УЛК 542.05.666.11.01.621.039.736

СТРУКТУРА И СВОЙСТВА БОРОСИЛИКАТНЫХ СТЕКОЛ, СОДЕРЖАЩИХ ОКСИДЫ ЦЕЗИЯ И/ИЛИ СТРОНЦИЯ

© 2024 г. Карпович Н. Ф.¹, *, Алой А. С.¹, Сластихина П. В.¹, Кольцова Т. И.¹, Орлова В. А.¹, Тюрнина Н. Γ .², Тюрнина З. Γ .²

> ¹АО «Радиевый институт им. В.Г. Хлопина», Россия, 198021, Санкт-Петербург, 2-й Муринский пр., 28 ²Институт химии силикатов им. И.В. Гребенщикова РАН, Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2 *e-mail: knf@khlopin.ru Поступила в редакцию 27.05.24 После доработки 10.09.24

Принята к публикации 13.09.24

Объектом исследования являются боросиликатные стекла с раздельным и совместным включением оксидов Cs и/или Sr в количестве 5, 10 и 15 мас. %, которые могут быть использованы в схеме фракционирования жидких высокоактивных отходов от переработки отработанного ядерного топлива. При изучении физико-химических, теплофизических и механических свойств синтезированных стекол основное внимание уделялось их соответствию критериям качества, установленным в нормативном документе НП-019-15. Исследования стекол методом спектроскопии комбинационного рассеяния показали, что их структура меняется незначительно относительно структуры исходной стеклофритты. Исключением стало стекло с включением 15 мас. % Сѕ₂О, на КР-спектрах которого появились новые полосы, а также происходило увеличение его молярного объема и уменьшение температуры стеклования. Однако эти изменения практически не отразились на теплофизических и механических характеристиках. Полученные данные показали, что свойства стекол в изученном интервале концентраций оксидов Cs и/или Sr удовлетворяют действующим критериям качества продукта в виде остеклованных концентратов ¹³⁷Cs и ⁹⁰Sr после фракционирования жидких BAO.

Ключевые слова: боросиликатные стекла, оксид цезия, оксид стронция, структура, термическая устойчивость, механическая прочность

DOI: 10.31857/S0132665124060041, **EDN:** DWPTXU

ВВЕДЕНИЕ

Замыкание ядерного топливного цикла является стратегической государственной задачей, направленной на обеспечение ядерной и радиационной безопасности Российской Федерации. Одним из сдерживающих факторов реализации масштабной переработки отработанного ядерного топлива (ОЯТ) является образование жидких высокоактивных отходов (ВАО). В настоящее время в процессе переработки ОЯТ образующийся рафинат ВАО подлежит остекловыванию. После длительного хранения в контролируемых условиях остеклованные ВАО направляются в пункт глубинного захоронения.

Уменьшение периода потенциальной опасности остеклованных ВАО, направляемых на захоронение, может быть решено за счет фракционирования ВАО, в ходе которого наиболее тепловыделяющие, долгоживущие и радиотоксичные радионуклиды (радиоактивные изотопы цезия, стронция, йода, технеция и др.) выделяются в отдельные фракции в соответствии с их периодом полураспада и свойствами.

Для достижения минимального объема захораниваемых ВАО необходима оптимизация составов стекол, которые могут включать как один единственный радионуклид, так и несколько групп изотопов. Перспективность использования боросиликатного стекла в качестве такой матрицы обусловлена простотой технологии и высоким коэффициентом сокращения объема ВАО [1, 2].

Выделение цезий-стронциевой фракции и ее остекловывание в форме боросиликатного стекла позволяет перейти к приповерхностному захоронению и улучшает геохимический баланс между отвержденной формой отходов и окружающей средой [3, 4]. Согласно различным оценкам, расходы на окончательное захоронение отходов при таком подходе могут быть сокращены на 50–60%. Учитывая, что цезий и стронций выделяются в отдельную фракцию, исследования, направленные на разработку состава боросиликатного стекла с повышенным содержанием этих радионуклидов, являются весьма актуальными [4, 5]. Практически все работы, проводимые в области изучения поведения стекла в применении к иммобилизации РАО, нацелены на получение данных, позволяющих проводить долгосрочное моделирование процессов хранения остеклованных отходов, а также на оптимизацию и унификацию условий проведения указанного выше технологического цикла.

