Post-traumatic stress disorder: molecular mechanisms of the intergenerational and transgenerational inheritance

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Post-traumatic stress disorder is a mental disorder that is closely associated with dysfunction of the hypothalamic-pituitary-adrenal axis, and for its development is required the experience of a traumatic event that causes negative emotions and memories that persist for quite a long time. The likelihood of development of post-traumatic stress disorder is influenced both environmental factors, and genetic and epigenetic characteristics of the body. In this case epigenetic modifications act as dynamic biomarkers (“nanotags”) of the impact of the environment on the genome (epigenome), which can, under certain conditions, disappear or remain not only in an individual directly exposed to psychogenic trauma, but also transmitted over a number of generations. Review focuses on the possible mechanisms of intergenerational and transgenerational inheritance of the biological effects of post-traumatic and stress-related disorders.

Толық мәтін

Посттравматическое стрессовое расстройство (ПТСР) (класс F43 по МКБ-10) [211] – заболевание, которое характеризуется развитием определенных симптомов, возникших после одного или нескольких травмирующих событий (т. е. травматического/психологического стресса) [9, 49, 95, 100]. Согласно МКБ-10 [49, 211] и диагностическому руководству по психическим расстройствам (DSM-5) [42], травматическое событие определяется как угроза жизни или фактическая смерть (несчастный случай, физическое насилие, стихийное бедствие или военные действия), которое переживается непосредственно или опосредованно через семью или близких друзей.

Для постановки диагноза ПТСР у пациента на протяжении более месяца должны наблюдаться как минимум один-два симптома из каждой перечисленной ниже категории: 1) симптомы искажения (повторяющиеся, непроизвольные, навязчивые тревожные воспоминания, ночные кошмары, дежавю, флешбэк, потери осознания окружающей действительности, психологический или физиологический дискомфорт при напоминании о травматическом событии); 2) симптомы избегания (избегание мыслей, чувств или воспоминаний, связанных с событием, избегание действий, мест, разговоров или людей, которые вызывают воспоминания о событии); 3) негативные последствия для когнитивной способности и настроения (диссоциативная амнезия, стойкие и преувеличенные негативные убеждения или ожидания, постоянные искаженные мысли о причине или последствиях травмы, стойкое негативное эмоциональное состояние, снижение интереса или участия в важных событиях, отчуждение от других людей, неспособность испытывать положительные эмоции; 4) измененный уровень сознания и реактивности (трудности со сном, раздражительность, вспышки гнева, неразумное поведение, аутоагрессия, проблемы с концентрацией, повышенный старт-рефлекс, гипербдительность). Вышеописанные симптомы должны вызывать существенный дискомфорт или значительно затруднять социальную или профессиональную деятельность, но при этом не должны быть связаны с физиологическим воздействием психоактивных веществ или другим заболеванием [49, 193].

По некоторым оценкам, от 40 до 90% населения во всем мире в течение своей жизни подвергаются травмирующим событиям, однако только у 4–9% из них (в зависимости от страны и региона проживания) развивается ПТСР, в то время как другие становятся более резистентными к возможному последующему стрессу (явление, получившее название – посттравматический рост”) [99, 100, 110, 112, 153, 154]. Причем остается открытым вопрос о механизмах наблюдаемого в ряде случаев несоответствия между характером (силой) перенесенной психической травмы и развитием расстройств, связанных с ней. По этой причине выявление молекулярных маркеров, которые способствуют восприимчивости или резистентности к ПТСР, является актуальным для клинической и фундаментальной медицины.

Стресс вызывает как немедленное, так и долговременное психологическое, физическое и эмоциональное напряжение, приводящее к глубоким нейробиологическим изменениям, которые влияют на будущие поведенческие реакции [5, 6, 13, 14, 16, 22, 29, 47], и является серьезным фактором риска развития многих болезней, включая сердечно-сосудистые и онкологические заболевания, нарушения обмена веществ, функционирования иммунной и репродуктивной систем [4, 22, 31, 73, 183]. При этом наблюдаются межиндивидуальные различия в реакции организма не только со стороны развития психопатологии в ответ на перенесенную психическую травму, но и в развитии упомянутых заболеваний.

Как показывают современные данные, воздействие психогенной травмы – необходимый, но недостаточный фактор для развития ПТСР. За возникающие индивидуальные реакции отвечает не только жизненный опыт (ранее перенесенные травмирующие события), но также индивидуальная способность организма компенсировать такие воздействия на молекулярном уровне, за который отвечают его геном [7, 11, 34, 184, 192] и эпигеном [26, 35, 84, 100, 112, 167, 204]. Эпигенетические модификации (метилирование/гидроксиметилирование ДНК, модификации гистонов, нкРНК) в данном случае выступают в качестве динамичных биомаркеров (“нанометок”) воздействия окружающей среды на геном, которые могут при определенных условиях исчезать либо сохраняться не только у особей, непосредственно подвергшихся психогенной травме, но и наследоваться их потомками в ряду поколений [19, 46, 55, 85, 151, 157, 171]. В отличие от генетических мутаций динамический характер эпигенетических изменений, вызванных факторами внешней и/или внутренней среды, обусловлен тем, что они не изменяют структуру ДНК, т. е. ее нуклеотидную последовательность [41], но при этом способны сохраняться в ряду митотических делений, а также передаваться по наследству [157, 171, 189, 197].

Следует отметить, что в научных кругах еще остается дискуссионным вопрос, можно ли относить эпигеном к наследственной составляющей организма. Это связано с тем, что эпигенетические характеристики часто воспринимаются только как регуляторная надстройка генома, регуляторный механизм, управляющий активностью генов, пластичный и динамичный, функционирующий в соответствии с программой развития организма и реагирующий на внешние воздействия. Не вызывает сомнения, что геном и эпигеном – это две составляющие, необходимые для фенотипической реализации закодированной наследственной информации [41, 62, 89, 157, 171, 189, 197]. Именно благодаря наследуемым эпигенетическим меткам происходит тонкая регуляция экспрессии генов во время эмбриогенеза, именно с их непосредственным участием происходит дифференцировка клеток, благодаря им существуют и функционируют импринтированные гены [21, 89, 157, 197]. В настоящее время опубликован ряд работ относительно закономерностей и материальных основ эпигенетического наследования [41, 62, 65, 69, 85, 160, 189, 195, 197, 205] и некоторые из них будут упомянуты ниже. Выявленные факты эпигенетического наследования в ряду поколений позволяют надеяться на получение в ближайшем будущем более полных доказательств того, чтобы рассматривать некоторые составляющие эпигенома (эпигенетические модификации) в качестве наследственных характеристик организма. Несмотря на важную роль эпигенетического наследования в биологии, молекулярные посредники такой негенетической передачи информации только начинают расшифровываться.

Как геному, так и эпигеному для передачи закодированной наследственной информации последующим поколениям клеток необходима ее репликация, которую в случае ДНК осуществляют ДНК-полимеразы, а в случае эпигенетических меток – различные “эпигенетические” ферменты, в частности поддерживающие ДНК-метилтрансферазы. Эпигенетические модификации передаются дочерним клеткам во время митотического деления, так называемое соматическое эпигенетическое наследование [41, 157], и последующим поколениям организмов в результате их мейотического наследования, так называемое генерационное эпигенетическое наследование [65, 160, 171, 172, 189, 195], при котором наследование эпигенетической информации происходит с вовлечением клеток зародышевой линии (гамет) при отсутствии постоянного прямого воздействия неблагоприятных внешних и/или внутренних факторов.

В зависимости от того, на какой стадии онтогенеза и какое поколение особей подверглось воздействию конкретного триггера, вызвавшего эпигенетические изменения в клетках зародышевой линии, в каком поколении и в течение скольких поколений регистрируются (сохраняются) эпигенетические и фенотипические изменения, произошедшие в результате воздействия факторов окружающей среды, в литературе стали выделять межгенерационное (intergeneration) и трансгенерационное (transgeneration) эпигенетическое наследование (так называемый эффект влияния предков) [69, 77, 115, 160, 195] (рис. 1).

 

Рис. 1. Различия между межгенерационным и трансгенерационным наследованием биологических эффектов, вызванных воздействием различной природы. F0, F1, F2 и F3 – поколения особей; 5mC/5hmC – метилирование и гидроксиметилирование ДНК: звезды внутри кругов и квадратов - гаметы (сперматогонии/оогонии, сперматоциты/ооциты).

 

Ряд исследователей считают эти два термина взаимозаменяемыми, тогда как другие все же рекомендуют дифференцировать эти варианты эпигенетического наследования в соответствии с определением, предложенным Скиннером [188]. Так, при межгенерационном наследовании эпигенетические изменения в клетках зародышевой линии происходят в результате прямого (непосредственного) воздействия неблагоприятных факторов либо до зачатия, либо во время беременности. Сохранение возникших эпигенетических изменений в гаметах может приводить к фенотипическим нарушениям у потомства, причем у них риск развития заболевания может отличаться по сравнению с родителями. Когда воздействие происходит до зачатия, мужские и женские половые клетки подвергаются одинаковому воздействию, что может привести к передаче изменений следующему поколению. В этом случае прямое воздействие на половозрелый организм самцов (F0) и небеременных самок (F0) может проявиться фенотипически у их потомства (F1) из-за возникших на различных стадиях гаметогенеза эпигенетических нарушений в сперматозоидах или ооцитах. Когда же прямому воздействию подвергается уже беременная самка (мать, F0), то это может отразиться не только на ее детях (первое поколение F1), но и на внуках (второе поколение F2) в результате внутриутробного влияния на эмбрион (F1), в котором закладываются половые клетки (сперматогонии, оогонии) (т. е. будущее F2) [69, 77, 115, 160]. Для поколений F1 и F2 здесь имеет место пренатальный эффект, поскольку нельзя исключать возможности того, что воздействию фактора окружающей среды они подвергались одновременно с беременной самкой F0 (Вейсман назвал это явление “параллельной индукцией”) [195].

При трансгенерационном наследовании эпигенетические изменения передаются последующим поколениям через клетки зародышевой линии, которые не подверглись прямому воздействию факторов окружающей среды, т.е. когда биологические (фенотипические) эффекты эпигенетических изменений проявляются в неэкспонированном поколении. В случае воздействия на беременных самок F0 это третье поколение F3, которое будет первым поколением, которое приобретет трансгенерационный фенотип (см. рис. 1). В случае постнатального воздействия или воздействия на взрослый организм до зачатия это будет поколение F2, которое не подверглось прямому воздействию. Предполагается, что трансгенерационные эпигенетические эффекты могут лежать в основе устойчивых и эволюционно важных изменений [69, 77, 115, 160, 188, 195].

В обзоре приводятся данные, подтверждающие возможность наследования в ряду поколений биологических эффектов ПТСР, а также рассмотрены потенциальные механизмы наследования потомками негативных последствий психогенной травмы, перенесенной родителями.

НАСЛЕДОВАНИЕ ПОСТТРАВМАТИЧЕСКОГО СТРЕССОВОГО РАССТРОЙСТВА И ЕГО БИОЛОГИЧЕСКИХ ЭФФЕКТОВ

В настоящее время опубликовано много работ, подтверждающих возможность наследования как собственно ПТСР, так и биологических последствий (эффектов) перенесенного травматического стресса, в том числе в отношении боевой травмы [104, 181, 190, 217]. Так, описаны случаи, где ПТСР родителей было причиной (триггером) развития психических расстройств (тревога, депрессия, отклонения в поведении, повышенная тревожность, алкоголизм, злоупотребление психотропными веществами) [24, 30, 83, 122, 146] и других биологических нарушений у их потомства (как в первом, так и последующих поколениях) [29, 55, 60, 125]. Например, у ветеранов сербско-боснийского конфликта и войны в Персидском заливе рождались дети с проблемами в развитии, нарушениями в поведении и эмоциональном состоянии [114, 118, 200]. Воздействие травмирующих событий у переживших Холокост было причиной нейропсихических отклонений у их детей, провоцировало повышенный уровень тревожности и было связано с риском развития ПТСР [215, 216, 218, 219]. У потомков ветеранов Второй мировой войны, войны во Вьетнаме [88, 92, 135, 152], Сирии и Ираке [96, 109, 139, 191] наблюдались различные психические нарушения (в частности, склонность к агрессии и насильственному поведению), которые положительно коррелировали с интенсивностью и продолжительностью боевой травмы их родителей.

Исследования взрослых, подростков и детей дошкольного возраста, подвергшихся насильственному переселению (вынужденное перемещение, иммиграция), выявили у них нарушения психического здоровья, а также показали имплицитное (неосознаваемое) избегание стимулов, связанных с переселением [63, 109, 137, 169, 210]. Кроме того обнаружено, что негативные эффекты травматического стресса, перенесенного во время беременности или в раннем детском возрасте, могут иметь отсроченные во времени биологические последствия и проявиться только во взрослом возрасте в виде нарушений как психического здоровья (например, тревожность, депрессия, поведенческие расстройства, ПТСР) [86, 141], а так же повысить риск развития болезней различных систем организма [28, 79, 120, 144, 159, 173].

