НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ МАШИН И КОНСТРУКЦИЙ

УДК 621.713.2

РАСЧЕТ И ВЫБОР ПОСАДОК ДЛЯ СОЕДИНЕНИЙ КОМБИНИРОВАННОЙ УПРУГО-ВТУЛОЧНОЙ ПАЛЬШЕВОЙ МУФТЫ

© 2024 г. О.А. Леонов^{1, *}, Н.Ж. Шкаруба¹, Ю. Г. Вергазова¹, Д. У. Хасьянова², Д.А. Пупкова¹

¹Российский государственный аграрный университет — MCXA им. К.А. Тимирязева, Москва, Россия ²Институт машиноведения им. А.А. Благонравова РАН, Москва, Россия *e-mail: metr@rgau-msha.ru

Поступила в редакцию 25.03.2024 г. После доработки 03.06.2024 г. Принята к публикации 15.06.2024 г.

В статье рассмотрены особенности использования упругих втулочно-пальцевых муфт. Представлен расчет и выбор посадок для случая применения упруго втулочно-пальцевых полумуфт разных исполнений с различными диаметрами посадочных отверстий. В качестве объекта исследований было выбрано соединение вала электродвигателя A280S8 — вала вакуумного насоса BBH1-25 с упругой втулочно-пальцевой муфтой. Установлено, что соединения вала электродвигателя с муфтой Ø80 мм при сборке методом запрессовки должна быть назначена посадка H8/t6, а при нагреве муфты — H8/t7. Для соединения вала вакуумного насоса BBH1-25 с муфтой Ø65 мм при любом виде сборки можно назначить посадку H8/t6, при которой наибольший натяг на 4 мкм превышает установленную границу наибольшего технологического натяга, что может привести к разрушению чугунной муфты. В связи с этим, рекомендовано заводу-изготовителю муфт повысить точность оборудования для того, чтобы обеспечить посадку для соединения вала вакуумного насоса BBH1-25 с муфтой Ø65 мм в виде H7/t6, которая будет удовлетворять рассчитанным требованиям точности.

Ключевые слова: упругие втулочно-пальцевые муфты, соединение, посадка, натяг, допуск посадки

DOI: 10.31857/S0235711924050077, **EDN:** NTTTRU

Упругая втулочно-пальцевая муфта (МУВП) широко применяется в различных приводах машин и оборудования, т.к. обладает хорошей эластичностью, высокой демпфирующей и электроизоляционной способностью и проста в изготовлении [1, 2]. МУВП обладают низкими компенсационными способностями, в связи с этим быстро изнашиваются даже при небольших смещениях валов [3, 4]. Кроме того, на надежность МУВП влияют такие факторы как нагрузка, температура, запыленность, регулярность технического обслуживания и т.д. [5, 6]. При этом их срок службы часто составляет 20—40% от ресурса машины в целом [7].

Однако применение таких МУВП очень распространено, т.к. они легко изготавливаются и заменяются [8]. Еще одним преимуществом является то, что для МУВП допускается сочетание полумуфт разных исполнений с различными диаметрами посадочных отверстий в пределах одного номинального крутящего момента (комбини-

рованная муфта). Примером такого использования является соединение в приводах водокольцевых вакуумных насосах (ВВН). Использование МУВП обеспечивает погашения вибраций и продления ресурса подшипников и соединения насоса и приводного двигателя, которые установлены на общей фундаментальной раме (рис. 1).

Рис. 1. Водокольцевой вакуумный насос в сборе с электродвигателем.

Насосы ВВН используются для отсасывания воздуха, различных газов (кроме агрессивных) и смесей пара и газа, освобожденных от влаги в капельной форме. Они работают на воде или другой жидкости — например, машинном масле.

Насосы ВВН эксплуатируются в самых разных областях деятельности: 1) в сельском хозяйстве они обеспечивают работу доильных аппаратов; 2) на табачных производствах с их помощью сушат табак; 3) на предприятиях пищевой промышленности эти насосы применяются для дегазации растительных масел.

В рассматриваемом соединении выходной вал электродвигателя и вал ВВН будут иметь разные диаметры и, следовательно, интенсивность нагружения цилиндрических посадочных поверхностей будет разная. Исходя из этого, посадки в рассматриваемом соединении должны быть разными.

В стандарте ГОСТ 21424-93 [9] на изготовление упруго-втулочных пальцевых муфт нормировано основное отклонение в системе отверстия с точность по 8 квалитету (*H*8). При этом следует отметить, что квалитет для упруго-втулочных пальцевых муфт установлен единый не зависимо от номинального крутящего момента, передаваемого через муфту.