В настоящей работе приведены результаты исследования структуры и ряда свойств боросиликатных стекол, полученных с использованием фритты, разработанной для PAO опытно-демонстрационного центра Горно-химического комбината (ОДЦ ГХК) [5], содержащих 5, 10, 15 мас. % оксидов Cs и/или Sr.

МЕТОДЫ АНАЛИЗА И ОБОРУДОВАНИЕ

Оценка аморфности синтезированных стекол проводилась методом рентгенофазового анализа (РФА) с помощью дифрактометра D2 PHASER BRUKER. Состав и однородность образцов исследовали методом сканирующей электронной микроскопии (СЭМ) с рентгеноспектральным микроанализом (РСМА) при помощи сканирующего электронного микроскопа MIRA3 XM фирмы TESCAN. Характеристика однородности — коэффициент вариации — рассчитывалась по формуле

$$K = \frac{s}{\overline{x}} \cdot 100\%,\tag{1}$$

где K — коэффициент вариации, отражающий степень отклонения содержания рассматриваемого компонента стекла от среднего значения его содержания в стекле, %; S — среднеквадратичное отклонение, которое дает абсолютную оценку меры разбросанности значений; \bar{x} — среднее содержание рассматриваемого компонента в стекле. Коэффициент вариации определялся для элементов Na, Si, Al, Ca, Mn, Sr, Cs.

Спектры комбинационного рассеяния (KP) записывали на рамановском спектрометре Bruker Senterra II в спектральном диапазоне от 50 до 1450 см $^{-1}$ с длиной волны лазера 785 нм (спектральное разрешение -1.5 см $^{-1}$, мощность лазера -100 мВт). Регистрацию и обработку спектров проводили с использованием программы OPUS 8.2. Для каждого спектра выполнена процедура коррекции базовой линии.

Плотность определяли методом гидростатического взвешивания по ГОСТ [6] с использованием аналитических весов OHAUS Explorer Е 1214 (ошибка измерения — $\pm 0.2\%$). Расчет молярного объема (V) выполняли по формуле $V = M/\rho$, где M — молярная масса стекла, ρ — плотность стекла [7].

Определение микротвердости по Виккерсу проводили по ГОСТ [8] с помощью микротвердомера Tinius Olsen с цифровым индикатором FH-006. Измерения осуществляли при нагрузке 0.98 Н (0.05 кгс), время нагружения составляло 10 с. Величина микротвердости рассчитывалась по результатам измерений 15 отпечатков.

Температуры стеклования (T_g) и кристаллизации определяли методом дифференциально-термического анализа (ДТА) на дериватографе О-1500 (МОМ), при динамическом нагреве до температуры 1050 °C со скоростью нагрева 10 °C в мин в воздушной атмосфере.

Кристаллизационную устойчивость стекла оценивали с использованием РФА после изотермической выдержки в течение 600 ч при температуре 450 °C. Исследования проводили на образцах стекол в виде пластинок, которые размещались в печи на керамической подложке.

Механическую прочность на сжатие и изгиб определяли по методике [9] с использованием разрывной машины Shimadzu AG-300kNX. Прочность на сжатие определяли на образцах, имеющих размеры $10 \times 10 \times 10$ мм, согласно формуле

$$\sigma_{\text{cж.}} = \frac{P \cdot a}{(b \cdot h)}.$$
 (2)

Прочность на изгиб определяли на образцах исследуемых стекол, имеющих размеры $5 \times 5 \times 45$ мм, согласно формуле $\sigma_{\text{изг}} = 3/2 \cdot \frac{P \cdot K \cdot a}{\left(b \cdot h^2\right)}$

$$\sigma_{\text{M3}\Gamma} = 3/2 \cdot \frac{P \cdot K \cdot a}{\left(b \cdot h^2\right)} \tag{3}$$

где $\sigma_{_{\rm ИЗГ}}$ — прочность при изгибе, МПа; P — разрушающая сила, H; K — коэффициент базы испытаний; b — ширина образца, m; h — высота образца, m; a — ускорение свободного падения, 9.81 м/c^2 .

