)_2(NO_3)_3] \cdot 1.5Me_2CO(IV)$	1678			21			
$[Dy(Py_3PO)_2(NO_3)_3] \cdot 1.5Me_2CO(V)$	64			1			
$[Eu(Py_3PO)(TTA)_3]$ (VI)	995	1757	57	34.5	0.60	569	436
$[Tb(Py_3PO)(TTA)_3]$ (VII)	759			<0.5			

 $^{^{}a}$ Время жизни ФЛ, измеренное в твердом состоянии при 300 К.

 $[^]b$ Излучательное время жизни ФЛ для комплексов Eu³+, рассчитанное по формуле $\tau_{\rm rad} = 1/{\rm n}^3{\rm A}_{{
m MD},0} \times I_{{
m MD}}/I_{{
m TOT}}$, где ${\rm A}_{{
m MD},0}$ — вероятность спонтанного излучения для перехода $^5D_0 \rightarrow ^7F_1$ в вакууме (14.65 c¹), n — показатель преломления среды (использовался средний показатель преломления, равный 1.5), $I_{{
m MD}}$ — интенсивность магнитодипольного перехода $^5D_0 \rightarrow ^7F_2$, $I_{{
m TOT}}$ — интегральная интенсивность спектра эмиссии [36].

 $[^]c$ Внутренний квантовый выход, рассчитанный по формуле $\Phi_{\rm Ln} = au_{
m obs}/ au_{
m rad}.$

 $[^]d$ Абсолютный квантовый выход $\Phi \Pi$, измеренный в твердом состоянии при 300 К.

 $[^]e$ Эффективность перехода энергии между лигандами и ионом ${
m Eu}^{3+}$, рассчитанная как ${
m \eta}_{
m sens} = {
m m \Phi}_{
m TOT}/{
m m \Phi}_{
m Ln}.$

 $[^]f$ Константа скорости излучательных процессов, рассчитанная как $k_{\rm r}=1/ au_{\rm rad}$

 $[^]g$ Константа скорости безызлучательных процессов, рассчитанная как $k_{\rm nr}=1/ au_{\rm obs}-1/ au_{\rm rad}$.

БЛАГОДАРНОСТИ

Авторы благодарны Д.В. Кочелакову и В.Н. Юдину за предоставление данных, измеренных в рентгенодифракционном ЦКП ИНХ СО РАН, а также Химическому исследовательскому центру коллективного пользования СО РАН за проведение спектральных и аналитических измерений. Авторы выражают благодарность Министерству науки и высшего образования Российской Федерации.

ФИНАНСИРОВАНИЕ

Исследование выполнено при финансовой поддержке Российского научного фонда в рамках научного проекта № 22-73-00235.

СПИСОК ЛИТЕРАТУРЫ

- Nehra K., Dalal A., Hooda A. et al. // J. Mol. Struct. 2022. V. 1249. P. 131531. https://doi.org/10.1016/j.molstruc.2021.131531
- 2. *Bao G.* // J. Lumin. 2020. V. 228. P. 117622. https://doi.org/10.1016/j.jlumin.2020.117622
- 3. *Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al.* // Inorg. Chem. 2023. V. 62. P. 12625. https://doi.org/10.1021/acs.inorgchem.3c01349
- Hasegawa M., Ohmagari H., Tanaka H., Machida K. // J. Photochem. Photobiol. C. 2022. V. 50. P. 100484. https://doi.org/10.1016/j.jphotochemrev.2022.100484
- Li P., Li H. // Coord. Chem. Rev. 2021. V. 441. P. 213988. https://doi.org/10.1016/j.ccr.2021.213988
- Bao G., Wen S., Lin G. et al. // Coord. Chem. Rev. 2021. V. 429. P. 213642. https://doi.org/10.1016/j.ccr.2020.213642
- 7. *Bodman S.E., Butler S.J.* // Chem. Sci. 2021. V. 12. P. 2716. https://doi.org/10.1039/D0SC05419D
- Parker D., Fradgley J.D., Wong K.-L. // Chem. Soc. Rev. 2021. V. 50. P. 8193. https://doi.org/10.1039/D1CS00310K
- Singh A.K. // Coord. Chem. Rev. 2022. V. 455.
 P. 214365.
 https://doi.org/10.1016/j.ccr.2021.214365
- 10. *Hasegawa Y., Kitagawa Y.* // J. Photochem. Photobiol. C. 2022. V. 51. P. 100485. https://doi.org/10.1016/j.jphotochemrev.2022.100485
- Xu L., Hao Y., Yang X. et al. // Chem. Eur. J. 2021.
 V. 27. P. 10717. https://doi.org/10.1002/chem.202101224.
- 12. *Miyazaki S., Miyata K., Sakamoto H. et al.* // J. Phys. Chem. A. 2020. V. 124. P. 6601. https://doi.org/10.1021/acs.jpca.0c02224