В стандарте на основные размеры концов валов ГОСТ 12080-66 [10] указано, что классы допусков можно выбирать из следующего ряда в зависимости от диаметра вала: до 5.8 мм - класс допуска не нормируется; свыше 5.8 мм до 30 мм - j6; свыше 30 мм до 50 мм - k6; свыше 50 до 630 - m6.

Допускается принимать классы допусков диаметров валов до 30 мм - k6, а выше 120 мм - r6, а для вращающихся электрических машин возможно применение классов допусков диаметров валов от 6 мм - h6, k6, r6, u7, f9.

Таким образом, из анализа рекомендаций стандартов видно, что при выборе классов допусков не учитывается крутящий момент, передаваемый через соединение. В связи с этим необходимо рассчитать и выбрать посадки для соединений комбинированной упруго-втулочной пальцевой муфты с учетом размеров соединений, материалов деталей и передаваемой нагрузки.

Цель исследования. Рассчитать и выбрать посадки для случая применения полумуфт разных исполнений с различными диаметрами посадочных отверстий.

Объект исследований. В качестве объекта исследований было выбрано соединение вала электродвигателя A280S8 — вала вакуумного насоса BBH1-25 с упругой втулочно-пальцевой муфтой (МУВП).

Методы исследований. В расчетах использовались основные положения теории точности и взаимозаменяемости деталей и соединений, а также элементы теории сопротивления материалов. В основу положена методика расчета и выбора посадок с натягом для соединений «вал—муфта со шпонкой» [11, 12].

Результаты исследования и их анализ. Для выбора посадок в цилиндрических соединениях с натягом со шпонкой необязательно учитывать ширину шпонки, т.к. паз шпонки в поверхностях отверстия полумуфты и вала уменьшает контактную площадь, передающую вращающий момент. Зависимость для определения наименьшего расчетного натяга имеет вид [11]

$$N_{P\min} = \frac{2T}{(d_n - b)lf} \left(\frac{C_D}{E_D} + \frac{C_d}{E_d}\right) N_{P\min} = \frac{2T}{(d_n - b)lf} \left(\frac{C_D}{E_D} + \frac{C_d}{E_d}\right),\tag{1}$$

где T — вращающий момент, H·м; C_d , C_D — коэффициенты Ламе вала и отверстия; E_d , E_D — модули упругости материала вала и отверстия, Π а; f — коэффициент трения; d_n — номинальный диаметр соединения, м; l — длина соединения, м; b — ширина шпоночного паза отверстия и вала, м.

Наибольший расчетный натяг зависит от наибольшего давления, которое определяется из условий работы материалов деталей в зоне упругой деформации без перехода в пластическую [13].

Согласно ГОСТ 21424-93 МУВП полумуфты должны изготавливаться из чугуна марки СЧ20 по ГОСТ 1412. Допускается изготовление полумуфт из других материалов с механическими свойствами не хуже, чем у чугуна марки СЧ20.

Чугун СЧ20 имеет предел текучести 200 МПа, а сталь 40X, из которой изготовлены валы — 363 МПа. Таким образом, при соединении муфты с валом наиболее слабой деталью по условию не превышения предела текучести оказывается муфта, т.к. она изготовлена в виде втулки с небольшой разницей в диаметрах, и такая геометрия значительно снижает прочностные свойства. Вал обычно не имеет внутренних полостей, поэтому его прочностные свойства выше. В этом случае наибольший расчетный натяг определяется по формуле [11]

$$N_{P_{\text{max}}} = 0.58 \left[\sigma_T\right] \left(1 - \left(\frac{d_n}{d_2}\right)^2\right) dn \left(\frac{C_D}{E_D} + \frac{C_d}{E_d}\right), \tag{2}$$

где $[\sigma_T]_d$, $[\sigma_T]_D$ — пределы текучести материалов вала и отверстия, $\Pi a; d_1$ — внутренний диаметр вала, м; d_2 — внешний диаметр отверстия, м.

В величины расчетных натягов вносятся поправки на смятие шероховатости поверхности и температурное расширение деталей. Вторая поправка будет равна нулю из-за равенства коэффициента линейного расширения материалов изготовления вала и муфты.

Исходные данные для расчета натягов и посадок для соединения соединений вала электродвигателя A280S8 — вала вакуумного насоса ВВН1-25 с МУВП сведены в табл. 1.

Для сопряжений МУВП с валом электродвигателя и ВВН определены наименьшие натяги из условия необходимости передачи заданного вращающего момента посредством цилиндрической поверхности соединения. Шпонка в данном соединении служит для предотвращения проворачивания вала относительно отверстия в случае перегрузки. Наибольший натяг определен из условия работы только в пределах зоны упругой деформации при контакте стального вала с чугунной муфтой. Результаты расчета и выбора посадок для соединений вала электродвигателя A280S8 с МУВП представлены в табл. 2, 3.

