О составе насыщенных паров и летучести тетрахлоридов урана и некоторых других металлов (ThCl4, HfCl4, ZrCl4, TiCl4) из их расплавленных смесей с хлоридами щелочных металлов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На основании экспериментальных данных, полученных нами и другими исследователями, преимущественно сотрудниками нашего Института (ИВТЭ УрО РАН), обсуждены закономерности изменения состава насыщенных паров и летучести компонентов расплавленных смесей тетрахлоридов урана и некоторых других металлов (ThCl4, HfCl4, ZrCl4, TiCl4) с хлоридами щелочных металлов в зависимости от температуры, концентрации и катионного состава расплавов. Отмечено, что растворение UCl4, также, как и других тетрахлоридов в расплавленных хлоридах щелочных металлов, сопровождается комплексообразованием, проявляющимся в резком понижении летучести хлорида соответствующего четырехвалентного металла и его содержания в насыщенных парах. Прочность образуемых в расплавах комплексных хлоридных анионов многовалентных металлов существенно возрастает при уменьшении их концентрации, замене соли-растворителя в ряду от LiCl к CsCl и температуры. В результате − величины летучести UCl4, ThCl4, HfCl4, ZrCl4, TiCl4 и состав паров над их растворами в ионных расплавах варьируются в очень широких пределах. При этом значительно более легколетучие в индивидуальном состоянии тетрахлориды гафния, циркония и титана (особенно TiCl4) имеют, как показывают экспериментальные данные, и более высокие летучести и содержания в насыщенных парах над растворами в расплавленных хлоридах щелочных металлов.

Об авторах

А. Б. Салюлев

Институт высокотемпературной электрохимии УрО РАН

Автор, ответственный за переписку.
Email: salyulev@ihte.uran.ru
Россия, Екатеринбург