Современные молекулярно-генетические методы геномного и эпигеномного анализа, проводимые на людях (в частности, исследования близнецов) и лабораторных животных, способствуют пониманию механизмов развития ПТСР [7, 26, 35, 100, 167, 204]. Используемые методические подходы указывают на то, что ПТСР и его биологические последствия могут наследоваться потомками, даже если они не подвергались первоначальному травмирующему событию [28, 39, 62, 84, 177, 178].

Эксперименты по моделированию психогенной травмы на лабораторных животных подтвердили возможность наследования ПТСР в ряду поколений, а также его отдаленных последствий (в частности, отклонения в поведении, нарушение когнитивных способностей, метаболизма и др.) у особей, перенесших стресс в детском возрасте [10, 24, 28, 44, 47]. Как оказалось, травматический стресс в раннем возрасте повышает риск когнитивных и нервно-психических расстройств в более позднем возрасте как у травмированных особей, так и у их потомства, которое не подвергалось прямому воздействию. Например, у потомства самцов лабораторных мышей и крыс, подвергшихся пренатальному травматическому стрессу, изменялась экспрессия генов, отвечающих за синаптическую пластичность. При этом не только у отцов, подвергшихся психогенной травме, но и у их потомков наблюдалось депрессивно-подобное поведение и нарушалась долговременная память [14, 23, 58, 163]. Нарушение социального поведения и депрессивно-подобное состояние также было обнаружено у потомков самок мышей и крыс, подвергшихся психогенной травме [15, 22, 40, 47]. В мозге таких животных (как у матерей, так и их детей) наблюдались отклонения в метаботрансткриптоме (было затронуто как минимум 50 биомолекул) [40]. Так, используя комплексный подход, сочетающий метаболомный, транскриптомный и биоинформационный анализ для определения молекулярных процессов, связанных с поведенческими нарушениями, вызванными стрессом, авторы выявили изменение уровня 2-гидроксиглутаровой кислоты, которая является маркером гипоксии и митохондриальной дисфункции, а также эпигенетическим модификатором [40]. В экспериментах, где моделировались ситуации нарушения/отсутствия родительской заботы (прерванный или ослабленный материнский уход, разлука с матерью) и выработка страха (угроза жизни), была доказана существенная роль родительской заботы в формировании поведенческих реакций у потомства. Поэтому родительская забота может являться сильной детерминантой наследования в ряду поколений последствий перенесенной психогенной травмы [3, 25, 27, 66, 186].

Биологические эффекты травматического стресса могут передаваться потомкам двумя основными путями – без и с вовлечением клеток зародышевого пути (т.е. половых клеток). В первом случае имеет место так называемая социальная передача – приобретение потомством поведенческих или физиологических паттернов родителей (психологический импринтинг, копирование поведения). Второй вариант – это истинное наследование эффектов психогенной травмы, затрагивающих геном и эпигеном половых клеток [35, 40, 46, 115, 125, 171] (см. рис. 1). В данном случае индивидуальные генетические различия (структурные изменения на уровне ДНК, мутации и полиморфные варианты генов, т. е. генотипические особенности организма) обусловливают врожденную чувствительность или резистентность к посттравматическому стрессовому расстройству, тогда как эпигенетические модификации и эпимутации (т. е. стохастические и/или детерминированные изменения в эпигеноме, которые отличаются от условной нормы) [20, 33] – это один из возможных способов биологического отражения в геноме результатов воздействия окружающей среды (рис. 2).

 

Рис. 2. Предполагаемые молекулярные основы развития ПТСР и связанных со стрессом расстройств. 5mС/5hmC – метилирование и гидроксиметилирование ДНК; epigen-R/gen-R – ПТСР-резистентный эпигенотип/генотип; epigen-S/gen-S – ПТСР-чувствительный эпигенотип/генотип (наличие мутаций и/или эпимутаций, ассоциированных с риском развития ПТСР и связанных со стрессом расстройств); F0, F1, Fn – поколения особей, подвергшихся травматическому стрессу и/или унаследовавших биологические эффекты ПТСР.

 

На эпигеном клеток влияют как генетические факторы (нуклеотидная последовательность ДНК (в частности, сайты узнавания для ДНК-метилтрансфераз, нкРНК), так и факторы окружающей среды, поэтому воздействия окружающей среды становятся “записанными” на самих генах в виде эпигенетических меток. Каскад эпигенетических изменений запускает “эпигенатор”. Им может быть как сигнал окружающий среды, так и внутренние процессы, протекающие в клетке, в организме. Эпигенатор пробуждает “эпигенетический инициатор”, который определяет место эпигенетической модификации и действует непосредственно на хроматин [53]. Эпигенетические модификации (метки) не изменяют нуклеотидную последовательность ДНК, но они принимают непосредственное участие в регуляции экспрессии генов и могут способствовать длительному поддержанию фенотипических эффектов травматического стресса, и в некоторых случаях передаваться в ряду поколений, как было отмечено во многих публикациях [40, 69, 115, 185, 195, 218]. К эпигенетическим механизмам регуляции экспрессии генов относятся метилирование и гидроксиметилирование ДНК [41, 55, 157], модификации гистонов [103, 112, 155], ремоделирование хроматина [45, 57, 71, 94], а также молекулярные внутриклеточные процессы с вовлечением некодирующих РНК (нкРНК) (в частности, малых и длинных нкРНК) [65, 107, 128, 156, 158, 194] и обеспечивающих формирование пространственной (трехмерной) архитектуры хроматина [7, 130, 206] (см. рис. 2).

ГЕНЕТИЧЕСКАЯ ПРЕДРАСПОЛОЖЕННОСТЬ К ПОСТТРАВМАТИЧЕСКОМУ СТРЕССОВОМУ РАССТРОЙСТВУ

За последние тридцать лет опубликовано большое количество экспериментальных работ и обзоров, посвященных генетическим маркерам, которые ассоциированы с риском развития ПТСР [7, 8, 34, 35, 39, 208]. Однако из-за мультифакторной природы ПТСР генетическая составляющая данной патологии все еще остается недостаточно изученной, даже несмотря на достигнутые результаты в этой области исследований.

Поскольку при ПТСР нарушения затрагивают нейромедиаторные системы, то в первую очередь основное внимание уделяется генам (табл. 1), которые задействованы в их функционировании [2, 5, 6]. Причем в развитии, прогрессировании и фармакотерапии ПТСР особое значение отводится генам, вовлеченным в фармакокинетику ингибиторов обратного захвата серотонина – CYP2D6 и CYP2C19 (генам ферментов печени) и ABCB1 (гену, связанному с гематоэнцефалическим барьером), а также генам, участвующим как в фармакодинамике ингибиторов обратного захвата серотонина, так и в патофизиологии ПТСР и связанных с ним состояний [140].

 

Таблица 1. Гены нейромедиаторных систем, ассоциированные с риском развития ПТСР и связанных со стрессом расстройств

Нейромедиаторная/

нейроэндокринная система

Гены

Ссылки

Серотонинергическая

5-HTT (SLC6A4), HTR1A, HTR2A, HTR2C, HTR3A, TPH1, TPH2

[54, 81, 105, 150]

Дофаминергическая

DAT1 (SLC6A3), COMT, DRD2, DRD5, PPP1R1B

[34, 131, 201, 220]

ГАМК-ергическая

GAD1, GAD2, GABBR1, GABBR2, GABRB2, GABRR2

[8, 101, 182]

Глутаматергическая

SLC17A8, EAAT2, GRIN1, GRIN2A, GRIN2C, GLUN2B, GLUA1, GLUA2

[81, 98, 148]

Норадренергическая

NET (SLC6A2), ADRB1, ADRB2, RGS2,

[37, 43, 134, 161]

Опиоидергическая

OPRD1, OPRK1, OPRL1, OPRM1, PENK, PDYN

[64, 75, 105, 111, 196, 207]

Эндоканнабиноидная

CNR1, CNR2, FAAH

[72, 175, 179]

Гипоталамо-гипофизарно-надпочечниковая

ADCYAP1, ADRA1B, ADRA2C, CRFR1, NR3C1, FKBP5

[34, 37, 142, 161, 180]

 

Помимо перечисленных выше генов, у пациентов с ПТСР и лабораторных животных в экспериментах по моделированию данной патологии активно исследуются гены нейротрофического фактора мозга (BDNF) [36, 93, 124, 201], моноаминоксидаз А и В (MAOA и MAOB) [35, 201, 212], альфа синуклеина (SNCA) [91], синаптотагмина (SYT1) [64], нейронального белка 4 домена PAS (NPAS4) [64], нейропептида Y (NPY) [132], полипептида, активирующего аденилатциклазу (ADCYAP1) [34, 170], белка А, индуцируемого фактором роста нервов (белок 1 реакции раннего роста) (EGR) [64], кисспептина (KISS1) [31, 102, 168, 198], рецепторов с тирозинкиназной активностью (RTKs) [64], рецепторов окситоцинов (OXTR) [35, 123, 124], аргинин-вазопрессина (AVPR1A) [121, 164, 187], орексинов (гипокретинов) (OX1R, HCRTR2) [32, 64, 127, 214], ядерных рецепторов подсемейства 4 группы А (NR4A2) [64], а также генов иммунного ответа и воспаления (IL-18, IL-1β, TNFα, NFkB, IGF2, MRGPRX2) [7, 12, 59, 143], сигнальных путей ERK/MARK, JNK/MARK, p38/MARK, Ras/Raf/MAPK и ErbB (DUSP c-Jun, c-Fos, c-Myc, ERK1, ERK2, MARK) [7, 56, 64, 162] и ферментов системы цитохрома P450 (CYP1A2 и CYP1B1) [7]. Поскольку при ПТСР с изменением передачи сигналов нейромедиаторов и с воспалительной реакцией связана митохондриальная дисфункция [165], то исследуются гены окислительного стресса, в частности HIF-1α (фактора, индуцируемого гипоксией 1-альфа), HIF-2α (другое название EPAS1) (фактора, индуцируемого гипоксией 2-альфа) и GPx4 (глутатионпероксидазы 4) [5, 52, 116, 133].

Результаты анализа полногеномного поиска ассоциаций (GWAS – genome-wide association study) указывают на возможное участие в патогенезе ПТСР продуктов генов CAMKV, EGFR, FGF12, KANSL1, KRAS, NLGN1, PARK2, PODXL, PRKCA, RAF1, RORA, SH3RF3, TCF4, TLL-1, ZDHHC14 [8, 34, 56], а также белков “молодости” (гены FGF, FNDC5, GDF11, MANF, NAMPT, NGF, TIMP-2) и “старости” (гены B2M, CCL11, GDF15, HMGB1, JAM) [11]. При этом не исключается вероятность того, что генетические маркеры, связанные с риском развития ПТСР, могут быть локализованы не только в кодирующих участках, но и находиться в интронах или вне генов. В частности, это относится к полиморфным вариантам генов – однонуклеотидным изменениям, также называемыми однонуклеотидными полиморфизмами (SNP – single nucleotide polymorphism), микро- и минисателлитным повторам (VNTRs – variable number tandem repeats), а также LINE последовательностям и мобильным элементам генома [7, 34, 82].

Необходимо отметить, что хронический стресс обладает мутагенным эффектом, так как приводит к повышению концентрации внутриклеточных мутагенов. Это в свою очередь провоцирует нестабильность генома, активирует транспозазы и интегразы, вызывает структурные перестройки генетического материала [7]. Например, эмоционально-болевое стрессорное воздействие способно индуцировать образование хромосомных аберраций в клетках костного мозга, а также приводить к инсерционному полиморфизму ретротранспозона L1 и снижению количества вариаций числа копий (CNV – copy number variations) гена Rpl13 (рибосомный белок L13). Причем частота и вероятность таких изменений, как было показано, зависит от продолжительности воздействия и от уровня возбудимости животных [7]. Если же такие мутации возникают в клетках зародышевого пути (гаметах), то это может быть одним из объяснений наследования в ряду поколений негативных последствий перенесенной психогенной травмы.

С помощью анализа функционального обогащения дифференциально экспрессируемых генов (DEG) из базы данных Gene Expression Omnibus (GEO) и построения сети белок-белковых взаимодействий (PPI) было обнаружено, что с ПТСР ассоциированы 1919 генов с повышенной экспрессией и 851 ген с пониженной экспрессией [56, 149, 166, 176]. Например, снижение уровня экспрессии выявлено для генов BDNF (нейротрофический фактор мозга), FLT3LG (лиганд тирозинкиназы 3, связанный с Fms), DYRK1A (регулируемая тирозин-фосфорилированием с двойной специфичностью киназа 1A), DCN (декорин) и FKBP8 (пептидил-пролил цис-транс-изомераза) [93], а также генов TSPO (транслокаторный белок), TSPOAP1 (TSPO-ассоциированный белок 1), TNFRSF14 (член суперсемейства рецепторов TNF 14), связанных с функционированием микроглии и регулирующих иммунный ответ и провоспалительные реакции [35].

