Preparation of submicron cobalt films using cobalt oxalate as a precursor
- Authors: Alymov M.I.1, Rubtsov N.M.1,2, Zelensky V.A.1, Ankudinov A.B.1, Boyarchenko O.D.1, Sychev A.E.1, Chernysh V.I.1, Tsvetkov G.I.1
-
Affiliations:
- Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Issue: Vol 44, No 5 (2025)
- Pages: 23-32
- Section: ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА ФИЗИКО-ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ
- URL: https://journal-vniispk.ru/0207-401X/article/view/295100
- DOI: https://doi.org/10.31857/S0207401X25050036
- ID: 295100
Cite item
Abstract
The possibility of obtaining porous two-dimensional cobalt structures (films) with submicron thickness using cobalt oxalate as a precursor during heat treatment in a hydrogen flow has been established. It is shown that the formation of two-dimensional structures on liquid low-melting metals (In, Ga) allows avoiding the formation of cracks and increases the integrity of Co films. It is shown that the thickness of Co films on Si reaches 100 nm, but the linear size of such cobalt sheets does not exceed 20 microns. The use of low-melting indium as a substrate makes it possible to increase the average size of Co films compared to Co films on silicon without an intermediate indium layer. The material is a thin two-dimensional layered structure of porous cobalt formed by interlacing metal chains. The film thickness is ~ 500 nm, and the linear size reaches 200 microns. The possibility of obtaining a durable metal film of Co-10% Ga on a massive drop of gallium measuring 20x15 mm has been established.
Full Text

About the authors
M. I. Alymov
Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences
Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka
N. M. Rubtsov
Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences
Author for correspondence.
Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka; Moscow
V. A. Zelensky
Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences
Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka
A. B. Ankudinov
Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences
Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka
O. D. Boyarchenko
Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences
Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka
A. E. Sychev
Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences
Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka
V. I. Chernysh
Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences
Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka
G. I. Tsvetkov
Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences
Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka
References
- Kafizas A., Carmalt C. J., Parkin I. P. // Coord. Chem. Rev. 2013. V. 257. P. 2073. https://doi.org/10.1016/j.ccr.2012.12.004
- Chang L., Montoye R.K., Nakamura Y. et al. // IEEE J. Solid State Circuits. 2008. V. 43. P. 956. https://doi.org/10.1109/JSSC.2007.917509
- Ivanova A. R., Nuesca G., Chen X. et al. // J. Electrochem. Soc. 1999. V. 146. P. 2139. https://doi.org/10.1149/1.1391904
- Kaloyeros A. E., Londergan A., Arkles B. Method of interlayer mediated epitaxy of cobalt silicide from low temperature chemical vapor deposition of cobalt. US Pat. 6,346,477. 2002.
- Zaera F. // Coord. Chem. Rev. 2013. V. 257. P. 3177. https://doi.org/10.1016/j.ccr.2013.04.006
- Elliott S. D., Dey G., Maimaiti Y. // J. Chem. Phys. 2017. V. 146. P. 052822. https://doi.org/10.1063/1.4975085
- Smirnov Yu. M. // Russ. J. Phys. Chem. B. 2020. V. 14. № 2. P. 209. https://doi.org/10.1134/S1990793120020293
- Vasiliev A. A., Dzidziguri E. L., Efimov M. N. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. № 3. P. 381. https://doi.org/10.1134/S1990793121030313
- Vikulova M. A., Tsyganov A. R., Artyukhov D. I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1311. https://doi.org/10.1134/S199079312306009X
- Chizhik S.A., Gribov P.A., Kovalsky L.Yu. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 1. P.153. https://doi.org/10.1134/S1990793124010226
- Lammers D. // Semicond. Manuf. Des. Community. 2017. semimd.com/ blog/2017/12/21.
- Singer P. // Semicond. Des. Manuf. Community. 2018. http://semimd.com/blog/ tag/cobalt/
- Londergan A.R. Nuesca G., Goldberg C. et al. // J. Electrochem. Soc. 2001. V. 148. P. C21.
- Dorovskikh S. I., Hairullin R. R., Sysoev S. V. et al. // Surf. Eng. 2016. V. 32. P. 8. https://doi.org/10.1179/1743294414Y.0000000424
- Samal N., Chetry K. B., Rook K., Hayes A. et al. // J. Vac. Sci. Technol. B. Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2014. V. 32. 011206. https://doi.org/10.1116/1.4836455
- Georgi C., Hapke M., Thiel I., Hildebrandt A. et al. // Thin Solid Films. 2015. V. 578. P. 180. https://doi.org/10.1016/j.tsf.2015.01.052
- Ramos B. K., Saly M. J., Chabal Y. J. et al. // Coord. Chem. Rev. 2013. V. 257. P. 3271. https://doi.org/10.1016/j.ccr.2013.03/028
- Yang Y. , Fei H., Ruan G. , Tour D.M. // Adv. Mater. 2015. V. 27. № 20. P. 3175. https://doi.org/10.1002/adfm.201502479
- Alymov M.I., Rubtsov N.M., Zelensky V.A. et al. A method for producing ultrathin sheets of porous metals and alloys: Pat. RF 2819948 // 2024 B.I. 16. P. 45.
- Koryakin A.A., Kukushkin S.A., Osipov A.V. et al. // Phys. Solid State. 2022. V. 64. P. 113. https://doi.org/10.21883/pss.2022.01.52497.209
- Kukushkin S.A., Osipov A.V., Bessolov V.N. et al. // Phys. Solid State. 2017. V. 59. P. 674. https://doi.org/10.21883/ftt.2017.04.44266.287
- Sakalo T.V., Kukushkin S.A. // Appl. Surf. Sci. 1996. V. 92. P. 350. https://doi.org/10.1016/0169-4332(95)00254-5
- Zheng S., Zeng M., Cao H. et al. // Sci. China Mater. 2019. V. 62. P. 1087. https://doi.org/10.1007/s40843-019-9406-7
- Rubtsov N.M. Key Factors of Combustion. From Kinetics to Gas Dynamics. Springer International Publishing AG. 2017.ISBN: ISBN 978-3-319-45996-7.
- Alymov M.I., Rubtsov N.M., Seplyarskii B.S. et al. // Mendeleev Commun. 2016. V. 26. P. 452.
- Diagrams of the state of double metal systems. Ed. by Lyakishev N. P. V. 2. Moscow: Mechanical engineering, 1997.
- Alymov M.I., Rubtsov N.M., Zelensky V.A. et al. A method for producing a porous metal, alloy or psEᵤdo-alloy: Pat. RF 2815844 // B.I. 2024. № 9. P. 30.
Supplementary files
