Модель поверхности сейсмического разрыва землетрясения “Чигник” (Аляска, США) 29.07.2021 по данным спутниковой радарной интерферометрии и ГНСС

Обложка

Цитировать

Полный текст

Аннотация

В работе представлена новая модель поверхности сейсмического разрыва землетрясения “Чигник” Mw = 8.2, которое произошло у побережья полуострова Аляска 29.07.2021. Модель построена по данным о полях смещений земной поверхности, полученных методами спутниковой радарной интерферометрии по снимкам спутников Sentinel-1A и 1B, и данным о горизонтальных смещениях на пунктах GPS в районе землетрясения. Использованы спутниковые радарные снимки за период с 17.07 по 10.08.2021 и данные GPS с 18.07 по 08.08.2021. Все эти смещения включают косейсмические и часть постсейсмических смещений. При построении модели поверхности разрыва использовано решение Ф. Поллитца задачи о поле смещений поверхности сферической радиально расслоенной планеты в результате смещений на расположенном внутри нее прямоугольном разрыве. В качестве регуляризации решаемой обратной задачи ставилось условие близости направления подвижки на каждом элементе плоскости разрыва к заданному направлению, определяемому по данным сейсмологии. В построенной модели область сейсмического разрыва аппроксимирована одной плоскостью протяжeнностью 225 км по простиранию, 126 км по падению, разделeнной на 48 одинаковых элементов. Согласно построенной модели, тип смещений – это практически чистый надвиг, а смещения, в целом, произошли по всей очаговой области. Максимальное смещение составило 5.7 м при среднем смещении по всей плоскости 2.2 м. Сейсмический момент, рассчитанный при значении модуля сдвига 32 ГПа по полученным параметрам площадки и смещениям на ней, составил 1.95 × 1021 Н м (Мw = 8.13), что близко к оценкам USGS и GCMT, полученным по сейсмологическим данным.

Об авторах

А. М. Конвисар

Институт физики Земли им. О.Ю. Шмидта РАН; Физический факультет Московского государственного университета им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: alexkonvisar@gmail.com
Россия, 123242, Москва, ул. Большая Грузинская, 10, стр. 1; Россия, 119991, Москва, Ленинские Горы, 1, стр. 2,

В. О. Михайлов

Институт физики Земли им. О.Ю. Шмидта РАН

Email: alexkonvisar@gmail.com
Россия, 123242, Москва, ул. Большая Грузинская, 10, стр. 1

М. С. Волкова

Институт физики Земли им. О.Ю. Шмидта РАН

Email: alexkonvisar@gmail.com
Россия, 123242, Москва, ул. Большая Грузинская, 10, стр. 1

В. Б. Смирнов

Институт физики Земли им. О.Ю. Шмидта РАН; Физический факультет Московского государственного университета им. М.В. Ломоносова

Email: alexkonvisar@gmail.com
Россия, 123242, Москва, ул. Большая Грузинская, 10, стр. 1; Россия, 119991, Москва, Ленинские Горы, 1, стр. 2,