Модуль Юнга определяли акустическим методом на образцах в виде брусков, имеющих размеры $5 \times 5 \times 45$ мм, для этого использовали прибор «Звук-130». Количество измерений — не менее трех.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез стекол

Навеска, представляющая собой смесь фритты, разработанной для РАО ОДЦ ГХК [5], и нитратов цезия и/или стронция марок «ч.д.а.» в необходимых пропорциях, перемешивалась в фарфоровом барабане с мелющими телами в шаровой мельнице BML-2 в течение 2 ч с целью гомогенизации. Синтез стекол проводили методом плавки шихты в платиновых тиглях в воздушной атмосфере в печи с силитовыми нагревателями при температуре 1150 °C, длительность изотермической выдержки составляла 2 ч. Расплав стекла отливали в стальную изложницу, предварительно разогретую на электрической плите до температуры 250-300 °C во избежание растрескивания образца при охлаждении. Отжиг стекол после отливки проводили в электропечи СНОЛ 12/12 при температуре 420 °C в течение 2 ч с дальнейшим остыванием до комнатной температуры вместе с печью.

№ со- става	Na ₂ O	SiO ₂	Al_2O_3	CaO	B_2O_3	Li ₂ O	MnO ₂	SrO	Cs ₂ O
Фрит- та	12.50	57.00	3.00	3.00	18.00	3.50	3.00	ı	_
1	11.88	54.15	2.85	2.85	17.10	3.33	2.85	5.00	_
2	11.25	51.30	2.70	2.70	16.20	3.15	2.70	10.00	
3	10.63	48.45	2.55	2.55	15.30	2.98	2.55	15.00	_
4	11.88	54.15	2.85	2.85	17.10	3.33	2.85	ı	5.00
5	11.25	51.30	2.70	2.70	16.20	3.15	2.70	ı	10.00
6	10.63	48.45	2.55	2.55	15.30	2.98	2.55	-	15.00
7	11.88	54.15	2.85	2.85	17.10	3.33	2.85	1.57	3.43
8	11.25	51.30	2.70	2.70	16.20	3.15	2.70	3.15	6.85
9	10.63	48.45	2.55	2.55	15.30	2.98	2.55	4.72	10.28

Таблица 1. Химический состав синтезированных стекол (по синтезу), мас. %

Всего было синтезировано 9 образцов стекол, составы которых приведены в табл. 1.

Для составов 7—9 (табл. 1) соотношение оксидов Cs и Sr было определено исходя из их количеств в жидких BAO.

Синтезированные стекла имели темно-фиолетовый цвет, признаков кристаллизации, пузырей, свилей и непровара не наблюдалось.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Однородность

По результатам РФА на дифрактограммах всех синтезированных стекол присутствовал один диффузионный максимум, что свидетельствует об их аморфности и отсутствии кристаллических фаз.

Коэффициент вариации, рассчитанный по формуле (1), по результатам анализа СЭМ/РСМА всех элементов, входящих в составы стекол, включая Сs и Sr, находился в пределах 10%, что говорит об однородном их распределении.

Дополнительно однородность оценивали по величине микротвердости по Виккерсу, значения которых приведены в табл. 2. Незначительный разброс этих значений и невысокие показатели величин стандартного отклонения свидетельствуют об однородности исследуемых стекол по составу и структуре, отсутствии зон ликвации и микротрещин.