- 13. *Rogozhin A.F., Silantyeva L.I., Yablonskiy A.N. et al.* // Opt. Mater. 2021. V. 118. P. 111241. https://doi.org/10.1016/j.optmat.2021.111241
- 14. *Kitagawa Y., Naito A., Fushimi K., Hasegawa Y. //* Chem. Eur. J. 2021. V. 27. P. 2279. https://doi.org/10.1002/chem.202004485
- 15. *Vats B.G.*, *Kannan S.*, *Kumar M.*, *Drew M.G.B.* // ChemistrySelect. 2017. V. 2. P. 3683. https://doi.org/10.1002/slct.201700437
- Charbonnière L.J., Ziessel R., Montalti M. et al. // J. Am. Chem. Soc. 2002. V. 124. P. 7779. https://doi.org/10.1021/ja0200847
- 17. *Bryleva Y.A., Komarov V.Yu., Glinskaya L.A. et al.* // New J. Chem. 2023. V. 47. P. 10446. https://doi.org/10.1039/D3NJ01119D
- 18. Bryleva Y.A., Artem'ev A.V., Glinskaya L.A. et al. // New J. Chem. 2021. V. 45. P. 13869. https://doi.org/10.1039/D1NJ02441H
- 19. *Брылева Ю.А.*, *Артемьев А.В.*, *Глинская Л.А. и др.* // Журн. структур. химии. 2021. Т. 62. С. 280. (*Bryleva Yu.A.*, *Artem'ev A.V.*, *Glinskaya L.A. et al.* // J. Struct. Chem. 2021. V. 62. P. 265. https://doi.org/10.1134/S0022476621020116)
- Charles R.G., Ohlmann R.C. // J. Inorg. Nucl. Chem. 1965. V. 27. P. 255. https://doi.org/10.1016/0022-1902(65)80222-6
- 21. *Тихова В.Д.*, *Фадеева В.П.*, *Никуличева О.Н. и др.* // Химия в интересах устойчивого развития. 2022. Т. 30. С. 660. (*Tikhonova V.D.*, *Fadeeva V.P.*, *Nikulicheva O.N. et al.* // Chem. Sustain. Dev. 2022. V. 30. P. 640. https://doi.org/10.15372/CSD2022427)
- 22. . APEX2 (version 2.0), Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.
- 23. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 24. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218.
- 25. *Dolomanov O.V., Bourhis L.J., Gildea R.J. et al.* // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 26. Ferraro J.R. // J. Mol. Spectrosc. 1960. V. 4. P. 99. https://doi.org/10.1016/0022-2852(60)90071-0
- Nakamoto K. // Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd., 2006. https://doi.org/10.1002/0470027320.s4104
- 28. *Hudson R.L., Gerakines P.A., Ferrante R.F.* // Spectrochim. Acta. A. 2018. V. 193. P. 33. https://doi.org/10.1016/j.saa.2017.11.055
- Gupta K., Patra A.K. // Eur. J. Inorg. Chem. 2018.
 V. 2018. P. 1882. https://doi.org/10.1002/ejic.201701495