В. Я. Кудяков

Институт высокотемпературной электрохимии УрО РАН

Email: salyulev@ihte.uran.ru
Россия, Екатеринбург

Список литературы

  1. Смирнов М.В., Кудяков В.Я., Салюлев А.Б., Комаров В.Е., Посохин Ю.В., Афоничкин В.К. Летучести компонентов насыщенных паров расплавленных смесей UCl4–CsCl и UCl4–LiCl // Радиохимия. 1979. 21. № 1. С. 18–21.
  2. Salyulev A.B., Kudyakov V.Ya., Moskalenko N.I. Volatilities of the components of the saturated vapors of UCl4 solutions in a molten equimolar NaCl–KCl mixture // Russ. Metallurgy. 2021. № 8. P. 992–997.
  3. Салюлев А.Б., Кудяков В.Я., Москаленко Н.И. Летучести компонентов насыщенных паров расплавленных смесей UCl4–KCl и UCl4–NaCl // Расплавы. 2021. № 5. С. 533–542.
  4. Салюлев А.Б., Кудяков В.Я., Москаленко Н.И. Летучести компонентов насыщенных паров расплавленных смесей UCl4–RbCl // Расплавы. 2022. № 4. С. 338–349.
  5. Smirnov M.V., Kudyakov V.Ya. The saturation vapor pressure and decomposition potential of ThCl4 solutions in molten alkali chlorides // Electrochim. Acta. 1984. 29. № 1. P. 63–68.
  6. Smirnov M.V., Salyulev A.B., Kudyakov V.Ya. Thermodynamic properties and decomposition potential of HfCl4 solutions in molten alkali chlorides and their mixtures // Electrochim. Acta. 1984. 29. № 8. P. 1087–1100.
  7. Салюлев А.Б., Кудяков В.Я., Смирнов М.В., Москаленко Н.И. Разделение гафния и циркония в растворах их тетрахлоридов в расплавленных хлоридах щелочных металлов // Журн. прикл. химии. 1984. 57. № 8. С. 1847–1850.
  8. Flengas S.N., Pint P. Potential chloride electrolytes for recovering the metals Ti, Zr and Hf by fused salt electrolysis // Canad. Metallurg. Quart. 1969. 8. № 2. P. 151–156.
  9. Flengas S.N., Block-Bolten A. Solubilities of reactive gases in molten salts. In: Advances in Molten Salt Chemistry / Ed. Braunstein J., Mamantov Gleb, Smith G.P. / N.Y.: Plenum Press, 1973. 2. P. 27–81.
  10. Смирнов М.В., Максимов В.С., Хайменов А.П. Взаимодействие газообразного тетрахлорида титана с расплавленными хлоридами щелочных металлов // Журн. неорган. химии. 1966. 11. № 8. С. 1765–1771.
  11. Салюлев А.Б., Кудяков В.Я. P–T-диаграммы систем CsCl–Cs2TiCl6 и RbCl–Rb2TiCl6 // Расплавы. 1991. № 4. С. 95–98.
  12. Шугуров С.М. Термическая устойчивость неорганических ассоциатов в газовой фазе. Дис. … д-ра хим. наук. Санкт-Петербург, 2018.
  13. Katz J.J., Rabinowitch E. The chemistry of uranium: The element, its binary and related compounds. Part 1. N.Y., London: McGraw-Hill Book Company, Inc. 1951.
  14. Brown D. The halides of the lanthanides and actinides. London, N.Y., Sydney, Tokyo, Mexico: John Wiley and Sons Ltd. 1968.
  15. Суворов А.В. Термодинамическая химия парообразного состояния. Л.: Химия. 1970.
  16. Roine A. HSC Chemistry 7.0 Thermochemical Database. Finland: Outokumpu Research Oy. 2009.
  17. Миронов В.Л., Бурылев Б.П. Давление насыщенного пара индивидуальных хлоридов и их бинарных смесей // Успехи термодинамики расплавов: материалы Всесоюзного семинара. Краснодар: Краснодар. политехн. ин-т, 1976. С. 25–84.
  18. Singh Z., Prasad R., Venugopal V., Sood D.D. The vaporization thermodynamics of uranium tetrachloride // J. Chem. Thermodynamics. 1978. 10. P. 129–124.
  19. Новиков Г.И., Гаврюченков Ф.Г. Комплексные галогениды в парах при высоких температурах // Успехи химии. 1967. 36. № 3. С. 399–413.
  20. Binnewies M., Schäfer H. Gasförmige Halogenidkomplexe und ihre Stabilität // Z. Anorg. Allg. Chem. 1974. 407. № 3. P. 327–344.
  21. Arthers S.A., Beattie I.R. The vibrational spectra of some tetrachlorides in rare gas matrices with particular reference to the molecular shapes of ThCI4 and UCI4 // J. Chem. Soc., Dalton Trans. 1984. № 23. P. 819–826.
  22. Li B., Dai S., Jiang D. First principles dynamic simulations of UCln–NaCl (n = 3, 4) molten salts // ACS Appl. Energy Mater. 2019. 2. № 3. P. 2122–2128.
  23. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. 1976. A32. P. 751–767.
  24. Смирнов М.В. Электродные потенциалы в расплавленных хлоридах. М.: Наука, 1973.
  25. Морачевский А.Г., Сладков И.Б. Физико-химические свойства молекулярных неорганических соединений (экспериментальные данные и методы расчета): Справочник. СПб.: Химия, 1996.
  26. Шека И.А., Карлышева К.Ф. Химия гафния. Киев: Наукова думка, 1972.
  27. Yaws C.L. Thermophysical properties of chemicals and hydrocarbons. Norwich: William Andrew, 2008.
  28. Fischer W., Gewehr R., Wingchen H. Über thermische Eigenschaften von Halogeniden. 12. Über eine neue Anordnung zur Dampfdruckmessung und über die Schmelzpunkte und Sättigungsdrucke von Skandium-, Thorium- und Hafniumhalogeniden // Z. Anorg. Allg. Chem. 1939. 242. № 2. P. 161–187.
  29. Смирнов М.В., Кудяков В.Я., Комаров В.Е., Салюлев А.Б. Равновесный электродный U(IV)–U и окислительно-восстановительный U(IV)–U(III) потенциалы в среде расплавленных хлоридов щелочных металлов // Электрохимия. 1979. 15. № 2. С. 269–272.
  30. Салюлев А.Б., Закирьянова И.Д., Вовкотруб Э.Г. Исследование продуктов взаимодействия ZrCl4 и HfCl4 с хлоридами щелочных металлов и с пентахлоридом фосфора методом спектроскопии КР // Расплавы. 2012. № 5. С. 53–61.
  31. Photiadis G.M., Papatheodorou G.N. Co-ordination of thorium(IV) in molten alkali-metal chlorides and the structure of liquid and glassy thorium(IV) chloride // J. Chem. Soc., Dalton Trans. 1999. № 20. P. 3541–3548.
  32. Kipouros G.J., Flint J.H., Sadoway D.R. Raman spectroscopic investigation of alkali-metal hexachloro compounds of refractory metals // Inorg. Chem. 1985. 24. № 23. P. 3881–3884.
  33. Brooker M.H., Papatheodorou G.N. Vibrational spectroscopy of molten salts and related glasses and vapors. In: Advances in Molten Salt Chemistry / Ed. Mamantov G. / Amsterdam, Oxford, N.Y. et al.: Elsevier. 1983. 5. P. 26–184.
  34. Photiadis G.M., Papatheodorou G.N. Vibrational modes and structure of liquid and gaseous zirconium tetrachloride and of molten ZrCl4–CsCl mixtures // J. Chem. Soc., Dalton Trans. 1998. № 6. P. 981–990.

Дополнительные файлы


© А.Б. Салюлев, В.Я. Кудяков, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».