Структура

Спектры KP, полученные в диапазоне $200-1450~\rm cm^{-1}$, приведены на рис. 1-3. На спектрах всех образцов имеется выраженный широкий максимум $1300-1420~\rm cm^{-1}$. Высокочастотный интервал $1250-1600~\rm cm^{-1}$ на KP-спектрах боросиликатных стекол характеризует колебания ассиметричных и симметричных боратных группировок в тройной $[BO_3]$ и четверной координации $[BO_4]$ [10, 11]. Наибольшее количество выраженных полос наблюдается на спектрах образцов с Cs, при увеличении его содержания полоса $1354~\rm cm^{-1}$ смещается в область

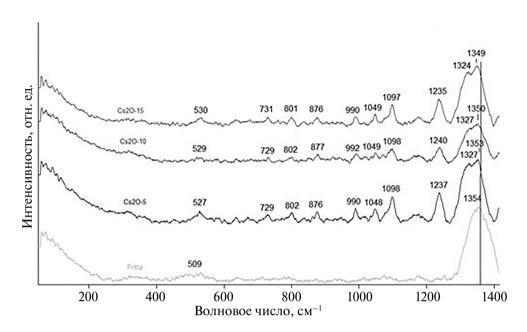

Содержание Cs ₂ O и/или SrO	мас., %	Микротвердость по Виккерсу, ГПа
Фритта	_	Не определяли
	5	7.68±0.26
SrO	10	7.66±0.35
	15	7.65±0.41
	5	8.00±0.18
Cs ₂ O	10	7.88±0.23
	15	7.65±0.40
	5	7.37±0.29
$Cs_2O + SrO$	10	7.96±0.42
	15	7.63±0.31

Таблица 2. Микротвердость по Виккерсу (± величина стандартного отклонения)

низких частот с появлением новой полосы 1327 при концентрациях 5 и 10 мас. % и 1324 см $^{-1}$ при концентрации 15 мас. % оксида Cs. KP-спектры стронциевых и стекол с суммой Cs и Sr имеют примерно одинаковый вид. Высокочастотные области для цезиевых стекол и образцов, содержащих стронций, различаются. В случае стекол со стронцием высокочастотная полоса носит ассиметричный характер, при этом она не разрешается, доминирует более высокочастотная область. Согласно работе [11], полоса 1340-1360 см $^{-1}$ относится к колебаниям дипентаборатной группировки, в которой возможны различные сочетания [BO $_4$] и [BO $_3$], а смещение полосы в низкочастотную область и появление линии 1324 см $^{-1}$ могут указывать на увеличение бора в тройной координации [BO $_3$] с уменьшением бора в четвертной координации [BO $_4$] [10].

На спектрах всех исследованных образцов проявляются хорошо выраженные полосы 1240 и 1098 см $^{-1}$, для цезиевых стекол также имеются полосы 1049, 990, 878, 802, 730, хорошо выражена полоса в диапазоне 520–535 см $^{-1}$ при всех концентрациях цезия. Максимумы в области 1200, 1035–1100 см $^{-1}$ относят к колебаниям тетраэдров [SiO₄] с одним (структурные единицы Q₃), двумя (Q₂) и тремя (Q₁) немостиковыми атомами кислорода [12]. Полоса около 990 см $^{-1}$ возникает вследствие валентных колебаний связи B—O—Si, полоса 877 см $^{-1}$ связана с колебаниями связи Si—O—Si и отождествляется с параметром Q₁ [13]. Полосы в области 500—600 см $^{-1}$ приписываются деформационным колебаниям связей двух типов Si—O—Si и Si—O—B [14], а полосы в диапазоне 450—570 см $^{-1}$ относят к валентным колебаниям B—O—B в тетраэдрах [ВО₄] [15] или, в алюмоборосиликатных стеклах, к Al—O—Al в [AlO₄] (табл. 3) [16, 17].