- 30. *Xu C.-J., Li B.-G., Wan J.-T., Bu Z.-Y.* // Spectrochim. Acta. A. 2011. V. 82. P. 159. https://doi.org/10.1016/j.saa.2011.07.027
- 31. *Deacon G.B., Green J.H.S.* // Spectrochim. Acta. A. 1968. V. 24. P. 845. https://doi.org/10.1016/0584-8539(68)80183-7
- 32. *Wen H.-R., Hu J.-J., Yang K. et al.* // Inorg. Chem. 2020. V. 59. P. 2811. https://doi.org/10.1021/acs.inorgchem.9b03164
- 33. *Nehra K., Dalal A., Hooda A. et al.* // Inorg. Chim. Acta. 2022. V. 539. P. 121007. https://doi.org/10.1016/j.ica.2022.121007
- Kai J., Parra D.F., Brito H.F. // J. Mater. Chem. 2008.
 V. 18. P. 4549. https://doi.org/10.1039/B808080A
- 35. *Biju S., Reddy M.L.P., Cowley A.H., Vasudevan K.V.* // Cryst. Growth Des. 2009. V. 9. P. 3562. https://doi.org/10.1021/cg900304g
- 36. *Werts M.H.V., Jukes R.T.F., Verhoeven J.W.* // Phys. Chem. Chem. Phys. 2002. V. 4. P. 1542. https://doi.org/10.1039/B107770H
- 37. *Latva M., Takalo H., Mukkala V.-M. et al.* // J. Lumin. 1997. V. 75. P. 149. https://doi.org/10.1016/S0022-2313(97)00113-0

- 38. *Murov S.L., Carmichael I., Hug G.L.* Handbook of Photochemistry. New York Basel: Marcel Dekker, Inc., 1993.
- 39. *Lyubov D.M., Mahrova T.V., Cherkasov A.V. et al.* // Eur. J. Inorg. Chem. 2023. V. 26. P. e202300292. https://doi.org/10.1002/ejic.202300292
- 40. *Царюк В.И., Журавлев К.П., Шостак Р., Вологжанина А.В.* // Журн. структур. химии. 2020. Т. 61. С. 1088. (*Tsaryuk V.I., Zhuravlev K.P., Szostak R., Vologzhanina A.V.* // J. Struct. Chem. 2020. V. 61. P. 1026. https://doi.org/10.1134/S0022476620070045)
- 41. *Li Y., Yu C., Wang Y. et al.* // Polyhedron. 2023. V. 246. P. 116666. https://doi.org/10.1016/j.poly.2023.116666
- 42. *Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al.* // J. Mol. Struct. 2021. V. 1226. P. 129331. https://doi.org/10.1016/j.molstruc.2020.129331
- 43. *Ivanova E.A.*, *Smirnova K.S.*, *Pozdnyakov I.P. et al.* // Inorg. Chim. Acta. 2023. V. 557. P. 121697. https://doi.org/10.1016/j.ica.2023.121697
- 44. *Gusev A., Kiskin M., Lutsenko I. et al.* // J. Lumin. 2021. V. 238. P. 118305. https://doi.org/10.1016/j.jlumin.2021.118305
- 45. *Lima G.B.V.*, *Bueno J.C.*, *Silva A.F. et al.* // J. Lumin. 2020. V. 219. P. 116884. https://doi.org/10.1016/j.jlumin.2019.116884

Lanthanide(III) Complexes Based on Tris(2-pyridyl)phosphine Oxide: First Examples

Yu. A. Bryleva^{a, *}, L. A. Glinskaya^a, K. M. Yzhikova^a, A. V. Artem'ev^a, M. I. Rakhmanova^a, and A. Yu. Baranov^a

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia *e-mail: bryleva@niic.nsc.ru

A series of mononuclear complexes $[Ln(Py_3PO)_2(NO_3)_3] \cdot 1.5Me_2CO$ (Ln = Sm, Eu, Gd, Tb, Dy) and $[Ln(Py_3PO)(TTA)_3]$ (Ln = Eu, Tb; TTA⁻ is thenoyltrifluoroacetonate ion) based on tris(2-pyridyl) phosphine oxide (Py_3PO) is synthesized and studied. In the synthesized compounds, Py_3PO acts as the N,O-chelate ligand resulting in the formation of coordination polyhedra N_2O_8 and NO_7 of the Ln atom in complexes $[Ln(Py_3PO)_2(NO_3)_3] \cdot 1.5Me_2CO$ and $[Ln(Py_3PO)(TTA)_3]$, respectively. The complexes of Sm³⁺, Eu³⁺, Tb³⁺ and Dy³⁺ ions exhibit lanthanide-centered photoluminescence in the solid phase at 300 K. The energy of the T_1 triplet level of Py_3PO is determined to be 21 900 cm⁻¹ from the ligand-centered phosphorescence spectrum of the Gd(III) complex at 77 K. Among the complexes with the NO_3^- ions, Py_3PO exhibits the highest sensibilizing ability toward Tb^{3+} , whereas the ligand environment in the complexes with the TTA^- ions most efficiently sensibilizes the Eu^{3+} ion luminescence.