Повышение уровня экспрессии описано для генов VNN1 (пантеиназа), SERPINB2 (ингибитор активатора плазминогена 2) и ETFDH (митохондриальная электронпереносящая флавопротеин-убихиноноксидоредуктаза) [93]. В то же время для гена Igf2 (инсулиноподобный фактор роста 2) было показано, что изменение его активности зависит от пола потомков особей, переживших психогенную травму. Причем отклонение от нормы в экспрессии Igf2 сохраняется в течение двух поколений. Так, в гиппокампе и неокортексе у пренатально стрессированных самцов крыс и их потомков мужского пола наблюдалось повышение уровня мРНК Igf2, тогда как самки – потомки пренатально стрессированных самцов, напротив, демонстрировали снижение экспрессии Igf2 [151]. Отклонение от нормы по уровню экспрессии генов в зависимости от пола пренатально стрессированого животного было обнаружено также для кортикотропин-рилизинг гормона (Crh, Crhr1), аргинин-вазопрессина (Avp) и его рецепторов (Avpr1a, Avpr1b) в паравентрикулярном ядре гипоталамуса [149, 163].

В модели избегания торможения при ПТСР было выявлено, что у стрессированных крыс в голубом пятне повышены уровни мРНК генов биосинтеза (Th, Dbh), транспортера (Net) и рецепторов (Y1r, Y2r) норадреналина, а также каннабиноидного рецептора (Cb1). Тогда как в базолатеральной части миндалевидного тела у этих животных происходило снижение экспрессии генов Cb1 и Y1R и повышение активности генов системы кортикотропин-рилизинг-гормона (Crh, Crhr1), хотя в центральной части миндалевидного тела существенных изменений не наблюдалось [175]. Результаты этих исследований способствуют пониманию молекулярных механизмов передачи сигнала в цепи “голубое пятно-миндалевидное тело” в реакциях на эмоционально возбуждающие стимулы и в проявлении ПТСР.

Кроме того, установлено, что генетически обусловленная возбудимость нервной системы является фактором, определяющим характер экспрессии генов, вовлеченных в работу нейромедиаторных систем. Так, в гиппокампе крыс выявлены различия в экспрессии генов нейромедиаторных систем между особями с высоким и низким порогом возбудимости нервной системы. Наиболее выраженные различия обнаружены для генов катехоламинергической (Adrb3, Drd2, Drd5, Ppp1r1b), ГАМК-ергической (Gabrb2, Gabrr2), глутаматергической (Grin2c), серотонинергической (Htr2c) и опиоидергической (Penk) систем. У животных с низким порогом возбудимости (высоковозбудимые особи) выявлено больше генов с более высокой экспрессией, чем у крыс с высоким порогом возбудимости (низковозбудимые особи). Воздействие эмоционально-болевого стресса у крыс с низким порогом возбудимости приводило к изменению экспрессии генов ГАМК-ергической (Gabra4, Gabrg1), глутаматергической (Gria3) и опиоидергической (Pdyn) системами. Тогда как у особей с высоким порогом возбудимости изменялась экспрессия генов катехоламинергической (Adra1b, Adra2c, Drd5, Ppp1r1b, Slc17a8, Snca, Maob), ГАМК-ергической (Gabra2, Gabrr2), глутаматергической (Gad2, Grin2c, Slc17a8), серотонинергической (Моab) и опиоидергической (Penk) систем [17]. У крыс с низким порогом возбудимости длительный эмоционально-болевой стресс приводил к снижению экспрессии гена Bdnf, которое сохранялось в течение 7 суток в префронтальной коре и в течение 2 месяцев в гиппокампе. В то время как у крыс с высоким порогом возбудимости не было выявлено изменений в экспрессии Bdnf [36]. Через 24 дня после перенесенного стресса у животных также наблюдалось увеличение уровня мРНК интерлейкина-1-бета (Il-1β) как у высоковозбудимых (в гиппокампе и миндалине), так и низковозбудимых крыс (в гиппокампе). Тогда как экспрессия гена фактора некроза опухоли (Tnf-α) у этих животных не изменялась [183]. Установлено, что у крыс, переживших витальный стресс (контакт с хищником – питоном), на 25 сутки после воздействия в вентральном отделе гиппокампа изменяется экспрессия гена глутаматного ионотропного рецептора Grin2b (другое название GluN2b) [148]. Помимо этого выявлено, что в гиппокампе самцов мышей с симптомами депрессии, вызванной хроническим социальным стрессом, изменяется экспрессия генов, кодирующих белки, вовлеченные в процессы кальциевой регуляции. Так, по сравнению с контролем у особей с депрессией была повышена экспрессия генов Cacna1g, Cacnb3, Camk1g, Camk2d, Camk2n2, Caly, Caln1, S100a16, Slc24a4 и снижена экспрессия генов Cacna2d1, Cacng5, Grin2a, Calm2. Поэтому предполагается, что под влиянием хронического социального стресса происходит нарушение кальциевой сигнализации в гиппокампе [18].

Как известно, дифференциальная экспрессия генов находится под эпигенетической регуляцией [41], поэтому отдельное направление исследований при ПТСР связано с поиском генов-кандидатов на основе оценки изменений эпигенетических модификаций. С помощью полноэпигеномных исследований поиска ассоциаций (EWAS – epigenome-wide association study) показано, что наиболее перспективным эпигеномным маркером ПТСР в настоящее время является метилирование ДНК [35, 138]. Например, выявлена корреляция между риском развития и тяжестью симптомов ПТСР и эпигенетическими изменениями генов BRSK1 (специфическая для мозга серин/треонин-протеинкиназа 1), DOCK2 (инициатор цитокинеза 2), FKBP5 (FK506-связывающий белок 5), HGS (субстрат тирозинкиназы, регулируемый фактором роста гепатоцитов), LCN8 (липокалин 8), NFG (фактор роста нервов), NR3C1 (глюкокортикоидный рецептор) [126], NRG1 (нейрегулин-1, отвечающий за синаптическую пластичность), RNF39 (белок безымянного пальца 39, отвечающий за синаптическую пластичность), ZFP57 (белок цинковых пальцев ZFP57) [108, 136, 203], а также генов пути метаболизма линолевой кислоты [74], ГАМК-ергической [51] и гипоталамо-гипофизарно-надпочечниковой [78] систем.

Таким образом, результаты экспериментальных и клинических исследований указывают на необходимость дальнейшего поиска биомаркеров (генетических и эпигенетических), которые связаны с этиологией (в том числе в зависимости от типа перенесенной травмы) и патогенезом ПТСР. Полученные данные будут способствовать не только установлению молекулярных механизмов данного заболевания (в частности механизмов наследования в ряду поколений биологических эффектов ПТСР), но и разработке эффективных персонифицированных терапевтических подходов.

ИНДУКЦИЯ ЭПИГЕНЕТИЧЕСКИХ ИЗМЕНЕНИЙ В КЛЕТКАХ ЗАРОДЫШЕВОЙ ЛИНИИ ПРИ ТРАВМАТИЧЕСКОМ СТРЕССЕ

В настоящее время остается открытым вопрос о молекулярных механизмах влияния травматического стресса на эпигеном клеток зародышевой линии (половых клеток), которые обеспечивают межгенерационное и трансгенерационное наследование его биологических эффектов [171, 172]. Еще не установлено, какие именно эпигенетические механизмы служат векторами наследования в контексте травматического стресса, как и почему они передаются и сохраняются из поколения в поколение, как и какие именно эпигенетические изменения, вызванные травматическим стрессом, передаются от половых клеток (сперматозоидов и ооцитов) к клеткам головного мозга потомков. По-видимому, в результате травматического стресса высвобождаются некие эндогенные циркулирующие факторы, запускающие эпигенетические изменения не только в головном мозге, но и других органах и тканях, в том числе гонадах (рис. 3).

 

Рис. 3. Схема предполагаемых молекулярных механизмов влияния травматического стресса на эпигеном клеток зародышевой линии (половых клеток), отвечающих за межгенерационное и трансгенерационное наследование его биологических эффектов. DNMTs – ДНК-метилтрансферазы; TETs – белки из семейства “транслокаций десять-одиннадцать” метилцитозин диоксигеназы (ДНК-деметилазы); HATs – гистоновые ацетилтрансферазы; HMTs – гистоновые метилтрансферазы; HDACs – гистоновые деацетилазы; HDMs – гистоновые деметилазы.

 

Следует подчеркнуть, что клетки головного мозга и клетки зародышевой линии находятся в иммунологически привилегированном положении – они защищены гематоэнцефалическим и гематотестикулярным барьером соответственно. Поэтому циркулирующие факторы-триггеры эпигеномных изменений должны быть жирорастворимыми и легко переносимыми. Эту функцию, например, могут выполнять гормоны, цитокины или циркулирующие нкРНК, которые могут высвобождаться при психогенном стрессе и действовать как на нейроны, так и на половые клетки. В данном случае гормоны, по-видимому, “запускают” эпигенетические механизмы через адренергические рецепторы [38, 70], рецепторы гонадотропин-рилизинг-гормона [97, 147], рецепторы аргинин-вазопрессина [1, 119, 199], рецепторы лептина [68] и кисспептина, которые регулируют гипоталамо-гипофизарно-гонадную ось [213] (см. рис. 3).

Как известно, при психогенном стрессе повышается активность симпатической нервной системы и снижается активность гипоталамо-гипофизарно-надпочечниковой системы и парасимпатической нервной системы, что может приводить к повышению уровня провоспалительных цитокинов. Последние, в свою очередь, могут влиять на функционирование различных отделов головного мозга (например, миндалевидного тела, гиппокампа, медиальной префронтальной коры, передней поясной извилины и островковой части мозга) либо за счет прямого нейротоксического действия, либо через изменение уровней метаболитов кинуренинового пути [50, 61, 106], а также серотонина [113, 209] и/или эпигенетических ферментов [145, 174]. Причем возникшие отклонения от нормы в уровне и/или активности эпигенетических ферментов потенциально могут изменить эпигеномный статус не только в нейронах, но и половых клетках, и таким образом обеспечить передачу информации о перенесенном травматическом стрессе потомкам (см. рис. 3).

Результаты проведенных доклинических и клинических исследований подтверждают роль нкРНК и нкРНК-опосредованной регуляции активности генов в этиологии неврологических и психических расстройств, в частности синдрома Туретта, шизофрении, расстройств аутистического спектра, биполярных и депрессивных расстройств, тревоги, а также ПТСР [48, 87, 90, 156, 158] . В модельных экспериментах на животных установлено, что нкРНК могут быть одним из потенциальных факторов, обеспечивающих передачу эпигенетической информации о перенесенном психогенном стрессе в ряду поколений через клетки зародышевой линии, а также от половых клеток к клеткам головного мозга потомков. Так, изменения уровня нкРНК были выявлены в сперме самцов, подвергшихся стрессу, независимо от того, был ли он перенесен ими в детстве или во взрослом возрасте. При этом у их потомства наблюдались отклонения в поведении, связанные с тревогой и депрессией, что объяснялось нарушением регуляции гипоталамо-гипофизарно-надпочечниковой системы. В данном случае нкРНК оказывало влияние на пост-транскрипционную регуляцию активности генов, и, как следствие, изменялась траектория развития мозга у потомства стрессированных самцов [85, 172, 185]. Причем было установлено, что нкРНК сперматозоидов продолжали функционировать после оплодотворения, изменяя восприимчивость потомства к стрессу в зависимости от пола детей [172, 185].

Однако нельзя исключать, что первоначальные изменения уровня и паттерна нкРНК, вызванные психогенной травмой, могут “переноситься” на другие эпигенетические метки (в частности, метилирование ДНК и/или модификации гистонов), чтобы “сохраниться” во время клеточных делений [197]. Так, установлена связь между нкРНК и ДНК-метилтрансферазами [76] и метил-CpG-связывающим белком (MeCP2) [67]. Кроме того, возможно, что эпигенетические изменения и эпимутации в половых клетках, вызванные травматическим стрессом, каким-то образом в ряду поколений трансформируются в генетические изменения из-за снижения стабильности генома и приводят к вариациям числа копий (CNV – copy number variation), аналогично тому, что, например, было обнаружено в экспериментах на крысах, подвергшихся воздействию винклозолина на ранних стадиях эмбрионального развития [189].

Еще одно из возможных объяснений наследования биологических эффектов травматического стресса в ряду поколений и от половых клеток к клеткам формирующегося головного мозга потомства заключается в том, что возникшие в результате стресса эпигеномные изменения в гаметах по какой-то (пока не установленной) причине избегают перепрограммирования (“стирания” эпигеномных меток) во время эмбриогенеза и передаются во все три зародышевых листка. Возможно, в данном случае имеет место молекулярный механизм, подобный тому, что характерен для импринтированных генов и где задействованы дифференциально метилированные районы ДНК, локус-специфические модификации гистонов и нкРНК [21, 80, 117, 129, 202]. Безусловно, для проверки данного предположения и выяснения молекулярных механизмов межгенерационного и, возможно, трансгенерационного наследования эпигеномных изменений, вызванных травматическим стрессом, требуется одновременное проведение молекулярно-генетических, цитогенетических, биохимических и физиологических исследований не только на животных, подвергшихся стрессу, но и их потомстве на разных стадиях онтогенеза (как в различных структурах головного мозга, так и половых клетках).

