METHOD FOR EVALUATING THE EFFICIENCY OF HYPERSPECTRAL IMAGING INSTRUMENTATION FOR DETECTING GAS CLOUDS AND PLUMES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The releases of toxic or explosive gases have a negative impact on the environment and pose a serious threat to the life and health of industrial workers, as well as to the population living in areas adjacent to the industrial facilities. Modern technologies make it possible to remotely and promptly detect such threats, thereby preventing potential accidents and disasters. This work presents a novel methodology for simulating the detection of a gas cloud resulting from a leak at an industrial infrastructure line under open atmospheric conditions. The approach includes the synthesis of observation scenarios in the radiation wavelength range of 300–2500 nm, taking into account the peculiarities of its detection utilizing hyperspectral imaging instrumentation (HSI). Using the example of sulfur dioxide leak detection via a neural network algorithm based on a Siamese neural network, it has been demonstrated that an SO2 cloud can be remotely identified using HSI operating in the 330–700 nm range with a spectral resolution of 1 nm.

Авторлар туралы

I. Rodionov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

A. Vinogradov

AO Scientific and Technical Center Reagent

Email: al.n.vinogradov@gmail.com
Moscow, Russia

M. Gomorev

AO Scientific and Technical Center Reagent

Moscow, Russia

Y. Izmailova

AO Scientific and Technical Center Reagent

Moscow, Russia

A. Rodionov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

I. Rodionova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

G. Shvetsov

AO Scientific and Technical Center Reagent

Moscow, Russia

Y. Dyakov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

D. Shestakov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

M. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

Әдебиет тізімі

  1. Голубков Г.В., Григорьев Г.Ю., Набиев Ш.Ш. и др.// Хим. физика. 2018. Т. 37. № 10. С. 47. https://doi.org/10.1134/S0207401X18090054
  2. Голяк Ил.С., Анфимов Д.Р., Винтайкин И.Б. и др. // Хим. физика. 2023. Т. 42. № 4. C. 3. https://doi.org/10.31857/S0207401X23040088
  3. Fufurin I.L., Golyak I.S., Golyak I.S. et al. // Russ. J. Phys. Chem. B. 2025. V. 19. № 3. P. 674. https://doi.org/10.1134/S199079312570040X
  4. Морозов А.Н., Табалин С.Е., Анфимов Д.Р. и др. // Хим. физика. 2024. Т. 43. № 6. С. 40. https://doi.org/10.31857/S0207401X24060052
  5. Idoughi R., Vidal T.H.G., Foucher P.Y. et al. // J. Spectrosc. 2016. V. 2016. 5428762. https://doi.org/10.1155/2016/5428762
  6. Родионов И.Д., Гоморев М.А., Родионова И.П. и др. // Хим. физика. 2024. Т. 43. № 10. С. 71. https://doi.org/10.31857/S0207401X24100069
  7. Izmailova Y.A., Leontyev A.A., Vinogradov A.N. et al. // Atmosphere, Ionosphere, Safety. Proceedings of IX International Conference. Kaliningrad: Algomat, 2025. P. 209. https://doi.org/10.59043/978–5–6042044–9–8_209
  8. Белов И.В., Беспалов М.С., Клочкова Л.В. и др. // Мат. моделирование. 1999. Т. 11. № 8. С. 52.
  9. СТО Газпром 2-2.3-351-2009. Методические указания по проведению анализа риска для опасных производственных объектов газотранспортных предприятий. М.: ОАО “Газпром”, 2009.
  10. Методика оценки последствий химических аварий (Методика “Токси-2.2”) // Методики оценки последствий аварий на опасных производственных объектах. М.: НТЦ Промышленная безопасность, 2002.
  11. Монин А.С., Обухов А.М. // Тр. Геофиз. инст. АН СССР. 1954. Т. 24. № 151. С. 163.
  12. Turner D.B. Practical guide to atmospheric dispersion modeling Texas: Trinity Consultants, Inc., 2007.
  13. User’s Guide for the Industrial Source Complex (ISC3) Dispersion Model. Volumes I and II. Research Triangle Park: Office of Air Quality Planning and Standards, Emissions, Monitoring, and Analysis Division, 1995. EPA‑454/B‑95‑003a.
  14. Napier B.A., Strenge D.L., Ramsdell J.V. GENII Version 2 Users Guide. 2012.
  15. Hanna S.R., Briggs G.A., Hosker R.P. Handbook on atmospheric diffusion. Oak Ridge: Technical Information Center, U.S. Department of Energy, 1982. V. 11223. https://doi.org/10.2172/5591108
  16. Turner D.B. Workbook of atmospheric dispersion estimates. Washington: U.S. Department of Health, Education, and Welfare, 1969.
  17. Briggs G.A. // Plume Rise Predictions. Boston: American Meteorological Society, 1975. P. 59.
  18. Berk A., Conforti P., Kennett R. et al. // Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX. 2014. V. 9088. 90880H. https://doi.org/10.1117/12.2050433
  19. Базы данных ECOSTRESS [Электронный ресурс]. URL: https://ecostress.jpl.nasa.gov
  20. Базы данных Института химии Макса Планка [Электронный ресурс]. URL: https://www.mpic.de
  21. Lothian G.F. // Analyst. 1963. V. 88. P. 678.
  22. Zhang X., Gao K., Wang J. et al. // Remote Sens. 2022. V. 14. № 5. P. 1260. https://doi.org/10.3390/rs14051260
  23. Chen B., Liu L., Zou Z. et al.// Remote Sens. 2023. V. 15. № 13. 3223. https://doi.org/10.3390/rs15133223
  24. Özdemir O.B., Koz A. // IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023. V. 16. P. 1474. https://doi.org/10.1109/JSTARS.2023.3235781
  25. Xiong Y., Wu K., Yu G. et al. // Sensors. 2022. V. 22. № 10. P. 3900. https://doi.org/10.3390/s22103900
  26. Hermans C., Vandaele A.C., Fally S. // J. Quant. Spectrosc. Radiat. Transf. 2009. V. 110. № 9–10. P. 756. https://doi.org/10.1016/j.jqsrt.2009.01.031
  27. Vandaele A.C., Hermans C., Fally S. // J. Quant. Spectrosc. Radiat. Transf. 2009. V. 110. № 18. P. 2115. https://doi.org/10.1016/j.jqsrt.2009.05.006
  28. Whitehead R.F., De Mora S.J., Demers S. // The Effects of UV Radiation in the Marine Environment. Cambridge: Cambridge University Press, 2000. P. 1. https://doi.org/10.1017/CBO9780511535444.002
  29. Vandaele A.C., Hermans C., Fally S. et al. // J. Geophys. Res. Atmos. 2002. V. 107. № D18. 4348. https://doi.org/10.1029/2001JD000971
  30. Young I.A.K., Murray C., Blaum C.M. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. № 33. P. 15318. https://doi.org/10.1039/c1cp21337g
  31. Maistry N. // Proc. 19th Int. Sympos. High Voltage Engineering. Johannesburg: Univ. Witwatersrand, 2015. P. 1.
  32. Manolakis D., Truslow E., Pieper M. et al.// IEEE Signal Process. Mag. 2014. V. 31. № 1. P. 24. https://doi.org/10.1109/MSP.2013.2278915
  33. Vaughan W.M. // J. Air Waste Manage. Assoc. 1991. V. 41. № 11. P. 1489. https://doi.org/10.1080/10473289.1991.10466948

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».