Из табл. 2, 3 видно, что расчетные наименьшие натяги для Ø65 больше, чем для Ø80. Это обусловлено тем, что через меньшую площадь передается одинаковый

Таблица 1. Исходные данные для расчета посадок для соединений вала электродвигателя A280S8 — вала вакуумного насоса BBH1—25 с МУВП

	Диаметр со	Диаметр соединения, м		
Параметр	0.08	0.065		
	Знач	Значения		
Длина соединения <i>l</i> , м	0.17	0.105		
Коэффициент трения f	0.01	0		
Внутренний диаметр вала d_1 , м	0.175	0.135		
Наружный диаметр муфты d_2 , м	0.17	0.105		
Наибольший момент T , $H \cdot M$	715	715		
Ширина шпонки b , м	0.022	0.018		
Коэффициент Ламе вала C_d	0.762	0.730		
Коэффициент Ламе муфты C_D	1.798	1.874		
Коэффициент Пуасона для материала вала μ_d	0.27	0.27		
Коэффициент Пуасона для материала муфты μ_D	0.27	0.27		
Модуль упругости материала вала E_d , Па	2E+11	2E+11		
Модуль упругости материала муфты E_D , Па	2E+11	2E+11		
Предел текучести материала вала $[\sigma_T]_d$, МПа	363	363		
Предел текучести материала муфты $[\sigma_T]_D$, МПа	200	200		
Шероховатость поверхности вала R_{ad} , мкм	1.25	200		
Шероховатость поверхности отверстия R_{aD} , мкм	2.5	2.5		

Таблица 2. Результаты расчета и выбора посадок для соединений вала электродвигателя $A280S8\ c\ MYB\Pi$

	Метод сборки		
Параметр	запрессовка со смазкой	запрессовка без смазки	нагрев втулки
	значения		
Коэффициент трения f	0.08	0.12	0.24
Коэффициент смятия шероховатостей отверстия и вала h_D	0.3	0.35	0.45
Наименьшее давление $p_{r\min}$, МПА	5.7	3.8	1.9
Наименьший расчетный натяг $N_{P_{\min}}$, мкм	5.87	3.91	1.96
Наибольшее давление $p_{r\text{max}}$, МПа	91.76	91.76	91.76
Наибольший расчетный натяг $N_{P_{\max}}$, мкм	93.97	93.97	93.97
Поправка на смятие шероховатости ΔN_R , мкм	11.59	13.52	17.38
Наибольший технологический натяг $N_{T\max}$, мкм	102.73	104.66	108.53
Наименьший технологический натяг $N_{T ext{min}}$, мкм	17.46	17.43	19.34
Допуск посадки Т, мкм	85.27	87.23	89.19
Стандартная посадка	H8/t6	H8/t6	H8/t7

Таблица 3. Результаты расчета и выбора посадок для соединений вала вакуумного насос	ca
ВВН1-25 с МУВП	

	Метод сборки		
Параметр	запрессовка со смазкой	запрессовка без смазки	нагрев втулки
	значения		
Коэффициент трения f	0.08	0.12	0.24
Коэффициент смятия шероховатостей отверстия и вала h_D	0.3	0.35	0.45
Наименьшее давление $p_{r\min}$, МПа	14.07	9.38	4.69
Наименьший расчетный натяг $N_{P_{\min}}$, мкм	11.91	7.94	3.97
Наибольшее давление $p_{r\text{max}}$, МПа	89.11	89.11	89.11
Наибольший расчетный натяг $N_{P\max}$, мкм	75.40	75.40	75.40
Поправка на смятие шероховатости ΔN_R , мкм	11.59	13.52	17.38
Наибольший технологический натяг $N_{T\max}$, мкм	84.73	86.66	90.52
Наименьший технологический натяг $N_{T\min}$, мкм	23.50	21.46	21.35
Допуск посадки T , мкм	61.23	65.20	69.17
Стандартная посадка	H8/t6, H7/t6	H8/t6, H7/t6	H8/t6, H7/t6

вращающий момент. При этом наибольшие расчетные натяги для Ø65 меньше, чем для Ø80, что обусловлено геометрией соединения — прочность меньших диаметров всегда меньше. В связи с этим, допуск посадки у Ø65 меньше, чем у Ø80 и при использовании комбинированной муфты к полумуфтам с меньшим диаметром будут предъявляется более высокие требования по точности обработки соединяемых поверхностей.