Список литературы

  1. Михайлов В.О., Киселева Е.А., Тимошкина Е.П., Смирнов В.Б., Пономарев А.В., Дмитриев П.Н., Карташов И.М., Хайретдинов С.А., Арора К., Чадда Р., Шринагеш Д. Совместная интерпретация наземных и спутниковых данных для землетрясения Горха, Непал, 25.04.2015 // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15. № 4. С. 119–127. https://doi.org/10.21046/2070-7401-2018-15-4-119-127
  2. Михайлов В.О., Тимошкина Е.П., Смирнов В.Б., Хайретдинов С.А., Дмитриев П.Н. К вопросу о природе постсейсмических деформационных процессов в районе землетрясения Мауле, Чили, 27.02.2010 г. // Физика Земли. 2020. № 6. С. 38–47. https://doi.org/10.31857/S0002333720060046
  3. Михайлов В.О., Тимофеева В.А., Смирнов В.Б., Тимошкина Е.П., Шапиро Н.М. Новая модель поверхности разрыва Ближне-Алеутского землетрясения 17.07.2017 г. Mw = 7.8 на основе данных спутниковой радарной интерферометрии // Физика Земли. 2022. № 2. С. 88–101. https://doi.org/10.31857/S0002333722020089
  4. Ali S.T., Freed A.M. Contemporary deformation and stres-sing rates in Southern Alaska // Geophys. J. Int. 2010. V. 183. P. 557–571. https://doi.org/10.1111/j.1365-246X.2010.04784.x
  5. Argus D.F., Gordon R.G., DeMets C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame // Geochem. Geophys. Geosyst. 2011. V. 12. № 11. P. 1‒13. https://doi.org/10.1029/2011GC003751
  6. Bürgmann R., Rosen P.A., Fielding E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation // Annu. Rev. Earth Planet. Sci. 2000. V. 28. P. 169–209. https://doi.org/10.1146/annurev.earth.28.1.169
  7. Costantini M., Rosen P.A. A generalized phase unwrapping approach for sparse data (IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293)). Hamburg, Germany: IEEE, 1999. P. 267–269. https://doi.org/10.1109/IGARSS.1999.773467
  8. Cross R.S., Freymueller J.T. Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and western Alaska // J. Geophys. Res. 2008. V. 113. № B7. P. 1‒19. https://doi.org/10.1029/2007JB005136
  9. Davies J., Sykes L., House L., Jacob K. Shumagin seismic gap, Alaska Peninsula: History of great earthquakes, tecto-nic setting, and evidence for high seismic potential // J. Geophys. Res. 1981. V. 86. P. 3821‒3855. https://doi.org/10.1029/JB086iB05p03821
  10. Drooff C., Freymueller J.T. New constraints on slip deficit on the Aleutian megathrust and Inflation at Mt. Veniaminof, Alaska from repeat GPS measurements // Geophys. Res. Lett. 2021. V. 48. № 4. P. 1‒12. https://doi.org/10.1029/2020GL091787
  11. Elliott J.L., Grapenthin R., Parameswaran R. M., Xiao Z., Freymueller J. T., Fusso L. Cascading rupture of a mega-thrust // Sci. Adv. 2022. V. 8. № 18. P. 1‒10. https://doi.org/10.1126/sciadv.abm4131
  12. Ferretti A. Satellite InSAR Data: Reservoir Monitoring from Space. Bunnik, Netherlands: EAGE Publications, 2014. 159 p. https://doi.org/10.3997/9789073834712
  13. Freymueller J.T., Woodard H., Cohen S.C., Cross R., Elliott J., Larsen C.F., Hreinsdóttir S., Zweck C. Active deformation processes in Alaska, based on 15 years of GPS measurements (Active Tectonics and Seismic Potential of Alaska. Geophys. Monogr. Ser., V. 179.). Washington, D. C., USA: AGU, 2008. 42 p. https://doi.org/10.1029/179GM02
  14. Goldstein R.M., Werner C.L. Radar interferogram filtering for geophysical applications // Geophys. Res. Lett. 1998. V. 25. P. 4035−4038. https://doi.org/10.1029/1998GL900033
  15. Goldstein R.M., Zebker H.A., Werner C.L. Satellite radar interferometry: Two dimensional phase unwrapping // Radio Sci. 1988. V. 23. P. 713−720. https://doi.org/10.1029/RS023I004P00713
  16. Hanssen R.F. Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001. 308 p. https://doi.org/10.1007/0-306-47633-9
  17. Hooper A., Segall P., Zebker H. Persistent Scatterer InSAR for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos // J. Geophys. Res. 2007. V. 112. № B7. P. 1‒21. https://doi.org/10.1029/2006JB004763
  18. Liu C., Lay T., Xiong X. The 29 July 2021 Mw 8.2 Chignik, Alaska Peninsula earthquake rupture inferred from seismic and geodetic observations: Re-rupture of the western 2/3 of the 1938 rupture zone // Geophys. Res. Lett. 2022. V. 49. № 4. P. 1‒9. https://doi.org/10.1029/2021JB023676
  19. Okada Y. Internal deformation due to shear and tensile faults in a half-space // Bull. Seismol. Soc. Am. 1992. V. 82. P. 1018–1040. https://doi.org/10.1785/BSSA0820021018
  20. Okada Y. Surface deformation due to shear and tensile faults in a half-space // Bull. Seismol. Soc. Am. 1985. V. 75. P. 1135–1154. https://doi.org/10.1785/BSSA0750041135
  21. Pollitz F.F. Coseismic deformation from earthquake faulting on a layered spherical Earth // Geophys. J. Int. 1996. V. 125. № 1. P. 1–14. https://doi.org/10.1111/j.1365-246X.1996.tb06530.x
  22. Suito H., Freymueller J.T. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake // J. Geophys. Res. 2009. V. 114. № B11. P. 1‒23. https://doi.org/10.1029/2008JB005954
  23. Ye L., Bai Y., Si D., Lay T., Cheung K.F., Kanamori H. Rupture model for the 29 July 2021 Mw 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations // J. Geophys. Res. 2022. V. 127. № 7. P. 1‒42. https://doi.org/10.1029/2021JB023676
  24. Ye L., Lay T., Kanamori H., Yamazaki Y., Cheung K.F. The 22 July 2020 Mw 7.8 Shumagin seismic gap earthquake: partial rupture of a weakly coupled megathrust // Earth Planet. Sci. Lett. 2021. V. 562. № 6A. P. 1‒12. https://doi.org/10.1016/J.EPSL.2021.116879

Дополнительные файлы


© А.М. Конвисар, В.О. Михайлов, М.С. Волкова, В.Б. Смирнов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».