Keywords: lanthanides, complexes, phosphine oxide, structure, photoluminescence

REFERENCES

- Nehra K., Dalal A., Hooda A. et al. // J. Mol. Struct. 2022. V. 1249. P. 131531. https://doi.org/10.1016/j.molstruc.2021.131531
- 2. *Bao G.* // J. Lumin. 2020. V. 228. P. 117622. https://doi.org/10.1016/j.jlumin.2020.117622
- 3. *Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al.* // Inorg. Chem. 2023. V. 62. P. 12625. https://doi.org/10.1021/acs.inorgchem.3c01349
- Hasegawa M., Ohmagari H., Tanaka H., Machida K. // J. Photochem. Photobiol. C. 2022. V. 50. P. 100484. https://doi.org/10.1016/j.jphotochemrev.2022.100484

- Li P., Li H. // Coord. Chem. Rev. 2021. V. 441.
 P. 213988. https://doi.org/10.1016/j.ccr.2021.213988
- Bao G., Wen S., Lin G. et al. // Coord. Chem. Rev. 2021. V. 429. P. 213642. https://doi.org/10.1016/j.ccr.2020.213642
- Bodman S.E., Butler S.J. // Chem. Sci. 2021. V. 12. P. 2716. https://doi.org/10.1039/D0SC05419D
- Parker D., Fradgley J.D., Wong K.-L. // Chem. Soc. Rev. 2021. V. 50. P. 8193. https://doi.org/10.1039/D1CS00310K
- 9. *Singh A.K.* // Coord. Chem. Rev. 2022. V. 455. P. 214365. https://doi.org/10.1016/j.ccr.2021.214365
- Hasegawa Y., Kitagawa Y.//J. Photochem. Photobiol. C. 2022. V. 51. P. 100485. https://doi.org/10.1016/j.jphotochemrev.2022.100485
- Xu L., Hao Y., Yang X. et al. // Chem. Eur. J. 2021.
 V. 27. P. 10717.
 https://doi.org/10.1002/chem.202101224
- 12. *Miyazaki S., Miyata K., Sakamoto H. et al.* // J. Phys. Chem. A. 2020. V. 124. P. 6601. https://doi.org/10.1021/acs.jpca.0c02224
- 13. Rogozhin A.F., Silantyeva L.I., Yablonskiy A.N. et al. // Opt. Mater. 2021. V. 118. P. 111241. https://doi.org/10.1016/j.optmat.2021.111241
- 14. *Kitagawa Y., Naito A., Fushimi K., Hasegawa Y. //* Chem. Eur. J. 2021. V. 27. P. 2279. https://doi.org/10.1002/chem.202004485
- Vats B.G., Kannan S., Kumar M., Drew M.G.B. // ChemistrySelect. 2017. V. 2. P. 3683. https://doi.org/10.1002/slct.201700437
- Charbonnière L.J., Ziessel R., Montalti M. et al. // J. Am. Chem. Soc. 2002. V. 124. P. 7779. https://doi.org/10.1021/ja0200847
- Bryleva Y.A., Komarov V.Yu., Glinskaya L.A. et al. // New J. Chem. 2023. V. 47. P. 10446. https://doi.org/10.1039/D3NJ01119D
- Bryleva Y.A., Artem'ev A.V., Glinskaya L.A. et al. // New J. Chem. 2021. V. 45. P. 13869. https://doi.org/10.1039/D1NJ02441H
- Bryleva Yu.A., Artem'ev A.V., Glinskaya L.A. et al. // J. Struct. Chem. 2021. V. 62. P. 265. https://doi.org/10.1134/S0022476621020116
- 20. *Charles R.G.*, *Ohlmann R.C.* // J. Inorg. Nucl. Chem. 1965. V. 27. P. 255. https://doi.org/10.1016/0022-1902(65)80222-6
- 21. *Tikhonova V.D.*, *Fadeeva V.P.*, *Nikulicheva O.N. et al.* // Chem. Sustain. Dev. 2022. V. 30. P. 640. https://doi.org/10.15372/CSD2022427
- 22. APEX2 (version 2.0), Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.