ЗАКЛЮЧЕНИЕ

В настоящее время в клинической практике нет биомаркеров острого и хронического стресса, которые являются основными факторами риска развития нейродегенеративных, психических и психосоматических расстройств. Травматический стресс приводит к структурным и функциональным изменениям на молекулярном уровне не только в головном мозге, но и периферических тканях, в том числе органах репродуктивной системы, поэтому негативные последствия перенесенной психогенной травмы могут наследоваться потомками, чему и было уделено особое внимание в представленном обзоре.

Чувствительность и резистентность к травматическому стрессу, характер и степень выраженности биологических эффектов перенесенного стресса, а также ответная реакция на терапию (ее эффективность) зависят не только от генетических, но и от эпигенетических особенностей организма. Возникающие при стрессе эпигенетические изменения, затрагивающие метилирование ДНК, модификации гистонов, нкРНК, ремоделирование хроматина могут являться полноценными биомаркерами травматического стресса. Причем данные эпигенетические изменения регистрируются не только в головном мозге, но и других органах и тканях, в частности, лейкоцитах и клетках буккального эпителия, которые могут являться релевантными носителями биомаркеров травматического стресса.

Эпигенетические изменения – это молекулярные механизмы, которые динамично реагируют на внешние и внутренние воздействия и с помощью которых стрессовые жизненные события могут закрепляться на протяжении всей жизни и наследоваться из поколения в поколение, реализуясь в виде аберрантных поведенческих фенотипов, связанных с психогенной травмой. Создание животных моделей ПТСР позволяет на молекулярном уровне исследовать не только изменения в различных отделах головного мозга, возникающих при травматическом стрессе, но и установить эпигенетические механизмы наследования, а также выявить факторы, ответственные за индукцию эпигенетических изменений в половых клетках. Кроме того, именно благодаря обратимости эпигенетических модификаций появляется возможность разработки эффективных терапевтических подходов для профилактики и коррекции ПТСР и связанных со стрессом расстройств.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена в рамках государственных заданий Министерства науки и высшего образования РФ № FGWG-2022-0012 и № FGWG-2023-0001

×

Авторлар туралы

E. Patkin

Institute of Experimental Medicine

Хат алмасуға жауапты Автор.
Email: elp44@mail.ru
Ресей, St. Petersburg, 197022

I. Suchkova

Institute of Experimental Medicine

Email: irsuchkova@mail.ru
Ресей, St. Petersburg, 197022

S. Tsikunov

Institute of Experimental Medicine

Email: secikunov@yandex.ru
Ресей, St. Petersburg, 197022

H. Sofronov

Institute of Experimental Medicine; Military Medical Academy named after. C.M. Kirov of the Ministry of Defense of the Russian Federation

