On the Complexity of the Reduction of Multidimensional Data Models
- Авторы: Akhrem A.A.1, Rakhmankulov V.Z.1, Yuzhanin K.V.1
-
Учреждения:
- Institute for System Analysis, Computer Science and Control Federal Research Center
- Выпуск: Том 44, № 6 (2017)
- Страницы: 406-411
- Раздел: Article
- URL: https://journal-vniispk.ru/0147-6882/article/view/175301
- DOI: https://doi.org/10.3103/S0147688217060028
- ID: 175301
Цитировать
Аннотация
In this paper, decomposition methods for multidimensional data hypercubes of OLAP systems are investigated. Criteria for reducing the computational complexity of the decomposition methods are presented and comparisons are made with the traditional solutions of multidimensional data analysis problems. Examples illustrating the application of these criteria to investigating the dynamics of computational complexity changes for specific types of reduction problems are considered.
Об авторах
A. Akhrem
Institute for System Analysis, Computer Science and Control Federal Research Center
Email: vilrakh@mail.ru
Россия, Moscow, 119333
V. Rakhmankulov
Institute for System Analysis, Computer Science and Control Federal Research Center
Автор, ответственный за переписку.
Email: vilrakh@mail.ru
Россия, Moscow, 119333
K. Yuzhanin
Institute for System Analysis, Computer Science and Control Federal Research Center
Email: vilrakh@mail.ru
Россия, Moscow, 119333
Дополнительные файлы
