OPTOELECTRONIC AND REDOX PROPERTIES OF NEW DIETHYL-SUBSTITUTED TIN(IV) COMPLEXES WITH SCHIFF BASES CONTAINING A HYDRAZONE FRAGMENT
- 作者: Labutskaya L.D.1, Proshutinskaya V.Y.1, Krylova I.V.1, Shangin P.G.1, Minyaev M.E.1, Tretyakov E.V.1, Syroeshkin M.A.1, Egorov M.P.1, Nikolaevskaya E.N.1
-
隶属关系:
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- 期: 卷 51, 编号 12 (2025)
- 页面: 745–762
- 栏目: Articles
- URL: https://journal-vniispk.ru/0132-344X/article/view/358347
- DOI: https://doi.org/10.7868/S3034549925120018
- ID: 358347
如何引用文章
详细
New mononuclear tin(IV) complexes were obtained by condensation of diethyltin oxide Et2SnO with a series of Schiff bases containing a hydrazone fragment. The structure of the complexes was confirmed by 1H, 13C, and 119Sn NMR spectroscopy and X-ray diffraction analysis (CCDC 2451176 (2), 2451177 (3), and 2451178 (4)). Optoelectronic and redox properties of complexes 1–4 were studied using UV spectroscopy and cyclic voltammetry, and the energy gap value was estimated. Electrochemical oxidation and reduction of complexes 1, 2, and 3 are irreversible and are accompanied by further chemical transformations. In contrast, electroreduction of complex 4 with a pincer ligand results in the formation of persistent anion–radical particles.
作者简介
L. Labutskaya
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: lilia_07g@mail.ru
MSc Moscow, Russian Federation
V. Proshutinskaya
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: lasselanta13@gmail.com
MSc Moscow, Russian Federation
I. Krylova
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: kiv@ioc.ac.ru
ORCID iD: 0000-0002-1143-6788
PhD in Chemistry, researcher Moscow, Russian Federation
P. Shangin
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: shangin@ioc.ac.ru
ORCID iD: 0009-0008-9208-9941
PhD in Chemistry, researcher Moscow, Russian Federation
M. Minyaev
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: mminyaev@ioc.ac.ru
ORCID iD: 0000-0002-4089-3697
PhD in Chemistry, researcher Moscow, Russian Federation
E. Tretyakov
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: tretyakov@ioc.ac.ru
ORCID iD: 0000-0003-1540-7033
Dr. Habil., Prof. Deputy Director for Scientific Work Moscow, Russian Federation
M. Syroeshkin
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: syroeshkin@ioc.ac.ru
ORCID iD: 0000-0001-5754-922X
PhD in Chemistry, Senior Researcher Moscow, Russian Federation
M. Egorov
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: mpe@ioc.ac.ru
ORCID iD: 0000-0002-3161-3585
Dr. Habil., Prof. Research Director Moscow, Russian Federation
E. Nikolaevskaya
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: en@ioc.ac.ru
ORCID iD: 0000-0001-9332-6357
PhD in Chemistry, researcher Moscow, Russian Federation
参考
- Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mendeleev Commun. 2023. V. 33. P. 733. https://doi.org/10.1016/j.mencom.2023.10.001
- Devi J., Kumar B., Taxak B. // Inorg. Chem. Comm. 2022. V. 139. P. 109208. https://doi.org/10.1016/j.inoche.2022.109208
- Baryshnikova S.V., Poddel’sky A.I. // Molecules. 2022. V. 27. P. 3928. https://doi.org/10.3390/molecules27123928
- Sahu G., Patra S.A., Pattanayak P.D. et al. // Chem. Commun. 2023. V. 59. P. 10188. https://doi.org/10.1039/D3CC01953E.
- Joshi R., Tomar N., Pokharia S. et al. // Results Chem. 2023. V. 5. P. 100955. https://doi.org/10.1016/j.rechem.2023.100955
- Greb L. // Eur. J. Inorg. Chem. 2022. P. e202100871. https://doi.org/10.1002/ejic.202100871
- Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. P. 439. https://doi.org/10.3390/membranes13040439
- Nikolaevskaya E., Syroeshkin M.A., Egorov M.P. et al. // Coord. Chem. Rev. 2025. V. 530. P. 216469. https://doi.org/10.1016/j.ccr.2025.216469
- Arsenyeva K.V., Piskunov A.V. // J. Struct. Chem. 2023. V. 64. P. 1. https://doi.org/10.1134/S0022476623010018
- Arsenyeva K.V., Klimashevskaya A.V., Pashanova K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. P. e6593. https://doi.org/10.1002/aoc.6593
- Yao S., Saddington A., Xiong Y. et al. // Acc. Chem. Res. 2023. V. 56. P. 475. https://doi.org/10.1021/acs.accounts.2c00763
- Lee V.Ya. // Mendeleev Commun. 2023. V. 33. P. 145. https://doi.org/10.1016/j.mencom.2023.02.001
- Arsenyeva K.V., Pashanova K.I., Trofimova O.Yu. // New J. Chem. 2021. V. 45. P. 11758. https://doi.org/10.1039/D1NJ01644J