Email: gasofronov@mail.ru
Ресей, St. Petersburg, 197022; St. Petersburg, 194044

Әдебиет тізімі

  1. Авалиани Т.В., Апраксина Н.К., Цикунов С.Г. Применение вазопрессина для коррекции последствий влияния психогенной травмы матерей на поведение потомства // Евразийский Союз Ученых (ЕСУ). 2020. Т. 3. № 9(78). С. 4–10. https://doi.org/10.31618/ESU.2413-9335.2020.3.78.1013
  2. Августинович Д.Ф., Алексеенко О.В., Бакштановская И.В., Корякина Л.А., Липина Т.В. и др. Динамические изменения серотонергической и дофаминергической активности мозга в процессе развития тревожной депрессии: экспериментальное исследование // Успехи физиол. наук. 2004. Т. 35. № 4. С. 19–40.
  3. Авдеева Н.Н. Биологические детерминанты материнского поведения // Современная зарубежная психология (электронный ресурс). 2022. Т. 11. № 1. С. 7–16. https://doi.org/
  4. Апраксина Н.К., Немцева П.С., Авалиани Т.В., Сучкова И.О., Паткин Е.Л. и др. Отсроченное влияние витального стресса на уровень полногеномного метилирования ДНК на разных стадиях эстрального цикла самок крыс // Патогенез. 2022. Т. 25. № 3. С. 65–66. https://doi.org/10.25557/2310-0435.2022.03.65-66
  5. Дубинина Е.Е., Щедрина Л.В., Мазо Г.Э. Основные биохимические аспекты патогенеза депрессии. Часть I // Успехи физиол. наук. 2018. Т. 49. № 1. С. 28–49.
  6. Дубинина Е.Е., Щедрина Л.В., Мазо Г.Э. Основные биохимические аспекты патогенеза депрессии. Часть II // Успехи физиол. наук. 2021. Т. 52. № 1. С. 31–48. https://doi.org/10.31857/S0301179821010033
  7. Дюжикова Н.А., Даев Е.В. Геном и стресс-реакция у животных и человека // Экологическая генетика. 2018. Т. 16. № 1. С. 4–26. https://doi.org/10.17816/ecogen1614-26
  8. Дюжикова Н.А., Скоморохова Е.Б., Вайдо А.И. Эпигенетические механизмы формирования постстрессорных состояний // Успехи физиол. наук. 2015. Т. 46. № 1. С. 47–75.
  9. Евдокимов В.И., Шамрей В.К., Плужник М.С. Развитие научных исследований по боевому стрессу в отечественных статьях с использованием программы VOSVIEWER (2005-2021 гг.) // Мед.-биол. и соц.-психол. пробл. безопасности в чрезв. ситуациях. 2023. Т. 2. № 2. С. 99–116. https://doi.org/10.25016/2541-7487-2023-0-2-99-116
  10. Клюева Н.Н., Авалиани Т.В., Апраксина Н.К. Липидный спектр у потомства крыс в модели прекондиционирования психотравмирующего воздействия // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18. № 1. С. 57–61. https://doi.org/10.17816/RCF18157-61
  11. Кузник Б.И., Чалисова Н.И., Цыбиков Н.Н., Линькова Н.С., Давыдов С.О. Стресс, старение и единая гуморальная защитная система организма. эпигенетические механизмы регуляции // Успехи физиол. наук. 2020. Т. 51. № 3. С. 51–68. https://doi.org/10.31857/S030117982002006X
  12. Кучер А.Н. Нейрогенное воспаление: биохимические маркеры, генетический контроль и болезни // Бюл. сибир. мед. 2020. Т. 19. № 2. С. 171–181. https://doi.org/10.20538/1682-0363-2020-2-171-181
  13. Ордян Н.Э., Малышева О.В., Акулова В.К., Пивина С.Г., Холова Г.И. Способность к обучению и экспрессия гена инсулиноподобного фактора роста II в мозге самцов крыс – потомков отцов, подвергнутых стрессирующему воздействию в парадигме “стресс–рестресс”// Нейрохимия. 2020. Т. 37. № 2. С. 153–160. https://doi.org/10.31857/S1027813320020077
  14. Ордян Н.Э., Пивина С.Г., Акулова В.К., Холова Г.И. Изменение характера поведения и активности гипофизарно-адренокортикальной системы крыс – потомков отцов, подвергнутых стрессированию в парадигме “стресс–рестресс” перед спариванием // Рос. физиолог. журн. им. И.М. Сеченова. 2020. Т. 106. № 9. С. 1085–1097. https://doi.org/10.31857/S0869813920090058
  15. Ордян Н.Э., Пивина С.Г., Миронова В.И., Ракитская В.В., Акулова В.К. Активность гипоталамо-гипофизарно-адренокортикальной системы пренатально стрессированных самок крыс в модели посттравматического стрессового расстройства // Рос. физиолог. журн. им. И.М. Сеченова. 2014. Т. 100. № 12. С. 1409–1420.
  16. Ордян Н.Э., Смоленский И.В., Пивина С.Г., Акулова В.К. Особенности формирования тревожно-депрессивного состояния в экспериментальной модели посттравматического стрессового расстройства у пренатально стрессированных самцов крыс // Журн. высш. нервн. деят. им. И.П. Павлова. 2013. Т. 63. № 2. С. 280-289. https://doi.org/10.7868/S0044467713020068
  17. Павлова М.Б., Дюжикова Н.А. Дифференциальная экспрессия генов нейромедиаторных систем в гиппокампе крыс, селектированных по порогу нервной возбудимости: влияние стресса // Сб. тез. XXIV съезда физиолог. общ. им. И.П. Павлова. СПб. 2023. С. 210–211.
  18. Павлова М.Б., Смагин Д.А., Кудрявцева Н.Н., Дюжикова Н.А. Изменение экспрессии генов, ассоциированных с кальциевыми процессами в гиппокампе мышей, под влиянием хронического социального стресса // Молекулярная биология. 2023. Т. 57. № 2. С. 373–383. https://doi.org/10.31857/S0026898423020192
  19. Паткин Е.Л. Эпигенетические механизмы распространенных заболеваний человека. СПб.: Нестор-История. 2008. 196 с.
  20. Паткин Е.Л., Софронов Г.А. Эколого-зависимые заболевания человека. Эпигенетические механизмы возникновения и наследования // Мед. акад. журн. 2015. Т. 15. № 3. С. 7–23.
  21. Паткин Е.Л., Сучкова И.О. Регуляторные механизмы импринтинга у млекопитающих // Цитология. 2006. Т. 48. № 7. С. 578–594.
  22. Пивина С.Г., Акулова В.К., Ракицкая В.В., Ордян Н.Э. Развитие поведенческих и гормональных нарушений в экспериментальной модели постравматического стрессового расстройства у пренатально стрессированных самок крыс // Бюл. эксперимент. биол.и мед. 2014. Т. 157. № 3. С. 289–293. https://doi.org/10.1007/s10517-014-2554-5.
  23. Пивина С.Г., Ракицкая В.В., Акулова В.К., Ордян Н.Э. Активность гипоталамо-гипофизарно-надпочечниковой системы пренатально стрессированных самцов крыс в экспериментальной модели посттравматического стрессового расстройства // Бюллетень экспериментальной биологии и медицины. 2015. Т. 160. № 11. С. 542–545. https://doi.org/10.1007/s10517-016-3227-3
  24. Рагаева Д.С., Игонина Т.Н., Брусенцев Е.Ю., Рожкова И.Н., Амстиславский С.Я. Отдаленные последствия ранних пренатальных воздействий на физиологические и поведенческие характеристики потомков // Успехи физиол. наук. 2018. Т. 49. № 4. С. 30–44. https://doi.org/10.7868/S0301179818040033
  25. Розанов В.А. Стресс-индуцированные эпигенетические феномены – еще один вероятный биологический фактор суицида // Суицидология. 2015. Т. 6. № 3(20). С. 3–19.
  26. Соколов П.Л., Чебаненко Н.В., Медная Д.М. Эпигенет. влияния и развитие мозга // Журн. неврол. и психиатрии им. С.С. Корсакова. 2023. Т. 123. № 3. С. 12–19. https://doi.org/https://doi.org/10.17116/jnevro202312303112
  27. Степаничев М.Ю., Недогреева О.А., Климанова М.А. и др. Хронический стресс, вызванный содержанием в условиях дефицита гнездового материала в раннем постнатальном периоде, оказывает влияние на поведение и стресс-реактивность самцов крыс // Журн. высш. нервн. деят. 2021. Т. 71. № 3. С. 370–386. https://doi.org/10.31857/S0044467721030096
  28. Темирханова К.Т., Цикунов С.Г., Мельнов С.Б., Пятибрат Е.Д. Влияние перенесенной психической травмы высокого риска террористической угрозы в пубертатном периоде на репродуктивную функцию женщин // Вест. Санкт-Петербургского ун-та (Медицина). 2018. Т. 13. № 2. С. 152–163. https://doi.org/10.21638/11701/spbu11.2018.203
  29. Темирханова К.Т., Цикунов С.Г., Пятибрат А.О. Особенности полового развития девочек, матери которых в догравидарном периоде пережили витальный стресс // Мед.-биол. и соц.-психол. пробл. безопасн. в чрезв. ситуац. 2017. Т. 1. № 1. С. 54–61. https://doi.org/10.25016/2541-7487-2017-0-54-61
  30. Темирханова К.Т., Цикунов С.Г., Пятибрат А.О. Психологические особенности у женщин республики Дагестан, переживших стресс террористической угрозы // Мед.-биол. и соц.-психол. пробл. безопасн. в чрезв. ситуац. 2017. Т. 3. № 3. С. 101-109. https://doi.org/10.25016/2541-7487-2017-0-3-101-109
  31. Тиссен И.Ю., Лебедев А.А., Цикунов С.Г., Шабанов П.Д. Кисспептин уменьшает проявления половой дисфункции у крыс в модели посттравматического стрессового расстройства // Психофармакология и биологическая наркология. 2023. Т. 14. № 4. С. 237–244. https://doi.org/10.17816/phbn623033
  32. Тиссен И.Ю., Якушина Н.Д., Лебедев А.А. и др. Эффекты антагониста OX1R рецепторов орексина А SB-408124 на компульсивное поведение и уровень тревожности после витального стресса у крыс // Обзоры по клинической фармакологии и лекарственной терапии. 2018. Т. 16. № 1. С. 34–42. https://doi.org/10.17816/RCF16134-42
  33. Толкунова К.М., Могучая Е.В., Ротарь О.П. Трансгенерационное наследование: современные подходы к поиску причин заболеваний // Артериальная гипертензия. 2021. Т. 27. № 2. С. 122–132. https://doi.org/10.18705/1607-419X-2021-27-2-122-132
  34. Фаустова А.Г. Современные представления о генетических маркерах посттравматического стрессового расстройства // Клиническая и специальная психология (Электронный ресурс). 2021. Т. 10. № 1. С. 61–79. https://doi.org/10.17759/cpse.2021100104
  35. Фаустова А.Г., Юров И.Ю. Эпигенетические и геномные механизмы в патогенезе посттравматического стрессового расстройства (обзор) // Научные результаты биомедицинских исследований. 2022. Т. 8. № 1. С. 15–35. https://doi.org/10.18413/2658-6533-2022-8-1-0-2
  36. Шалагинова И.Г., Зачепило Т.Г., Дюжикова Н.А. Влияние длительного эмоционально-болевого стрессорного воздействия на экспрессию гена BDNF в мозге крыс с контрастной возбудимостью нервной системы // Мед. акад. журн. 2023. Т. 23. № 1. С. 67–74. https://doi.org/10.17816/MAJ119980
  37. Abdullahi P.R., Raeis-Abdollahi E., Sameni H., Vafaei A.A. et al. Protective effects of morphine in a rat model of post-traumatic stress disorder: Role of hypothalamic-pituitary-adrenal axis and beta-adrenergic system // Behav Brain Res. 2020. V. 395. P. 112867. https://doi.org/10.1016/j.bbr.2020.112867
  38. Adeoya-Osiguwa S.A., Gibbons R., Fraser L.R. Identification of functional alpha2- and beta-adrenergic receptors in mammalian spermatozoa // Hum Reprod. 2006. V. 21. № 6. P. 1555–1563. https://doi.org/10.1093/humrep/del016
  39. Afifi T.O., Asmundson G.J., Taylor S., Jang K.L. The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: a review of twin studies // Clin Psychol Rev. 2010. V. 30. № 1. P. 101–112. https://doi.org/10.1016/j.cpr.2009.10.002
  40. Alhassen S., Chen S., Alhassen L. et al. Intergenerational trauma transmission is associated with brain metabotranscriptome remodeling and mitochondrial dysfunction // Commun Biol. 2021. V. 4. № 1. P. 783. https://doi.org/10.1038/s42003-021-02255-2
  41. Allis D.C.D., Caparro M.-L., Jenuwein T., Reinberg D., Lachner M. Epigenetics. Second edition. New-York, USA: Cold Springer Harbor Laboratory Press. Cold Spring Harbor. 2015. 967 p.
  42. American psychiatric association. Diagnostic and statistical manual of mental disorders. Fifth edition. Arlington VA: American Psychiatric Association. 2013. 992 p.
  43. Amstadter A.B., Koenen K.C., Ruggiero K.J. et al. Variation in RGS2 is associated with suicidal ideation in an epidemiological study of adults exposed to the 2004 Florida hurricanes // Arch Suicide Res. 2009. V. 13. № 4. P. 349–357. https://doi.org/10.1080/13811110903266541
  44. Andero R., Ressler K.J. Fear extinction and BDNF: Translating animal models of PTSD to the clinic // Genes Brain Behav. 2012. V. 11. № 5. P. 503–512. https://doi.org/10.1111/j.1601-183X.2012.00801.x
  45. Antontseva E.V., Bondar N.P. Chromatin remodeling in oligodendrogenesis // Vavilov Journal of Genetics and Breeding. 2021. V. 25. № 5. P. 573–579. https://doi.org/10.18699/VJ21.064
  46. Arai J.A., Li S., Hartley D.M., Feig L.A. Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment // J. Neurosci. 2009. V. 29. № 5. P. 1496–1502. https://doi.org/10.1523/jneurosci.5057-08.2009
  47. Avaliani T.V., Belobokova N.K., Lazarenko N.S., Tsikunov S.G. Peculiarities of behavior of offspring of rats-ambidexters surviving vital stress // J. Evolutionary Biochemistry and Physiology. 2013. V. 49. № 6. P. 570–578. https://doi.org/10.1134/S0022093013060042
  48. Bam M., Yang X., Ginsberg J.P. et al. Long non-coding RNA LINC00926 regulates WNT10B signaling pathway thereby altering inflammatory gene expression in PTSD // Transl Psychiatry. 2022. V. 12. № 1. P. 200. https://doi.org/10.1038/s41398-022-01971-5
  49. Barnhill J.W. Posttraumatic stress disorder (PTSD). In: MSD Manual. Professional version. 2023. https://www.msdmanuals.com/professional/psychiatric-disorders/anxiety-and-stressor-related-disorders/posttraumatic-stress-disorder-ptsd (accessed: 14.01.2024.).
  50. Bartoli F., Cioni R.M., Cavaleri D. et al. The association of kynurenine pathway metabolites with symptom severity and clinical features of bipolar disorder: An overview // Eur Psychiatry. 2022. V. 65. № 1. P. e82. https://doi.org/10.1192/j.eurpsy.2022.2340
  51. Ben David G., Amir Y., Tripathi K. et al. Exposure to juvenile stress induces epigenetic alterations in the GABAergic system in rats // Genes (Basel). 2023. V. 14. № 3. P. 565. https://doi.org/10.3390/genes14030565
  52. Ben-Azu B., Adebayo O.G., Moke E.G. et al. Geraniol attenuates behavioral and neurochemical impairments by inhibitions of HPA-axis and oxido-inflammatory perturbations in mice exposed to post-traumatic stress disorder // J. Psychiatr Res. 2023. V. 168. P. 165–175. https://doi.org/10.1016/j.jpsychires.2023.10.057
  53. Berger S.L., Kouzarides T., Shiekhattar R., Shilatifard A. An operational definition of epigenetics // Genes Dev. 2009. V. 23. № 7. P. 781–783. https://doi.org/10.1101/gad.1787609
  54. Bernabe C.S., Caliman I.F., de Abreu A.R.R. et al. Identification of a novel perifornical-hypothalamic-area-projecting serotonergic system that inhibits innate panic and conditioned fear responses // Transl Psychiatry. 2024. V. 14. № 1. P. 60. https://doi.org/10.1038/s41398-024-02769-3
  55. Bhattacharya S., Fontaine A., MacCallum P.E., Drover J., Blundell J. Stress across generations: DNA methylation as a potential mechanism underlying intergenerational effects of stress in both post-traumatic stress disorder and pre-clinical predator stress rodent models // Front Behav Neurosci. 2019. V. 13. P. 113. https://doi.org/10.3389/fnbeh.2019.00113
  56. Bian Y.Y., Yang L.L., Zhang B. et al. Identification of key genes involved in post-traumatic stress disorder: Evidence from bioinformatics analysis // World J. Psychiatry. 2020. V. 10. № 12. P. 286–298. https://doi.org/10.5498/wjp.v10.i12.286
  57. Bielawski T., Misiak B., Moustafa A., Frydecka D. Epigenetic mechanisms, trauma, and psychopathology: Targeting chromatin remodeling complexes // Rev Neurosci. 2019. V. 30. № 6. P. 595–604. https://doi.org/10.1515/revneuro-2018-0055
  58. Bohacek J., Farinelli M., Mirante O. et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress // Mol. Psychiatry. 2015. V. 20. № 5. P. 621–631. https://doi.org/10.1038/mp.2014.80
  59. Borgonetti V., Cruz B., Vozella V. et al. IL-18 signaling in the rat central amygdala is disrupted in a comorbid model of post-traumatic stress and alcohol use disorder // Cells. 2023. V. 12. № 15. P. 1943. https://doi.org/10.3390/cells12151943
  60. Brady K.T., Killeen T.K., Brewerton T., Lucerini S. Comorbidity of psychiatric disorders and posttraumatic stress disorder // J. Clin Psychiatry. 2000. V. 61 Suppl 7. P. 22-32.
  61. Bryleva E.Y., Brundin L. Kynurenine pathway metabolites and suicidality // Neuropharmacology. 2017. V. 112. № Pt B. P. 324–330. https://doi.org/10.1016/j.neuropharm.2016.01.034
  62. Burggren W. Epigenetic inheritance and its role in evolutionary biology: Re-evaluation and new perspectives // Biology (Basel). 2016. V. 5. № 2. P. 24. https://doi.org/10.3390/biology5020024
  63. Bürgin D., Anagnostopoulos D., Vitiello B. et al. Impact of war and forced displacement on children's mental health-multilevel, needs-oriented, and trauma-informed approaches // Eur Child Adolesc Psychiatry. 2022. V. 31. № 6. P. 845–853. https://doi.org/10.1007/s00787-022-01974-z
  64. Carter J.K., Quach B.C., Willis C. et al. Identifying novel gene dysregulation associated with opioid overdose death: A meta-analysis of differential gene expression in human prefrontal cortex // medRxiv (Preprint). 2024. https://doi.org/10.1101/2024.01.12.24301153
  65. Casier K., Boivin A., Carré C., Teysset L. Environmentally-induced transgenerational epigenetic inheritance: implication of PIWI interacting RNAs // Cells. 2019. V. 8. № 9. P. 1108. https://doi.org/10.3390/cells8091108
  66. Chagas L.A., Batista T.H., Ribeiro A. et al. Anxiety-like behavior and neuroendocrine changes in offspring resulting from gestational post-traumatic stress disorder // Behav Brain Res. 2021. V. 399. P. 113026. https://doi.org/10.1016/j.bbr.2020.113026
  67. Cheng T.L., Wang Z., Liao Q. et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex // Dev. Cell. 2014. V. 28. № 5. P. 547–560. https://doi.org/10.1016/j.devcel.2014.01.032
  68. Childs G.V., Odle A.K., MacNicol M.C., MacNicol A.M. The importance of leptin to reproduction // Endocrinology. 2021. V. 162. № 2. P. bqaa204. https://doi.org/10.1210/endocr/bqaa204
  69. Chou P.C., Huang Y.C., Yu S. Mechanisms of epigenetic inheritance in post-traumatic stress disorder // Life (Basel). 2024. V. 14. № 1. P. 98. https://doi.org/10.3390/life14010098
  70. Čikoš Š., Czikková S., Chrenek P. et al. Expression of adrenergic receptors in bovine and rabbit oocytes and preimplantation embryos // Reprod Domest Anim. 2014. V. 49. № 1. P. 92–100. https://doi.org/10.1111/rda.12233
  71. Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes // Annu Rev Biochem. 2009. V. 78. P. 273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223
  72. Coelho A.A., Lima-Bastos S., Gobira P.H., Lisboa S.F. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders // Neuronal Signal. 2023. V. 7. № 2. P. Ns20220034. https://doi.org/10.1042/ns20220034