- 23. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 24. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 26. Ferraro J.R. // J. Mol. Spectrosc. 1960. V. 4. P. 99. https://doi.org/10.1016/0022-2852(60)90071-0
- 27. *Nakamoto K.* // Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd., 2006. https://doi.org/10.1002/0470027320.s4104
- 28. *Hudson R.L., Gerakines P.A., Ferrante R.F.* // Spectrochim. Acta. A. 2018. V. 193. P. 33. https://doi.org/10.1016/j.saa.2017.11.055
- Gupta K., Patra A.K. // Eur. J. Inorg. Chem. 2018.
 V. 2018. P. 1882. https://doi.org/10.1002/ejic.201701495
- 30. Xu C.-J., Li B.-G., Wan J.-T., Bu Z.-Y. // Spectrochim. Acta. A. 2011. V. 82. P. 159. https://doi.org/10.1016/j.saa.2011.07.027
- Deacon G.B., Green J.H.S. // Spectrochim. Acta. A. 1968. V. 24. P. 845. https://doi.org/10.1016/0584-8539(68)80183-7
- 32. *Wen H.-R., Hu J.-J., Yang K. et al.* // Inorg. Chem. 2020. V. 59. P. 2811. https://doi.org/10.1021/acs.inorgchem.9b03164
- Nehra K., Dalal A., Hooda A. et al. // Inorg. Chim. Acta. 2022. V. 539. P. 121007. https://doi.org/10.1016/j.ica.2022.121007
- Kai J., Parra D.F., Brito H.F. // J. Mater. Chem. 2008.
 V. 18. P. 4549. https://doi.org/10.1039/B808080A
- 35. *Biju S., Reddy M.L.P., Cowley A.H., Vasudevan K.V.* // Cryst. Growth Des. 2009. V. 9. P. 3562. https://doi.org/10.1021/cg900304g
- 36. *Werts M.H.V., Jukes R.T.F., Verhoeven J.W.* // Phys. Chem. Chem. Phys. 2002. V. 4. P. 1542. https://doi.org/10.1039/B107770H
- Latva M., Takalo H., Mukkala V.-M. et al. // J. Lumin. 1997. V. 75. P. 149. https://doi.org/10.1016/S0022-2313(97)00113-0
- 38. *Murov S.L., Carmichael I., Hug G.L.* Handbook of Photochemistry. New York Basel: Marcel Dekker, Inc., 1993.
- 39. *Lyubov D.M., Mahrova T.V., Cherkasov A.V. et al.* // Eur. J. Inorg. Chem. 2023. V. 26. P. e202300292 https://doi.org/10.1002/ejic.202300292.

- 40. *Tsaryuk V.I., Zhuravlev K.P., Szostak R., Vologzhanina A.V.* // J. Struct. Chem. 2020. V. 61. P. 1026. https://doi.org/10.1134/S0022476620070045
- 41. *Li Y., Yu C., Wang Y. et al.* // Polyhedron. 2023. V. 246. P. 116666. https://doi.org/10.1016/j.poly.2023.116666
- 42. *Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al.* // J. Mol. Struct. 2021. V. 1226. P. 129331. https://doi.org/10.1016/j.molstruc.2020.129331
- 43. *Ivanova E.A., Smirnova K.S., Pozdnyakov I.P. et al.* // Inorg. Chim. Acta. 2023. V. 557. P. 121697. https://doi.org/10.1016/j.ica.2023.121697
- 44. *Gusev A., Kiskin M., Lutsenko I. et al.* // J. Lumin. 2021. V. 238. P. 118305. https://doi.org/10.1016/j.jlumin.2021.118305
- 45. *Lima G.B.V.*, *Bueno J.C.*, *Silva A.F. et al.* // J. Lumin. 2020. V. 219. P. 116884. https://doi.org/10.1016/j.jlumin.2019.116884