В обзоре [10] показано, что структурная организация бора в щелочно-боросиликатных стеклах зависит от количества щелочных оксидов. При содержании $SiO_2 \approx 50$ мас. % оптимальное соотношение количества щелочных оксидов и оксида бора (R_2O/B_2O_3 , где R — ион щелочного металла) для образования группировок [BO_4] и AI^{IV} —O— B^{IV} — менее 1, но более 0.5 (в мол. %); увеличение содержания щелочи способствует образованию бора в тройной координации и появлению немостиковых атомов кислорода, связанных с тетраэдрами SiO_4 [10].

Рис. 1. КР-спектры стекол с Сs₂O.

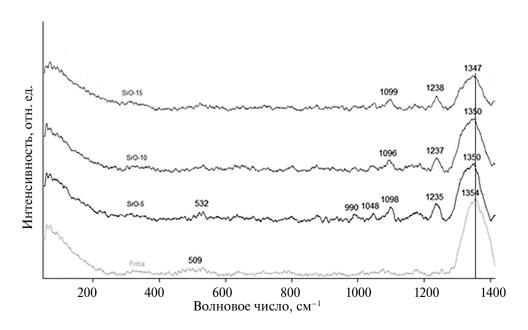
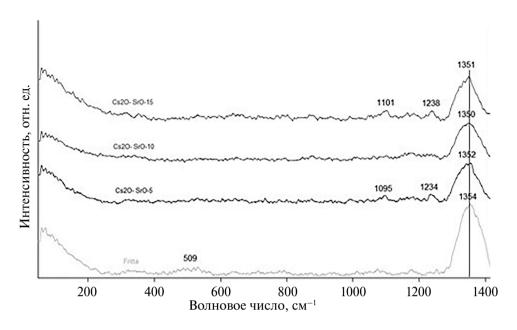
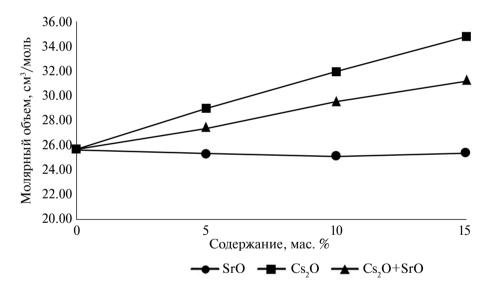



Рис. 2. КР-спектры стекол с SrO.

Рис. 3. КР-спектры стекол с Cs₂O+SrO.


Таблица 3. Характеристические полосы на KP-спектрах серий стекол с включением $\mathrm{Cs_2O}$ и/или SrO

Стекло с содержанием		нем	Communication and an arrangement	
Cs ₂ O SrO		Cs ₂ O+SrO	Структурная единица	
509-530	530	530	B-O-В в тетраэдрах BO ₄ [14]	
530	532	532	[AlO ₄] Al-O-B [16, 17]	
730	_	_	[AlO ₄] [17]	
802	802	_	[SiO ₄] [12]	
876	_	_	[SiO ₄] [13]	
990	_	_	$SiO_{2}(Q_{2})[12]$	
1050	1050	_	SiO ₂ (Q ₃) [14]	
1097	1098	1095	мостики в единицах BO_4 , дибораты [10]	
1216-1240	1237	1238	Пиро-бораты [11]	
1327-1324	_	_	[BO ₃] [13, 14]	
1350-1400	1350	1350	BO_2O^- связанным со звеньями $[BO_4]$ [10]	

В образцах с содержанием Sr соотношение $R_2O/B_2O_3\approx 0.8$, с суммой Cs и Sr это соотношение составило от 1 до 1.5, в образцах цезиевых стекол R_2O/B_2O_3 — от 1.2 (5 мас. % Cs) до 1.9 (15 мас. % Cs). По-видимому, избыток щелочных оксидов в образцах цезиевых стекол вызывает изменения структуры — увеличение бора в тройной координации, присутствие немостиковых атомов кислорода, что подтверждается на KP-спектрах при смещении линии 1350 см $^{-1}$ в область низких частот и наличии линий 1050, 990, 876, 802 см $^{-1}$, что может свидетельствовать о частичной деполимеризации сетки стекла.