  73. Cohen S., Janicki-Deverts D., Miller G.E. Psychological stress and disease // Jama. 2007. V. 298. № 14. P. 1685–1687. https://doi.org/10.1001/jama.298.14.1685
  74. Crombach A., Rukundo-Zeller A.C., Vukojevic V. et al. Differential methylation of linoleic acid pathway genes is associated with PTSD symptoms – a longitudinal study with Burundian soldiers returning from a war zone // Transl Psychiatry. 2024. V. 14. № 1. P. 32. https://doi.org/10.1038/s41398-024-02757-7
  75. Davis L.L., Petrakis I.L., Pilkinton P.D. et al. Comorbid alcohol use disorder and posttraumatic stress disorder: A proof-of-concept randomized placebo-controlled trial of buprenorphine and naltrexone combination treatment // Alcohol Clin Exp Res (Hoboken). 2023. V. 47. № 9. P. 1756–1772. https://doi.org/10.1111/acer.15155
  76. Denis H., Ndlovu M.N., Fuks F. Regulation of mammalian DNA methyltransferases: A route to new mechanisms // EMBO Rep. 2011. V. 12. № 7. P. 647–656. https://doi.org/10.1038/embor.2011.110
  77. Dias B.G., Ressler K.J. Experimental evidence needed to demonstrate inter- and trans-generational effects of ancestral experiences in mammals // Bioessays. 2014. V. 36. № 10. P. 919–923. https://doi.org/10.1002/bies.201400105
  78. Dionisio-García D.M., Genis-Mendoza A.D., González-Castro T.B. et al. DNA methylation of genes involved in the HPA axis in presence of suicide behavior: a systematic review // Brain Sci. 2023. V. 13. № 4. P. 584. https://doi.org/10.3390/brainsci13040584
  79. Dirven B.C.J., Homberg J.R., Kozicz T., Henckens M. Epigenetic programming of the neuroendocrine stress response by adult life stress // J. Mol. Endocrinol. 2017. V. 59. № 1. P. R11-r31. https://doi.org/10.1530/jme-17-0019
  80. Doan T.N.A., Cowley J.M., Phillips A.L. et al. Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA // Epigenetics. 2024. V. 19. № 1. P. 2294516. https://doi.org/10.1080/15592294.2023.2294516
  81. Đorović Đ., Lazarevic V., Aranđelović J. et al. Maternal deprivation causes CaMKII downregulation and modulates glutamate, norepinephrine and serotonin in limbic brain areas in a rat model of single prolonged stress // J. Affect Disord. 2024. V. 349. P. 286–296. https://doi.org/10.1016/j.jad.2024.01.087
  82. Duncan L.E., Cooper B.N., Shen H. Robust findings from 25 years of PTSD genetics research // Curr Psychiatry Rep. 2018. V. 20. № 12. P. 115. https://doi.org/10.1007/s11920-018-0980-1
  83. Etami Y., Lildharrie C., Manza P., Wang G.J., Volkow N.D. Neuroimaging in adolescents: Post-traumatic stress disorder and risk for substance use disorders // Genes (Basel). 2023. V. 14. № 12. P. 2113. https://doi.org/10.3390/genes14122113
  84. Fraga M.F., Ballestar E., Paz M.F., Ropero S., Setien F. et al. Epigenetic differences arise during the lifetime of monozygotic twins // Proc Natl Acad Sci U S A. 2005. V. 102. № 30. P. 10604–10609. https://doi.org/10.1073/pnas.0500398102
  85. Gapp K., Jawaid A., Sarkies P., Bohacek J., Pelczar P. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice // Nat Neurosci. 2014. V. 17. № 5. P. 667–669. https://doi.org/10.1038/nn.3695
  86. Gapp K., Soldado-Magraner S., Alvarez-Sánchez M. et al. Early life stress in fathers improves behavioural flexibility in their offspring // Nat Commun. 2014. V. 5. P. 5466. https://doi.org/10.1038/ncomms6466
  87. Giridharan V.V., Thandavarayan R.A., Fries G.R. et al. Newer insights into the role of miRNA a tiny genetic tool in psychiatric disorders: Focus on post-traumatic stress disorder // Transl Psychiatry. 2016. V. 6. № 11. P. e954. https://doi.org/10.1038/tp.2016.220
  88. Glenn D.M., Beckham J.C., Feldman M.E., Kirby A.C., Hertzberg M.A. et al. Violence and hostility among families of Vietnam veterans with combat-related posttraumatic stress disorder // Violence Vict. 2002. V. 17. № 4. P. 473–489. https://doi.org/10.1891/vivi.17.4.473.33685
  89. Gökbuget D., Blelloch R. Epigenetic control of transcriptional regulation in pluripotency and early differentiation // Development. 2019. V. 146. № 19. P. dev164772. https://doi.org/10.1242/dev.164772
  90. Guffanti G., Galea S., Yan L. et al. Genome-wide association study implicates a novel RNA gene, the lincRNA AC068718.1, as a risk factor for post-traumatic stress disorder in women // Psychoneuroendocrinology. 2013. V. 38. № 12. P. 3029–3038. https://doi.org/10.1016/j.psyneuen.2013.08.014
  91. Guillot C.R., Fanning J.R., Liang T. An α-synuclein gene (SNCA) polymorphism moderates the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures // J. Anxiety Disord. 2015. V. 30. P. 41–47. https://doi.org/10.1016/j.janxdis.2014.12.007
  92. Gunter H.N., O'Toole B.I., Dadds M.M., Catts S.V. Family emotional climate in childhood and risk of PTSD in adult children of Australian Vietnam veterans // Psychiatry Res. 2020. V. 294. P. 113509. https://doi.org/10.1016/j.psychres.2020.113509
  93. Guo J., Orgeta V., Olivé I. et al. Biomarkers associated with cognitive impairment in post-traumatic stress disorder: A systematic review of current evidence // Ageing Res Rev. 2024. V. 95. P. 102198. https://doi.org/10.1016/j.arr.2024.102198
  94. Hammond C.M., Strømme C.B., Huang H., Patel D.J., Groth A. Histone chaperone networks shaping chromatin function // Nat Rev Mol Cell Biol. 2017. V. 18. № 3. P. 141–158. https://doi.org/10.1038/nrm.2016.159
  95. Herman J.L. Complex PTSD: A syndrome in survivors of prolonged and repeated trauma // Journal of Traumatic Stress. 1992. V. 5. № 3. P. 377–391. https://doi.org/https://doi.org/10.1002/jts.2490050305
  96. Hinchey L.M., Nashef R., Bazzi C., Gorski K., Javanbakht A. The longitudinal impact of war exposure on psychopathology in Syrian and Iraqi refugee youth // Int J. Soc Psychiatry. 2023. V. 69. № 7. P. 1833–1836. https://doi.org/10.1177/00207640231177829
  97. Holesh J.E., Bass A.N., Lord M. Physiology, Ovulation // StatPearls. Treasure Island (FL) ineligible companies: StatPearls Publishing LLC. 2023.
  98. Holter K.M., Pierce B.E., Gould R.W. Metabotropic glutamate receptor function and regulation of sleep-wake cycles // Int. Rev. Neurobiol. 2023. V. 168. P. 93–175. https://doi.org/10.1016/bs.irn.2022.11.002
  99. Horn S.R., Charney D.S., Feder A. Understanding resilience: New approaches for preventing and treating PTSD // Exp Neurol. 2016. V. 284. № Pt B. P. 119–132. https://doi.org/10.1016/j.expneurol.2016.07.002
  100. Howie H., Rijal C.M., Ressler K.J. A review of epigenetic contributions to post-traumatic stress disorder // Dialogues Clin Neurosci. 2019. V. 21. № 4. P. 417–428. https://doi.org/10.31887/DCNS.2019.21.4/kressler
  101. Huang J., Xu F., Yang L., Tuolihong L. et al. Involvement of the GABAergic system in PTSD and its therapeutic significance // Front Mol Neurosci. 2023. V. 16. P. 1052288. https://doi.org/doi: 10.3389/fnmol.2023.1052288
  102. Huang Y., Liu Q., Huang G., Wen J., Chen G. Hypothalamic kisspeptin neurons regulates energy metabolism and reproduction under chronic stress // Front Endocrinol (Lausanne). 2022. V. 13. P. 844397. https://doi.org/10.3389/fendo.2022.844397
  103. Husmann D., Gozani O. Histone lysine methyltransferases in biology and disease // Nat Struct Mol Biol. 2019. V. 26. № 10. P. 880–889. https://doi.org/10.1038/s41594-019-0298-7
  104. Inoue C., Shawler E., Jordan C.H., Moore M.J., Jackson C.A. Veteran and military mental health issues // StatPearls. Treasure Island (FL) ineligible companies: StatPearls Publishing LLC. 2023.
  105. Johnson A.M., Teoh D., Jewett P. et al. Genetic variants associated with post-traumatic stress symptoms in patients with gynecologic cancer // Gynecol Oncol. 2023. V. 170. P. 102–107. https://doi.org/10.1016/j.ygyno.2023.01.006
  106. Kadriu B., Farmer C.A., Yuan P. et al. The kynurenine pathway and bipolar disorder: Intersection of the monoaminergic and glutamatergic systems and immune response // Mol Psychiatry. 2021. V. 26. № 8. P. 4085–4095. https://doi.org/10.1038/s41380-019-0589-8
  107. Kaikkonen M.U., Lam M.T., Glass C.K. Non-coding RNAs as regulators of gene expression and epigenetics // Cardiovasc Res. 2011. V. 90. № 3. P. 430–440. https://doi.org/10.1093/cvr/cvr097
  108. Kang J.I., Kim T.Y., Choi J.H., So H.S., Kim S.J. Allele-specific DNA methylation level of FKBP5 is associated with post-traumatic stress disorder // Psychoneuroendocrinology. 2019. V. 103. P. 1–7. https://doi.org/10.1016/j.psyneuen.2018.12.226
  109. Karam E.G., Fayyad J.A., Farhat C. et al. Role of childhood adversities and environmental sensitivity in the development of post-traumatic stress disorder in war-exposed Syrian refugee children and adolescents // Br. J. Psychiatry. 2019. V. 214. № 6. P. 354–360. https://doi.org/10.1192/bjp.2018.272
  110. Kessler R.C., Berglund P., Demler O. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication // Arch Gen Psychiatry. 2005. V. 62. № 6. P. 593–602. https://doi.org/10.1001/archpsyc.62.6.593
  111. Kibaly C., Xu C., Cahill C.M., Evans C.J., Law P.Y. Non-nociceptive roles of opioids in the CNS: opioids' effects on neurogenesis, learning, memory and affect // Nat Rev Neurosci. 2019. V. 20. № 1. P. 5–18. https://doi.org/10.1038/s41583-018-0092-2
  112. Kim G.S., Smith A.K., Nievergelt C.M., Uddin M. Neuroepigenetics of post-traumatic stress disorder // Prog. Mol. Biol. Transl Sci. 2018. V. 158. P. 227–253. https://doi.org/10.1016/bs.pmbts.2018.04.001
  113. Kim Y.K., Amidfar M., Won E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder // Prog. Neuropsychopharmacol Biol Psychiatry. 2019. V. 91. P. 103–112. https://doi.org/10.1016/j.pnpbp.2018.06.008
  114. Klarić M., Francisković T., Klarić B. et al. Psychological problems in children of war veterans with posttraumatic stress disorder in Bosnia and Herzegovina: cross-sectional study // Croat Med. J. 2008. V. 49. № 4. P. 491–498. https://doi.org/10.3325/cmj.2008.4.491
  115. Klengel T., Dias B.G., Ressler K.J. Models of intergenerational and transgenerational transmission of risk for psychopathology in mice // Neuropsychopharmacology. 2016. V. 41. № 1. P. 219–231. https://doi.org/10.1038/npp.2015.249
  116. Kmita H., Pinna G., Lushchak V.I. Potential oxidative stress related targets of mitochondria-focused therapy of PTSD // Front Physiol. 2023. V. 14. P. 1266575. https://doi.org/10.3389/fphys.2023.1266575
  117. Kravitz S.N., Gregg C. New subtypes of allele-specific epigenetic effects: Implications for brain development, function and disease // Curr Opin Neurobiol. 2019. V. 59. P. 69–78. https://doi.org/10.1016/j.conb.2019.04.012
  118. Krešić Ćorić M., Klarić M., Petrov B., Mihić N. Psychological and behavioral problems in children of war veterans with post traumatic stress disorder // The European Journal of Psychiatry. 2016. V. 30. P. 219–230.
  119. Kwon W.S., Park Y.J., Kim Y.H. et al. Vasopressin effectively suppresses male fertility // PLoS One. 2013. V. 8. № 1. P. e54192. https://doi.org/10.1371/journal.pone.0054192
  120. Labonté B., Azoulay N., Yerko V., Turecki G., Brunet A. Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder // Transl Psychiatry. 2014. V. 4. № 3. P. e368. https://doi.org/10.1038/tp.2014.3
  121. Lago T.R., Brownstein M.J., Page E. et al. The novel vasopressin receptor (V1aR) antagonist SRX246 reduces anxiety in an experimental model in humans: a randomized proof-of-concept study // Psychopharmacology (Berl). 2021. V. 238. № 9. P. 2393–2403. https://doi.org/10.1007/s00213-021-05861-4
  122. Lambert J.E., Holzer J., Hasbun A. Association between parents' PTSD severity and children's psychological distress: A meta-analysis // J. Trauma Stress. 2014. V. 27. № 1. P. 9–17. https://doi.org/10.1002/jts.21891
  123. Lee H., King A.P., Li Y., Seng J.S. Oxytocin receptor gene, post-traumatic stress disorder and dissociation in a community sample of European American women // BJPsych Open. 2022. V. 8. № 4. P. e104. https://doi.org/10.1192/bjo.2022.74
  124. Lee H.S., Kwon A., Lee S.H. Oxytocin receptor genes moderate BDNF epigenetic methylation by childhood trauma // J. Affect Disord. 2022. V. 306. P. 167–173. https://doi.org/10.1016/j.jad.2022.03.020
  125. Leen-Feldner E.W., Feldner M.T., Knapp A. et al. Offspring psychological and biological correlates of parental posttraumatic stress: review of the literature and research agenda // Clin Psychol Rev. 2013. V. 33. № 8. P. 1106–1133. https://doi.org/10.1016/j.cpr.2013.09.001
  126. Lewis C.R., Tafur J., Spencer S. et al. Pilot study suggests DNA methylation of the glucocorticoid receptor gene (NR3C1) is associated with MDMA-assisted therapy treatment response for severe PTSD // Front Psychiatry. 2023. V. 14. P. 959590. https://doi.org/10.3389/fpsyt.2023.959590
  127. Li M., Wang X., Yang L. et al. Acupuncture improves learning and memory ability of posttraumatic stress disorder model rats through epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway // Technol. Health. Care. 2023. V. 31. № S1. P. 409–421. https://doi.org/10.3233/thc-236035
  128. Li Z., Han K., Zhang D. et al. The role of long noncoding RNA in traumatic brain injury // Neuropsychiatr Dis Treat. 2019. V. 15. P. 1671–1677. https://doi.org/10.2147/ndt.S206624
  129. Liao J., Szabó P.E. Role of transcription in imprint establishment in the male and female germ lines // Epigenomics. 2023. https://doi.org/10.2217/epi-2023-0344
  130. Ling X., Liu X., Jiang S., Fan L., Ding J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases // Cell Regen. 2022. V. 11. № 1. P. 42. https://doi.org/10.1186/s13619-022-00145-4
  131. Liu M.N., Tian X.Y., Fang T. et al. Insights into the involvement and therapeutic target potential of the dopamine system in the posttraumatic stress disorder // Mol. Neurobiol. 2023. V. 60. № 7. P. 3708–3723. https://doi.org/10.1007/s12035-023-03312-z
  132. López L., Lozano K., Cruz J. et al. Measurement of neuropeptide Y with molecularly imprinted polypyrrole on carbon fiber microelectrodes // Neuropeptides. 2024. V. 104. P. 102413. https://doi.org/10.1016/j.npep.2024.102413
  133. Lushchak O., Strilbytska O., Koliada A., Storey K.B. An orchestrating role of mitochondria in the origin and development of post-traumatic stress disorder // Front Physiol. 2022. V. 13. P. 1094076. https://doi.org/10.3389/fphys.2022.1094076
  134. Maity S., Abbaspour R., Nahabedian D., Connor S.A. Norepinephrine, beyond the Synapse: Coordinating Epigenetic Codes for Memory // Int J. Mol. Sci. 2022. V. 23. № 17. https://doi.org/10.3390/ijms23179916
  135. Marcolini S., Rojczyk P., Seitz-Holland J. et al. Posttraumatic stress and traumatic brain injury: Cognition, behavior, and neuroimaging markers in Vietnam veterans // J. Alzheimers Dis. 2023. V. 95. № 4. P. 1427–1448. https://doi.org/10.3233/jad-221304
  136. Marra P.S., Seki T., Nishizawa Y. et al. Genome-wide DNA methylation analysis in female veterans with military sexual trauma and comorbid PTSD/MDD // J. Affect Disord. 2024. V. 351. P. 624–630. https://doi.org/10.1016/j.jad.2024.01.241
  137. Martsenkovskyi D., Karatzias T., Hyland P. et al. Parent-reported posttraumatic stress reactions in children and adolescents: Findings from the mental health of parents and children in Ukraine study // Psychol Trauma. 2023. https://doi.org/10.1037/tra0001583
  138. Mehta D., Bruenig D., Carrillo-Roa T. et al. Genome-wideDNA methylation analysis in combat veterans reveals a novel locus for PTSD // Acta Psychiatr Scand. 2017. V. 136. № 5. P. 493–505. https://doi.org/10.1111/acps.12778
  139. Michalek J., Lisi M., Binetti N. et al. War-related trauma linked to increased sustained attention to threat in children // Child Dev. 2022. V. 93. № 4. P. 900–909. https://doi.org/10.1111/cdev.13739
  140. Miller M.W. Leveraging genetics to enhance the efficacy of PTSD pharmacotherapies // Neurosci Lett. 2020. V. 726. P. 133562. https://doi.org/10.1016/j.neulet.2018.04.039
  141. Molnar B.E., Buka S.L., Kessler R.C. Child sexual abuse and subsequent psychopathology: results from the National Comorbidity Survey // Am J. Public Health. 2001. V. 91. № 5. P. 753–760. https://doi.org/10.2105/ajph.91.5.753
  142. Montgomery K.R., Bridi M.S., Folts L.M. et al. Chemogenetic activation of CRF neurons as a model of chronic stress produces sex-specific physiological and behavioral effects // Neuropsychopharmacology. 2024. V. 49. № 2. P. 443–454. https://doi.org/10.1038/s41386-023-01739-5
  143. Moodley A., Womersley J.S., Swart P.C. et al. A network analysis investigating the associations between posttraumatic stress symptoms, markers of inflammation and metabolic syndrome // J. Psychiatr Res. 2023. V. 165. P. 105–114. https://doi.org/10.1016/j.jpsychires.2023.07.018
  144. Moog N.K., Buss C., Entringer S. et al. Maternal exposure to childhood trauma is associated during pregnancy with placental-fetal stress physiology // Biol. Psychiatry. 2016. V. 79. № 10. P. 831–839. https://doi.org/10.1016/j.biopsych.2015.08.032
  145. Muhammad A., Forcados G.E., Sani H. et al. Epigenetic modifications associated with genes implicated in cytokine storm: The potential biotherapeutic effects of vitamins and minerals in COVID-19 // J. Food Biochem. 2022. V. 46. № 5. P. e14079. https://doi.org/10.1111/jfbc.14079
  146. Mukadam A.A., Chester J.A. Line- and Sex-dependent effects of juvenile stress on contextual fear- and anxiety-related behavior in high- and low-alcohol-preferring mouse lines // Behav Brain Res. 2024. P. 114899. https://doi.org/10.1016/j.bbr.2024.114899
  147. Naz R.K., Sellamuthu R. Receptors in spermatozoa: Are they real? // J. Androl. 2006. V. 27. № 5. P. 627–636. https://doi.org/10.2164/jandrol.106.000620