Для соединения вала электродвигателя с полумуфтой Ø80 мм при сборке методом запрессовки получена посадка 80H8/t6, а при нагреве муфты 80H8/t7. Классы допуска t6 и t7 отсутствуют в рекомендациях ГОСТ 12080-66 на концы валов. При этом обеспечивается передача вращающего момента без рисков проворачивания соединения. Для соединения вала ВВН с полумуфтой Ø65 мм при любом виде сборки получена посадка 65H8/t6, у которой наибольший натяг на 4 мкм превышает установленную границу наибольшего технологического натяга, что повышает вероятность разрушения чугунных полумуфт. Посадка, удовлетворяющая всем требованиям — 65H7/t6, но при классе допуска отверстия t7 заводу-изготовителю муфт необходимо повысить точность оборудования или для данной партии ввести селективный подбор для обеспечения попадания муфт в пределы допуска $65H7^{+0.03}$.

Вывод. Таким образом, рассчитаны и выбраны посадки для соединений комбинированной упруго-втулочной пальцевой муфты с валом электродвигателя A280S8 и валом вакуумного насоса ВВН1-25. Выявлено, что при использовании комбинированной муфты к деталям с меньшим диаметром будут предъявляется более высокие требования по точности обработки соединяемых поверхностей.

Финансирование. Данная работа финансировалась за счет средств бюджета Российского государственного аграрного университета — МСХА им. К.А. Тимирязева и Института машиноведения им. А.А. Благонравова РАН. Никаких дополнительных грантов на проведение или руководство данным конкретным исследованием получено не было.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Граков С.А.* Упругие муфты для снижения динамических нагрузок в приводах машин // Динамика систем. механизмов и машин. 2018. Т. 6. № 1. С. 40.
- Tadeo A. T., Cavalca K. L. A Comparison of Flexible Coupling Models for Updating in Rotating Machinery Response // J. of the Brazilian Society of Mechanical Sciences and Engineering. 2003. V. 25 (3). P. 235.
- Ramteke H. P., Mehta G. D. Flexible Coupling A Research Review // Machines. Mechanism and Robotics. 2019. P. 887. https://doi.org/10.1007/978-981-16-0550-5 81
- 4. *Melezhik R., Vlasenko D.* Load simulation and substantiation of design values of a pin flexible coupling with a flexible disk-type element // Mining Science and Technology. 2021. V. 6. P. 128. https://doi.org/10.17073/2500-0632-2021-2-128-135
- Chen X., Wang T. Dynamic behavior analysis of rigid-flexible coupling planar mechanism considering dry clearances and lubrication clearances // J. of Mechanical Science and Technology. 2023. V. 37. P. 1585. https://doi.org/10.1007/s12206-023-0302-3
- 6. *Khidir T. C.* Design and Analysis of Bushed Pin Flexible Coupling // Int. J. of All Research Education and Scientific Methods. 2017. V. 5 (4). P. 38.
- 7. ГОСТ 21424-93. Муфты упругие втулочно-пальцевые. Параметры и размеры. М.: ИПК Изд-во стандартов, 2002. 15 с.
- 8. Melnyk V., Vlasovets V., Konoplianchenko I., Tarelnyk V., Dumanchuk M., Martsynkovskyy V., Semirnenko Y., Semirnenko S. Developing a system and criteria for directed choice of technology to provide required quality of surfaces of flexible coupling parts for rotor machines // J. of Physics: Conf. Series. 2021. V. 1741. P. 012030. https://doi.org/10.1088/1742-6596/1741/1/012030
- 9. Wang G., Chen H., Qi S., Wu J., Yu L. Study on compensatory magnitude of axial misalignment for flexible couplings assembled by interference fit // Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition, 2011. P. 745. https://doi.org/10.1115/GT2011-45347
- 10. ГОСТ 12080-66. Концы валов цилиндрические. Основные размеры, допускаемые крутящие моменты. М.: Изд-во стандартов, 1994. 16 с.
- 11. Leonov O.A., Shkaruba N. Zh., Vergazova Yu.G., Golinitskiy P. V., Pupkov D.A. Fit of Elastic Sleeve—Pin Couplings with Shafts // Russian Engineering Research. 2023. V. 43 (4). P. 399. https://doi.org/10.3103/S1068798X2305012X
- 12. Leonov O.A., Shkaruba N. Zh., Vergazova Y. G., Khasyanova D. U. Justification of Keyed Joint Fits // J. of Mach. Manuf. and Reliab. 2022. V. 51 (6). P. 548. https://doi.org/10.3103/S1052618822060073
- 13. Якушев А. И., Бежелукова Е. Ф., Плуталов В. Н. Допуски и посадки ЕСДП для гладких цилиндрических деталей (расчет и выбор). М.: Изд-во стандартов, 1978. 256 с.