Содержание Cs ₂ O и/или SrO	мас. %	Плотность ± 0.01 , г/см ³
Фритта	_	2.46
SrO	5	2.59
	10	2.66
	15	2.70
Cs ₂ O	5	2.57
	10	2.68
	15	2.72
$Cs_2O + SrO$	5	2.60
	10	2.66
	15	2.72

Таблица 4. Плотность образцов стекол (Γ /см³)

Рис. 4. Изменение молярного объема при увеличении содержания SrO и/или Cs₂O.

Плотность и молярный объем

Значения плотности исследуемых стекол с увеличением концентрации оксидов Sr и/или Cs линейно возрастают (табл. 4).

Изменение величины молярного объема стекол, характеризующего плотность упаковки боросиликатной сетки, варьировалось от 26.5 (фритта) до 35 см^3 /моль (см. рис. 4).

При включении SrO молярный объем не изменялся, тогда как при включении суммы Cs_2O и SrO (особенно Cs_2O) происходило его значительное увеличение.

По-видимому, ионы цезия, радиус которых на 30 % больше, чем радиус ионов стронция [18], встраиваясь в стеклообразующую сетку, разрыхляют ее более

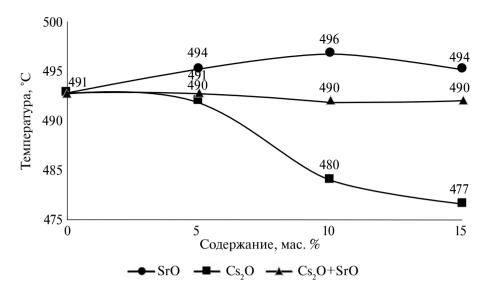


Рис. 5. Температура стеклования образцов стеклофритты и стекол с содержанием SrO и/или Cs₂O.

значительно, чем ионы стронция. Происходящее при этом изменение структуры цезийсодержащих стекол подтверждается наличием на KP-спектрах полос, относящихся к колебаниям тетраэдров $[SiO_4]$ с немостиковыми кислородами, а также сдвигом высокочастотной полосы $[BO_4]$ в низкочастотную область.

ТЕПЛОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Температура стеклования (Тд)

На рис. 5 приведены данные T_g исходной фритты и стекол, содержащих $\mathrm{Cs_2O}$ и/или SrO. Анализ полученных данных показал, что добавка Sr и суммы оксидов Cs и Sr практически не изменяет температуру стеклования. Добавление оксида Cs до 15 мас. % уменьшает T_g до 477 °C.

Согласно литературным данным, в силикатных системах увеличение содержания цезия может приводить к снижению температуры стеклования вследствие деполимеризации кремний-кислородной сетки стекла. Стронций, подобно кальцию, может увеличивать степень полимеризации за счет перевода бора в четвертную координацию [19].

Кристаллизационная устойчивость

Одной из важных характеристик стекол, перспективных для захоронения РАО, является их изотермическая устойчивость. После длительной выдержки в течение 600 ч при температуре 450 °C образцы стекол сохранили форму и стеклянный блеск, не оплавились (рис. 6). Результаты РФА показали, что стекла остались аморфными, кристаллические включения в них отсутствовали.

Рис. 6. Образцы стекол после 600 ч изотермической выдержки при температуре 450 °C.

МЕХАНИЧЕСКИЕ СВОЙСТВА

Прочность на сжатие и на изгиб

Анализ величин прочности показал, что увеличение содержания оксидов Cs и Sr практически не оказывает влияния на прочность на изгиб и находится в пределах $95-116~\mathrm{M}\Pi a$. По требованиям безопасности $\mathrm{H}\Pi$ -019-15, нормирующих показатели качества стеклоподобного компаунда с PAO, эта величина должна быть не менее $9~\mathrm{M}\Pi a$ [20].