  148. Nikitina V.A., Zakharova M.V., Trofimov A.N. et al. Neonatal exposure to bacterial lipopolysaccharide affects behavior and expression of ionotropic glutamate receptors in the hippocampus of adult rats after psychogenic Trauma // Biochemistry (Mosc). 2021. V. 86. № 6. P. 761–772. https://doi.org/10.1134/s0006297921060134
  149. Núñez-Rios D.L., Martínez-Magaña J.J., Nagamatsu S.T. et al. Cross-species convergence of brain transcriptomic and epigenomic findings in posttraumatic stress disorder: a systematic review // Complex Psychiatry. 2023. V. 9. № 1–4. P. 100-118. https://doi.org/10.1159/000529536
  150. O'Connell C.J., Reeder E.L., Hymore J.A. et al. Transcriptomic dynamics governing serotonergic dysregulation in the dorsal raphe nucleus following mild traumatic brain injury // Exp. Neurol. 2024. V. 374. P. 114695. https://doi.org/10.1016/j.expneurol.2024.114695
  151. Ordyan N.E., Shigalugova E.D., Malysheva O.V., Pivina S.G., Akulova V.K. et al. Transgenerational effects of prenatal stress on memory and expression of the insulin-like growth factor 2 gene in the offspring brain // J. Evol Biochem Phys. 2023. V. 59. № 5. P. 1526–1535. https://doi.org/10.1134/S002209302305006X
  152. O'Toole B.I., Burton M.J., Rothwell A. et al. Intergenerational transmission of post-traumatic stress disorder in Australian Vietnam veterans' families // Acta Psychiatr Scand. 2017. V. 135. № 5. P. 363–372. https://doi.org/10.1111/acps.12685
  153. Ozer E.J., Best S.R., Lipsey T.L., Weiss D.S. Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis // Psycho. Bull. 2003. V. 129. № 1. P. 52–73. https://doi.org/10.1037/0033-2909.129.1.52
  154. Pape J.C., Binder E.B. Psychological trauma as risk for delayed psychiatric disorders: epigenetic mechanisms // Nervenarzt. 2014. V. 85. № 11. P. 1382–1389. https://doi.org/10.1007/s00115-014-4085-8
  155. Patel A.B., He Y., Radhakrishnan I. Histone acetylation and deacetylation – Mechanistic insights from structural biology // Gene. 2024. V. 890. P. 147798. https://doi.org/10.1016/j.gene.2023.147798
  156. Patel R.S., Krause-Hauch M., Kenney K. et al. Long noncoding RNA VLDLR-AS1 levels in serum correlate with combat-related chronic mild traumatic brain injury and depression symptoms in US veterans // Int J. Mol. Sci. 2024. V. 25. № 3. P. 1473. https://doi.org/10.3390/ijms25031473
  157. Patkin E.L. Epigenetic mechanisms for primary differentiation in mammalian embryos // Int Rev Cytol. 2002. V. 216. P. 81-129. https://doi.org/10.1016/s0074-7696(02)16004-9
  158. Peedicayil J. Chapter 15. Non-coding RNAs and psychiatric disorders. In: Epigenetics in Psychiatry (Second Edition) / by edt. Peedicayil J. et al. Academic Press. 2021. P. 321–333.
  159. Peña C.J., Kronman H.G., Walker D.M. et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2 // Science. 2017. V. 356. № 6343. P. 1185–1188. https://doi.org/10.1126/science.aan4491
  160. Perez M.F., Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals // Nat Cell. Biol. 2019. V. 21. № 2. P. 143–151. https://doi.org/10.1038/s41556-018-0242-9
  161. Pervanidou P., Kolaitis G., Charitaki S. et al. The natural history of neuroendocrine changes in pediatric posttraumatic stress disorder (PTSD) after motor vehicle accidents: progressive divergence of noradrenaline and cortisol concentrations over time // Biol. Psychiatry. 2007. V. 62. № 10. P. 1095–1102. https://doi.org/10.1016/j.biopsych.2007.02.008
  162. Phasuk S., Pairojana T., Suresh P. et al. Enhanced contextual fear memory in peroxiredoxin 6 knockout mice is associated with hyperactivation of MAPK signaling pathway // Mol. Brain. 2021. V. 14. № 1. P. 42. https://doi.org/10.1186/s13041-021-00754-1
  163. Pivina S.G., Rakitskaya V.V., Smolenskii I.V., Akulova V.K., Ordyan N.E. Modification of expression of neurohormones in hypothalamus of prenatally stressed male rats in model of posttraumatic stress disorder // J. Evol Biochem Phys. 2014. V. 50. № 4. P. 345–352. https://doi.org/10.1134/S0022093014040073
  164. Porgali Zayman E., Bay Karabulut A., Özdemir S., Kartalci Ş. Oxytocin and vasopressin blood levels in people with post-traumatic stress disorder // Alpha Psychiatry. 2023. V. 24. № 5. P. 180–185. https://doi.org/10.5152/alphapsychiatry.2023.21628
  165. Prajapati S.K., Ahmed S., Rai V., Gupta S.C., Krishnamurthy S. Suvorexant improves mitochondrial dynamics with the regulation of orexinergic and mTOR activation in rats exhibiting PTSD-like symptoms // J. Affect Disord. 2024. V. 350. P. 24–38. https://doi.org/10.1016/j.jad.2024.01.045
  166. Qi P., Huang M., Ren X. et al. Identification of potential biomarkers and therapeutic targets related to post-traumatic stress disorder due to traumatic brain injury // Eur J. Med Res. 2024. V. 29. № 1. P. 44. https://doi.org/10.1186/s40001-024-01640-x
  167. Qureshi I.A., Mehler M.F. Impact of nuclear organization and dynamics on epigenetic regulation in the central nervous system: Implications for neurological disease states // Ann NY. Acad Sci. 2010. V. 1204 Suppl. № Suppl. P. E20-37. https://doi.org/10.1111/j.1749-6632.2010.05718.x
  168. Ravi M., Stevens J.S., Michopoulos V. Neuroendocrine pathways underlying risk and resilience to PTSD in women // Front Neuroendocrinol. 2019. V. 55. P. 100790. https://doi.org/10.1016/j.yfrne.2019.100790
  169. Redican E., Sachser C., Pfeiffer E. et al. Validation of the Ukrainian caregiver-report version of the child and adolescent trauma screen (CATS) in children and adolescents in Ukraine // Psychol. Trauma. 2023. https://doi.org/10.1037/tra0001570
  170. Riser M., Norrholm S.D. Pituitary adenylate cyclase activating peptide and post-traumatic stress disorder: From bench to bedside // Front Psychiatry. 2022. V. 13. P. 861606. https://doi.org/10.3389/fpsyt.2022.861606
  171. Rodgers A.B., Bale T.L. Germ cell origins of posttraumatic stress disorder risk: The transgenerational impact of parental stress experience // Biol. Psychiatry. 2015. V. 78. № 5. P. 307–314. https://doi.org/10.1016/j.biopsych.2015.03.018
  172. Rodgers A.B., Morgan C.P., Leu N.A., Bale T.L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress // Proc. Natl. Acad. Sci U S A. 2015. V. 112. № 44. P. 13699-13704. https://doi.org/10.1073/pnas.1508347112
  173. Grabe H.J. Paternal transmission of early life traumatization through epigenetics: Do fathers play a role? // Med. Hypotheses. 2017. V. 109. P. 59–64. https://doi.org/10.1016/j.mehy.2017.09.011
  174. Rudzki S. Is PTSD an evolutionary survival adaptation initiated by unrestrained cytokine signaling and maintained by epigenetic change? // Mil. Med. 2022. https://doi.org/10.1093/milmed/usac095
  175. Sabban E.L., Serova L.I., Newman E., Aisenberg N., Akirav I. Changes in gene expression in the locus coeruleus-amygdala circuitry in inhibitory avoidance PTSD model // Cell Mol Neurobiol. 2018. V. 38. № 1. P. 273–280. https://doi.org/10.1007/s10571-017-0548-3
  176. Safari-Alighiarloo N., Taghizadeh M., Rezaei-Tavirani M., Goliaei B., Peyvandi A.A. Protein-protein interaction networks (PPI) and complex diseases // Gastroenterol Hepatol Bed Bench. 2014. V. 7. № 1. P. 17–31.
  177. Sartor C.E., Grant J.D., Lynskey M.T. et al. Common heritable contributions to low-risk trauma, high-risk trauma, posttraumatic stress disorder, and major depression // Arch. Gen Psychiatry. 2012. V. 69. № 3. P. 293–299. https://doi.org/10.1001/archgenpsychiatry.2011.1385
  178. Sartor C.E., McCutcheon V.V., Pommer N.E. et al. Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women // Psychol. Med. 2011. V. 41. № 7. P. 1497–1505. https://doi.org/10.1017/s0033291710002072
  179. Scherma M., Masia P., Satta V. et al. Brain activity of anandamide: A rewarding bliss? // Acta Pharmacol Sin. 2019. V. 40. № 3. P. 309–323. https://doi.org/10.1038/s41401-018-0075-x
  180. Schreiber A.L., Lu Y.L., Baynes B.B., Richardson H.N., Gilpin N.W. Corticotropin-releasing factor in ventromedial prefrontal cortex mediates avoidance of a traumatic stress-paired context // Neuropharmacology. 2017. V. 113. № Pt A. P. 323–330. https://doi.org/10.1016/j.neuropharm.2016.05.008
  181. Selimbasic Z., Sinanovic O., Avdibegovic E., Brkic M., Hamidovic J. Behavioral problems and emotional difficulties at children and early adolescents of the veterans of war with post-traumatic stress disorder // Med. Arch. 2017. V. 71. № 1. P. 56–61. https://doi.org/10.5455/medarh.2017.71.56-61
  182. Shah S.B., Peddada T.N., Song C. et al. Exome-wide association study of treatment-resistant depression suggests novel treatment targets // Sci. Rep. 2023. V. 13. № 1. P. 12467. https://doi.org/10.1038/s41598-023-38984-z
  183. Shalaginova I.G., Tuchina O.P., Turkin A.V. et al. The effect of long-term emotional and painful stress on the expression of proinflammatory cytokine genes in rats with high and low excitability of the nervous system // J. Evol Biochem Physiol. 2023. V. 59. № 2. P. 642–652. https://doi.org/10.1134/s0022093023020291
  184. Sheerin C.M., Lind M.J., Bountress K.E., Nugent N.R., Amstadter A.B. The genetics and epigenetics of PTSD: overview, recent advances, and future directions // Curr Opin Psychol. 2017. V. 14. P. 5–11. https://doi.org/10.1016/j.copsyc.2016.09.003
  185. Short A.K., Yeshurun S., Powell R. et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety // Transl. Psychiatry. 2017. V. 7. № 5. P. e1114. https://doi.org/10.1038/tp.2017.82
  186. Siegmund A., Dahlhoff M., Habersetzer U. et al. Maternal inexperience as a risk factor of innate fear and PTSD-like symptoms in mice // J. Psychiatr Res. 2009. V. 43. № 14. P. 1156–1165. https://doi.org/10.1016/j.jpsychires.2009.02.003
  187. Sipos E., Török B., Barna I., Engelmann M., Zelena D. Vasopressin and post-traumatic stress disorder // Stress. 2020. V. 23. № 6. P. 732–745. https://doi.org/10.1080/10253890.2020.1826430
  188. Skinner M.K. What is an epigenetic transgenerational phenotype? F3 or F2 // Reprod Toxicol. 2008. V. 25. № 1. P. 2–6. https://doi.org/10.1016/j.reprotox.2007.09.001
  189. M.M. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations // Epigenetics. 2015. V. 10. № 8. P. 762–771. https://doi.org/10.1080/15592294.2015.1062207
  190. Slone M., Mann S. Effects of war, terrorism and armed conflict on young children: A systematic review // Child Psychiatry Hum Dev. 2016. V. 47. № 6. P. 950–965. https://doi.org/10.1007/s10578-016-0626-7
  191. War exposure, post-traumatic stress symptoms and hair cortisol concentrations in Syrian refugee children // Mol. Psychiatry. 2023. V. 28. № 2. P. 647–656. https://doi.org/10.1038/s41380-022-01859-2
  192. Smoller J.W. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders // Neuropsychopharmacology. 2016. V. 41. № 1. P. 297–319. https://doi.org/10.1038/npp.2015.266
  193. Suarez-Jimenez B., Lazarov A., Zhu X. et al. Intrusive traumatic re-experiencing domain: functional connectivity feature classification by the ENIGMA PTSD consortium // Biol. Psychiatry Glob Open Sci. 2024. V. 4. № 1. P. 299–307. https://doi.org/10.1016/j.bpsgos.2023.05.006
  194. Sun Y.M., Chen Y.Q. Principles and innovative technologies for decrypting noncoding RNAs: From discovery and functional prediction to clinical application // J. Hematol Oncol. 2020. V. 13. № 1. P. 109. https://doi.org/10.1186/s13045-020-00945-8
  195. Švorcová J. Transgenerational epigenetic inheritance of traumatic experience in mammals // Genes (Basel). 2023. V. 14. № 1. P. 120. https://doi.org/10.3390/genes14010120
  196. Szklarczyk K., Korostynski M., Golda S., Solecki W., Przewlocki R. Genotype-dependent consequences of traumatic stress in four inbred mouse strains // Genes Brain Behav. 2012. V. 11. № 8. P. 977–985. https://doi.org/10.1111/j.1601-183X.2012.00850.x
  197. Tando Y., Matsui Y. Inheritance of environment-induced phenotypic changes through epigenetic mechanisms // Environ Epigenet. 2023. V. 9. № 1. P. dvad008. https://doi.org/10.1093/eep/dvad008
  198. Tissen I.Y., Chepik P., Lebedev A. et al. Conditioned place preference of kisspeptin-10 // Reviews on Clinical Pharmacology and Drug Therapy. 2021. V. 19. P. 47–53. https://doi.org/10.17816/RCF19147-53
  199. Tonsfeldt K.J., Cui L.J., Lee J. et al. Female fertility does not require Bmal1 in suprachiasmatic nucleus neurons expressing arginine vasopressin, vasoactive intestinal peptide, or neuromedin-S // Front Endocrinol (Lausanne). 2022. V. 13. P. 956169. https://doi.org/10.3389/fendo.2022.956169
  200. Toomey R., Alpern R.E., White A.J., Li X., Reda D.J. et al. Physical health, behavioral and emotional functioning in children of gulf war veterans // Life Sci. 2021. V. 282. P. 119777. https://doi.org/10.1016/j.lfs.2021.119777
  201. Tseilikman V.E., Tseilikman O.B., Pashkov A.A. et al. Mechanisms of susceptibility and resilience to PTSD: role of dopamine metabolism and BDNF expression in the hippocampus // Int J. Mol Sci. 2022. V. 23. № 23. P. 14575. https://doi.org/10.3390/ijms232314575
  202. Tucci V., Isles A.R., Kelsey G., Ferguson-Smith A.C. Genomic imprinting and physiological processes in mammals // Cell. 2019. V. 176. № 5. P. 952–965. https://doi.org/10.1016/j.cell.2019.01.043
  203. Uddin M., Ratanatharathorn A., Armstrong D. et al. Epigenetic meta-analysis across three civilian cohorts identifies NRG1 and HGS as blood-based biomarkers for post-traumatic stress disorder // Epigenomics. 2018. V. 10. № 12. P. 1585–1601. https://doi.org/10.2217/epi-2018-0049
  204. Vaido A.I., Dyuzhikova N.A., Shiryaeva N.V. et al. Systemic control of the molecular, cell, and epigenetic mechanisms of long-lasting consequences of stress // Russian Journal of Genetics. 2009. V. 45. № 3. P. 298–303. https://doi.org/10.1134/S1022795409030065
  205. Varela R.B., Cararo J.H., Tye S.J. et al. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: Theoretical framework, evidence, and implications // Neurosci Biobehav Rev. 2022. V. 135. P. 104579. https://doi.org/10.1016/j.neubiorev.2022.104579
  206. Vertii A. Stress as a chromatin landscape architect // Front Cell Dev Biol. 2021. V. 9. P. 790138. https://doi.org/10.3389/fcell.2021.790138
  207. Watson C.G., Kucala T., Manifold V. A cross-validation of the Keane and Penk MMPI scales as measures of post-traumatic stress disorder // J. Clin Psychol. 1986. V. 42. № 5. P. 727–732. https://doi.org/10.1002/1097-4679(198609)42:5<727::aid-jclp2270420508>3.0.co;2-4
  208. Weiss E.M., Parson W., Niederstätter H., Marksteiner J., Lampe A. Genetics of Posttraumatic Stress Disorder (PTSD) // Psychother Psychosom Med. Psychol. 2019. V. 69. № 7. P. 266–274. https://doi.org/10.1055/a-0634-6625
  209. Wieck A., Grassi-Oliveira R., Hartmann do Prado C., Teixeira A.L., Bauer M.E. Neuroimmunoendocrine interactions in post-traumatic stress disorder: focus on long-term implications of childhood maltreatment // Neuroimmunomodulation. 2014. V. 21. № 2-3. P. 145–151. https://doi.org/10.1159/000356552
  210. Wittekind C.E., Jelinek L., Kellner M., Moritz S., Muhtz C. Intergenerational transmission of biased information processing in posttraumatic stress disorder (PTSD) following displacement after World War II // J. Anxiety Disord. 2010. V. 24. № 8. P. 953–957. https://doi.org/10.1016/j.janxdis.2010.06.023
  211. World Health Organization. International statistical classification of diseases and related health problems 10th Revision (ICD-10). Chapter V. Mental and behavioural disorders (F00-F99). Neurotic, stress-related and somatoform disorders (F40-F48). 2019. https://icd.who.int/browse10/2019/en#/F43.0 (accessed: 14.01.2024).
  212. Xiao B., Han F., Shi Y. Administration of moclobemide facilitates fear extinction and attenuates anxiety-like behaviors by regulating synaptic-associated proteins in a rat model of post-traumatic stress disorder // Synapse. 2020. V. 74. № 6. P. e22146. https://doi.org/10.1002/syn.22146
  213. Xie Q., Kang Y., Zhang C. et al. The Role of kisspeptin in the control of the hypothalamic-pituitary-gonadal axis and reproduction // Front Endocrinol (Lausanne). 2022. V. 13. P. 925206. https://doi.org/10.3389/fendo.2022.925206
  214. Yaeger J.D.W., Krupp K.T., Summers T.R., Summers C.H. Contextual generalization of social stress learning is modulated by orexin receptors in basolateral amygdala // Neuropharmacology. 2022. V. 215. P. 109168. https://doi.org/10.1016/j.neuropharm.2022.109168
  215. Yehuda R., Bell A., Bierer L.M., Schmeidler J. Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors // J. Psychiatr Res. 2008. V. 42. № 13. P. 1104–1111. https://doi.org/10.1016/j.jpsychires.2008.01.002
  216. Yehuda R., Daskalakis N.P., Bierer L.M. et al. Holocaust exposure induced intergenerational effects on FKBP5 methylation // Biol. Psychiatry. 2016. V. 80. № 5. P. 372–380. https://doi.org/10.1016/j.biopsych.2015.08.005
  217. Yehuda R., Daskalakis N.P., Desarnaud F. et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD // Front Psychiatry. 2013. V. 4. P. 118. https://doi.org/10.3389/fpsyt.2013.00118
  218. Yehuda R., Daskalakis N.P., Lehrner A. et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring // Am J. Psychiatry. 2014. V. 171. № 8. P. 872–880. https://doi.org/10.1176/appi.ajp.2014.13121571
  219. Yehuda R., Daskalakis N.P., Lehrner A. et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring // Am J. Psychiatry. 2014. V. 171. № 8. P. 872–880. https://doi.org/10.1176/appi.ajp.2014.13121571
  220. Yehuda R., Schmeidler J., Giller E.L., Siever L.J., Binder-Brynes K. Relationship between posttraumatic stress disorder characteristics of Holocaust survivors and their adult offspring // Am J. Psychiatry. 1998. V. 155. № 6. P. 841–843. https://doi.org/10.1176/ajp.155.6.841
  221. Zhang X., Han Y., Liu X. et al. Assessment of genetic variants in D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD): A systematic review and meta-analysis // J. Affect Disord. 2023. V. 328. P. 312–323. https://doi.org/10.1016/j.jad.2023.02.001