- Kadomtseva A.V., Mochalov G.M., Kuzina O.V. // Russ. J. Org. Chem. 2021. V. 57. P. 879. https://doi.org/10.1134/S1070428021060026
- Vishtorskaya A.A., Saverina E.A., Pechennikov V.M. et al. // J. Organomet. Chem. 2018. V. 858. P. 8. https://doi.org/10.1016/j.jorganchem.2018.01.004
- Nikolaevskaya E.N., Kansuzyan A.V., Filonova G.E. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 676. https://doi.org/10.1002/ejic.201801259
- Pellerito C., Nagy L., Pellerito L. et al. // J. Organomet. Chem. 2006. V. 691. P. 1733. https://doi.org/10.1016/j.jorganchem.2005.12.025
- Devi J., Boora A., Rani M. et al. // Anti-Cancer Agents Med. Chem. 2023. V. 23. P. 164. https://doi.org/10.2174/1871520622666220520095549
- Pervaiz M., Sadiq A., Sadiq S. et al. // Inorg. Chem. Comm. 2022. V. 137. P. 109206. https://doi.org/10.1016/j.inoche.2022.109206
- Arsenyeva K.V., Klimashevskaya A.V., Maleeva A.V. et al. // ChemPlusChem. 2025. V. 90. P. e202400504. https://doi.org/10.1002/cplu.202400504
- Klimashevskaya A.., Arsenyeva K.V., Cherkasov A.V. et al. // J. Struct. Chem. 2023. V. 64. P. 2271. https://doi.org/10.1134/S0022476623120016
- Klimashevskaya A.V., Arsenyeva K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. P. e202300540. https://doi.org/10.1002/ejic.202300540
- Dieng M., Gningue-Sall D., Jouikov V. // Main Group Met. Chem. 2012. V. 35. P. 141. https://doi.org/10.1515/mgmc-2012-0059
- Nikolaevskaya E.N., Saverina E.A., Starikova A.A. et al. // Dalton Trans. 2018. V. 47. P. 17127. https://doi.org/10.1039/C8DT03397H
- Nikolaevskaya E.N., Shangin P.G., Starikova A.A. et al. // Inorg. Chim. Acta. 2019. V. 495. P. 119007. https://doi.org/10.1016/j.ica.2019.119007
- Shangin P.G., Krylova I.V., Lalov A.V. et al. // RSC Adv. 2021. V. 11. P. 21527. https://doi.org/10.1039/D1RA02691G.
- Shangin P.G., Akyeva A.Y., Vakhrusheva D.M. et al. // Organometallics. 2023. V. 42. P. 2541. https://doi.org/10.1021/acs.organomet.2c00607
- Kozmenkova A.Ya., Timofeeva V.A., Mankaev B.N. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. P. 2755. https://doi.org/10.1002/ejic.202100369
- Hossain A.M.S., Méndez-Arriaga J.M., Xia C. et al. // Polyhedron. 2022. V. 217. P. 115692. https://doi.org/10.1016/j.poly.2022.115692
- Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 8319. https://doi.org/10.3390/ijms24098319
- Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Molecules. 2022. V. 27. P. 8216. https://doi.org/10.3390/molecules27238216
- Krylova I.V., Labutskaya L. D., Markova M.O. et al. // New J. Chem. 2023. V. 47. P. 11890. https://doi.org/10.1039/D3NJ01993D
- Krylova I.V., Saverina E.A., Rynin S.S. et al. // Mend. Comm. 2020. V. 30. P. 563. https://doi.org/10.1016/j.mencom.2020.09.003
- Krylova I.V., Proshutinskaya V.Yu., Labutskaya L.D. et al. // J. Organomet. Chem. 2025. V. 1028. P. 123527. https://doi.org/10.1016/j.jorganchem.2025.123527
- Li G., Shi Z., Li X. et al. // J. Chem. Res. 2011. V. 35. P. 278. https://doi.org/10.3184/174751911X130434470627
- Ali A.Q., Teoha S.G., Salhin A. et al. // Spectrochim. Acta. A. 2014. V. 125. P. 440. https://doi.org/10.1016/j.saa.2014.01.086
- Kulkarni N.V., Revankar V.K., Kirasur B.N. et al. // Med. Chem. Res. 2012. V. 21. P. 663. https://doi.org/10.1007/s00044-011-9576-6
- Das K., Dutta M., Das B. et al. // Adv. Synth. Catal. 2019. V. 361. P. 2965. https://doi.org/10.1002/adsc.201900107
- Lüning U., Baumstark R., Peters K. et al. // Liebigs Ann. Chem. 1990. P. 129. https://doi.org/10.1002/jlac.199019900124
- Bessega T., Chaves O.A., Martins F. M. et al. // Inorg. Chim. Acta. 2019. V. 496. P. 119049. https://doi.org/10.1016/j.ica.2019.119049
- Perrin D.D., Armarego W.L.F., Perrin D.R. Purification of Laboratory Chemicals. Oxford: Pergamon Press, 1988.
- CrysAlisPro. Version 1.171.41. Rigaku Oxford Diffraction, 2021.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. http://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.http://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. № 2. P. 229. http://doi.org/10.1107/S0021889808042726
- Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. P. 2832. https://doi.org/10.1039/B801115J
- Baryshnikova S.V., Poddel’sky A.I., Bellan E.V. et al. // Inorg. Chem. 2020. V. 59. № 10. P. 6774. https://doi.org/10.1021/acs.inorgchem.9b03757
补充文件

