Using Shuffled Frog-Leaping Algorithm for Feature Selection and Fuzzy Classifier Design
- Авторлар: Hodashinsky I.A.1, Bardamova M.B.1, Kovalev V.S.1
-
Мекемелер:
- Tomsk State University of Control Systems and Radioelectronics
- Шығарылым: Том 46, № 6 (2019)
- Беттер: 381-387
- Бөлім: Article
- URL: https://journal-vniispk.ru/0147-6882/article/view/175544
- DOI: https://doi.org/10.3103/S0147688219060030
- ID: 175544
Дәйексөз келтіру
Аннотация
This paper considers a new approach for designing fuzzy rule-based classifiers. To optimize the parameters of classifiers, a continuous shuffled frog-leaping algorithm is applied. On a set of constructed classifiers, the optimal classifier is selected in terms of the accuracy and the number of features used, using the statistical Akaike informational criterion. The efficiency of the proposed approach is tested on 15 KEEL data sets. The results are statistically compared with the results of similar algorithms. The new approach to designing fuzzy classifiers proposed in this article makes it possible to reduce the number of rules and attributes, thereby increasing the interpretability of classification results.
Авторлар туралы
I. Hodashinsky
Tomsk State University of Control Systems and Radioelectronics
Хат алмасуға жауапты Автор.
Email: hodashn@rambler.ru
Ресей, Tomsk, 634050
M. Bardamova
Tomsk State University of Control Systems and Radioelectronics
Хат алмасуға жауапты Автор.
Email: 722bmb@gmail.com
Ресей, Tomsk, 634050
V. Kovalev
Tomsk State University of Control Systems and Radioelectronics
Хат алмасуға жауапты Автор.
Email: vitaly_979@mail.ru
Ресей, Tomsk, 634050
Қосымша файлдар