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Differences between intergenerational and transgenerational inheritance of biological effects caused by exposure to different natures. F0, F1, F2 and F3 – generations of individuals; 5mC/5hmC – DNA methylation and hydroxymethylation: stars inside circles and squares – gametes (spermatogonia/oogonia, spermatocytes/oocytes).

Жүктеу (498KB)
3. Fig. 2. Putative molecular bases of the development of PTSD and stress-related disorders. 5mC/5hmC – DNA methylation and hydroxymethylation; epigen-R/gen-R – PTSD-resistant epigenotype/genotype; epigen-S/gen-S – PTSD-sensitive epigenotype/genotype (the presence of mutations and/or epimutations associated with the risk of developing PTSD and stress-related disorders); F0, F1, Fn – generations of individuals exposed to traumatic stress and/or inherited the biological effects of PTSD.

Жүктеу (438KB)
4. Fig. 3. Scheme of putative molecular mechanisms of the influence of traumatic stress on the epigenome of germline cells (sex cells), responsible for intergenerational and transgenerational inheritance of its biological effects. DNMTs – DNA methyltransferases; TETs – proteins from the “ten-eleven translocation” family of methylcytosine dioxygenase (DNA demethylases); HATs – histone acetyltransferases; HMTs – histone methyltransferases; HDACs – histone deacetylases; HDMs – histone demethylases.

Жүктеу (390KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».