Увеличение содержания цезия понижает прочность на сжатие от 441 (5 мас. % Cs_2O) до 297 МПа (15 мас. % Cs_2O), стронция — от 435 (5 мас. % SrO) до 385 МПа (15 мас. % SrO), суммы оксидов — от 494 до 307 МПа.

Несмотря на то, что при увеличении содержания цезия до 15 мас. % прочность на сжатие значительно уменьшается, ее значение остается в пределах нормируемого — не менее 41 МПа [20].

Модуль Юнга

Значения модуля Юнга для всех исследованных стекол находятся в интервале $(6.5-7.5)\cdot 10^{10}$ Па, по нормам НП-019-15 это значение не должно быть менее $5.4\cdot 10^{10}$ Па [20].

Модуль Юнга образцов стекол при увеличении содержания Sr практически не изменяется (см. рис. 7). Модуль Юнга стекол с Сs имеет наименьшие значения и при увеличении его содержания уменьшается. Модуль Юнга образцов, содержащих сумму стронция и цезия, изменяется подобно значениям образцов, содержащих цезий.

ЗАКЛЮЧЕНИЕ

Синтезированы боросиликатные стекла с высоким содержанием цезия и стронция (5, 10, 15 мас. % оксидов).

Изучение структуры цезиевых стекол методом комбинационного рассеяния выявило частичную деполимеризацию сетки стекла. На КР-спектрах при

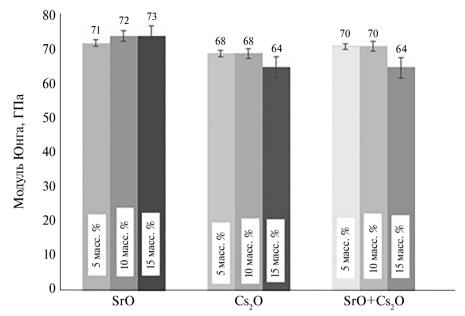


Рис. 7. Модуль Юнга образцов стекол.

увеличении содержания Cs_2O до 15 мас. % появляются полосы, подтверждающие переход бора в тройную координацию, с уменьшением бора в четвертной координации, количество немостиковых кислородов, связанных с тетраэдрами $[SiO_4]$ в сетке, возрастало.

В образцах стекла со стронцием полос, отвечающих таким эффектам, на KP-спектрах не наблюдалось, что может указывать на положительную роль иона Sr^{2+} на стабильность стекла, который, подобно иону Ca^{2+} [19], одновременно повышает его химическую стойкость.

Результаты исследований характеристик стекол показали, что образцы стекол со стронцием сохраняли свои свойства — температуру стеклования, механические свойства. При увеличении содержания цезия величина температуры стеклования понижалась, также уменьшались величины прочности на сжатие и модуль Юнга.

Проведенный комплекс исследований показал, что теплофизические и механические свойства стекол в исследованном интервале концентраций оксидов цезия и стронция удовлетворяют действующим требованиям к качеству стеклоподобного компаунда с 137 Cs и 90 Sr [20].

Для окончательного подтверждения данного вывода проведены исследования водоустойчивости и радиационной стойкости этих стекол, результаты которых будут приведены в следующей публикации.

