ВЛИЯНИЕ ВОЛНОВЫХ РЕЗОНАНСНЫХ ВОЗДЕЙСТВИЙ НА СЕДИМЕНТАЦИОННУЮ УСТОЙЧИВОСТЬ ДИСПЕРСИЙ НАНОЧАСТИЦ КРАХМАЛА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В статье изучено влияние волновых резонансных воздействий на седиментационную устойчивость дисперсий наночастиц картофельного и кукурузного крахмалов, полученных методом соосаждения. Установлено, что доля дисперсной фазы дисперсий наночастиц картофельного крахмала, сформованных с помощью традиционного перемешивания, остается неизменной двое суток, для дисперсий наночастиц кукурузного крахмала этот показатель сохраняется на первоначальном уровне лишь в течение первых пяти минут. Применение волновых воздействий на стадии соосаждения приводит к увеличению значений ξ-потенциала получаемых наночастиц в 4.5 и 3.5 раза для кукурузного и картофельного крахмалов, соответственно. Благодаря этому стабильность дисперсий наночастиц кукурузного крахмала возрастает до двух суток, дисперсий наночастиц картофельного крахмала – до сорока суток. Представленные в статье результаты являются основой для разработки ресурсосберегающей технологии получения высокостабильных дисперсий наночастиц биополимеров для пищевой, медицинской, фармацевтической и других отраслей промышленности.

Об авторах

С. Р. Ганиев

Институт машиноведения им. А.А. Благонравова РАН

Email: kobjakovinka@mail.ru
Россия, Москва

В. П. Касилов

Институт машиноведения им. А.А. Благонравова РАН

Email: kobjakovinka@mail.ru
Россия, Москва

О. Н. Кислогубова

Институт машиноведения им. А.А. Благонравова РАН

Email: kobjakovinka@mail.ru
Россия, Москва

О. А. Бутикова

Институт машиноведения им. А.А. Благонравова РАН

Email: kobjakovinka@mail.ru
Россия, Москва

Н. Е. Кочкина

Институт машиноведения им. А.А. Благонравова РАН; Институт химии растворов им. Г.А. Крестова РАН

Автор, ответственный за переписку.
Email: kobjakovinka@mail.ru
Россия, Москва; Россия, Иваново

Список литературы

  1. Campelo P.H., Sant’Ana A., Pedrosa M.T., Clerici S. Starch nanoparticles: production methods, structure, and properties for food applications // Current Opinion in Food Science. 2020. V. 33. P. 136.
  2. Sivamaruthi B.S., Nallasamy P., Suganthy N., Kesika P., Chaiyasut Ch. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review // J. of Drug Delivery Science and Technology. 2022. V. 77. P. 103890.
  3. Rodrigues A., Emeje M. Recent applications of starch derivatives in nanodrug delivery // Carbohydrate Polymers. 2012. V. 87. P. 987.
  4. Marzán L.M.L., Correa-Duarte M.A., Pastoriza-Santos I., Mulvaney P., Ung Th., Giersig M., Kotov N.A. Chapter 5. Core-shell nanoparticles and assemblies thereof // In Handbook of Surfaces and Interfaces of Materials / Ed. H. S. Nalwa. V. 3. Nanostructured materials, micelles, and colloids. 2021. P. 189.
  5. Napper D.H. Steric stabilization // J. of Colloid and Interface Science. 1977. V. 58 (2). P. 390.
  6. Fritz G., Schädler V., Willenbacher N., Wagner N.J. Electrosteric stabilization of colloidal dispersions // Langmuir. 2002. V. 18. № 16. P. 6381.
  7. Masoudipour E., Kashanian S., Azandaryani A.H., Omidfar K., Bazyar E. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner // Cellulose. 2017. V. 24. № 10. P. 4217.
  8. Masoudipour, Elham K., Soheila A., Abbas H., Omidfar K., Elham B. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner // Cellulose. 2018. V. 24 (10). P. 4217.
  9. Li X., Qin Y., Liu C., Jiang S., Xiong L., Sun Q. Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: The effect of electrostatic repulsion or steric hindrance // Food Chemistry. 2016. V. 199. P. 356.
  10. Wei B., Zhang B., Sun B., Jin Z., Xu X., Tian Y. Aqueous re-dispersibility of starch nanocrystal powder improved by sodium hypochlorite oxidation // Food Hydrocolloids. 2016. V. 52. P. 29.
  11. Liu Q., Li F., Lu H., Li M., Liu J., Zhang S., Sun Q., Xiong L. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles // Food Chemistry. 2018. V. 242. P. 256.
  12. Wang J., Yu Y.D., Zhang Z.G., Wu W.C., Sun P.L., Cai M., Yang K. Formation of sweet potato starch nanoparticles by ultrasonic -assisted nanoprecipitation: Effect of cold plasma treatment // Frontiers in Bioengineering and Biotechnology. 2022. V. 10. P. 986033.
  13. Jeonga O., Shina M. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch // Food Chemistry. 2018. V. 256. P. 77.
  14. Shaolong R. Junyu T., Yu Q., Jingyi W., Tianyi Y., Jianwei Z., De G., Enbo X., Donghong L. Mechanical force-induced dispersion of starch nanoparticles and nanoemulsion: Size control, dispersion behaviour, and emulsified stability // Carbohydrate Polymers. 2022. V. 275. P. 118711.
  15. Ганиев Р.Ф., Ганиев С.Р., Касилов В.П., Пустовгар А.П. Волновые технологии в инновационном машиностроении. М.: Институт компьютерных исследований, 2014. 106 с.
  16. Ганиев Р.Ф., Украинский Л.Е. Нелинейная волновая механика и технология. М.: Научно-издательский центр “Регулярная и хаотическая динамика”, 2008. 712 с.
  17. Касилов В.П., Курменев Д.В. Волновые технологические машины и аппараты с электромеханическими резонансными генераторами колебаний и волн // Сборник материалов международной научной конференции “Машины, технологии и материалы для современного машиностроения”. Москва, 2018. С. 76.
  18. Pal A., Pal R. Rheology of Emulsions Thickened by Starch Nanoparticles // Nanomaterials. 2022. V. 12. P. 2391.
  19. Lu G.W., Gao P. Emulsions and microemulsions for topical and transdermal drug delivery // In Handbook of Non-invasive drug delivery systems, 2010. P. 59.
  20. Müller R.H., Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability // Int. J. of Pharmaceutics. 2022. V. 237. P. 151.
  21. Kadu P.J., Kushare S.S., Thacker D.D., Gattani S.G. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS) // Pharmaceutical development and technology. 2011. V. 16 (1). P. 65.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (322KB)
3.

4.

Скачать (863KB)
5.

Скачать (45KB)

© С.Р. Ганиев, В.П. Касилов, О.Н. Кислогубова, О.А. Бутикова, Н.Е. Кочкина, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».