БЛАГОДАРНОСТЬ

Коллектив авторов выражает благодарность д.т.н. С.Н. Перевислову за помощь в измерении механической прочности стекол.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Федоров Ю.С., Зильберман Б.Я., Алой А.С., Пузиков Е.А, Шадрин А.Ю., Аляпышев М.Ю. Проблемы модернизации экстракционной переработки отработавшего топлива // Журнал Российского химического общества им. Д.И. Менделеева, Современные проблемы ядерного топливного цикла. 2010. Т. LIX. № 3. С. 12—23.
- 2. Chemical Durability and Related Properties of Solidified High-Level Waste Forms. Vienna: International Atomic Energy Agency, 1985. (Technical Reports Series, № 257).
- 3. Feasibility of Separation and Utilization of Cesium and Strontium from High Level Liquid Waste. Vienna: International Atomic Energy Agency, 1993. (Technical Report Series, № 356).
- Aloy A.S., Koltsova T.I., Trofimemko A.V. Glass Waste Form Performance for Disposal of the Cesium and Strontium Concentrate Resulting from the Partitioning of HLW // MRS Proceedings. 1997. V. 506. P. 901–906.
- 5. Алой А.С., Трофименко А.В., Кольцова Т.И., Никандрова М.В. Физико-химические характеристики остеклованных модельных ВАО ОДЦ ГХК // Радиоактивные отходы. 2018. № 4 (5). С. 67—75.
- 6. ГОСТ 9553-2017. Стекло и изделия из него. Метод определения плотности. М.: Стандартинформ, 2018. 8 с.
- 7. *Голеус В.И.*, *Шульга Т.Ф*. Расчет молярного объема оксидных стекол в зависимости от их состава // Вопросы химии и химической технологии. 2010. № 4. С. 149—153.
- 8. ГОСТ 9450-76. Измерение микротвердости вдавливанием алмазных наконечников. М.: Изд-во стандартов, 1993. 35 с.
- 9. ГОСТ 32281.1-2013. Стекло и изделия из него. Определение прочности на изгиб. Основные принципы проведения испытаний. М.: Стандартинформ, 2014. 19 с.
- Hubert M., Faber A.J. On the structural role of boron in borosilicate glasses // Physics and Chemistry of Glasses: European Journal of Glass Science and Technology, Part B. 2014. V. 55 (3). P. 136–158.
- Yadav A.K., Singha P. A Review of Structure of Oxide Glasses by Raman Spectroscopy // RSC Advances. 2015. V. 5. P. 67583–67609.
- 12. *El Felss N.*, *Gharzouni A.*, *Colas M.*, *Cornette J.*, *Sobrados I.*, *Rossignol S.* Structural study of the effect of mineral additives on the transparency, stability and ageing of silicate gels // Journal of Sol-Gel Science and Technology. 2020. V. 96. № 1. P. 265–275.
- 13. *Meera B.N., Sood A.K., Chandrabhas N., Ramakrishna J.* Raman study of lead borate glasses // Journal of Non-Crystalline Solids. 1990. V. 126. № 3. P. 224–230.
- 14. *McMillan P.F.* Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy // American Mineralogist. 1984. V. 69. № 6. P. 622–644.
- 15. Yano T., Kunimine N., Shibata S., Yamane M. Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass // J. Non-Cryst. Solids. 2003. V. 321. P. 157–168.
- Kidari A., Dussossoy J.-L., Brackx E., Caurant D., Magnin M., Bardez-Giboire I. Lanthanum and Neodymium Solubility in Simplified SiO2–B2O3–Na2O–Al2O3–CaO High Level Waste Glass // J. Am. Ceram. Soc. 2012. V. 95. Is. 8. P. 2537–2544.

- 17. Wang S., Rani E., Gyakwaa F., Singh H., King G., Shu Q., Cao W., Huttula M., Fabritius T. Unveiling Non-isothermal Crystallization of CaO−Al2O3−B2O3−Na2O−Li2O−SiO2 Glass via *In Situ* X-ray Scattering and Raman Spectroscopy // Inorg. Chem. 2022. V. 61. № 18. P. 7017−7025.
- 18. *Жабрев В.А.* Диффузионные процессы в стеклах и стеклообразующих расплавах. СПб.: Отдел оперативной полиграфии НИИХ СПбГУ, 1998. 188 с.
- Stoch P. Cs containing borosilicate waste glasses // Optica Applicata. 2008. V. XXXVIII. № 1. C. 237–243.
- 20. Федеральные нормы и правила в области использования атомной энергии «Сбор, переработка, хранение и кондиционирование жидких радиоактивных отходов. Требования безопасности» (НП-019-15) (В редакции приказа Ростехнадзора от 13.09.2021 № 299): Утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору Утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору от 25 июня 2015 г. № 242.