Influence of in situ limited proteolysis of potato virus X on change in the structure of virions according to data small-angle X-ray scattering and tritium labeling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The viral capsids of the potexvirus family are characterized by the presence on the surface of virions of partially disordered N-terminal fragments of proteins of various lengths. The present study is devoted to studying the effect of in situ removal of the N-terminal domain of the coat protein (CP) on the structural organization and physicochemical properties of potato virus X (PVX) virions. The work considers PVX virions containing an intact Ps-form CP, as well as virions including an in situ degraded Pf-form devoid of 19/21 amino acid residues from the N-end (PVXΔN). Synchrotron small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), tritium bombardment, and several other physicochemical methods were used for the study. Analysis of images obtained using TEM revealed similarities in the architecture of filamentous PVX and PVXΔN virions. SAXS results demonstrated differences in the organization of the capsid of PVX and PVXΔN virions: the latter was characterized by a reduction in the size of ordered regions, indicating partial disruption of the structure of the viral protein framework. In addition, based on the SAXS scattering curves, parameters of the spiral packing of virions in solution were calculated, and structural modeling of particles was performed. Modeling results also indicate changes in the structure of the capsid due to the removal of the ΔN-peptide. Using information about the secondary structure of the PVX model (PDB ID: 6R7G) and data from our previous studies on tritium labeling of surface sites of PVX and PVXΔN virions, a comparative analysis of label incorporation profiles into elements of the protein's secondary structure was conducted. This approach made it possible to predict the localization of the ΔN-peptide above the amino acid residues of neighboring helical subunits (122-129 and 143-153) and demonstrate the stabilizing role of this peptide on the overall structure of the virion. An increase in the level of the label in the C-terminal region after removing the ΔN-peptide also indicates a decrease in the compactness of the virion. Overall, the knowledge gained will be useful when using virus-like nanoparticles in biotechnology.

About the authors

A. L. Ksenofontov

Lomonosov Moscow State University

Author for correspondence.
Email: ksenofon@belozersky.msu.ru

Belozersky Institute of Physico-Сhemical Biology

Russian Federation, 119991 Moscow

M. V. Petoukhov

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: ksenofon@belozersky.msu.ru
Russian Federation, 119071 Moscow; 117997 Moscow

G. S. Peters

National Research Centre “Kurchatov Institute”

Email: ksenofon@belozersky.msu.ru
Russian Federation, 123182 Moscow

A. M. Arutyunyan

Lomonosov Moscow State University

Email: ksenofon@belozersky.msu.ru

Belozersky Institute of Physico-Сhemical Biology

Russian Federation, 119991 Moscow

L. A. Baratova

Lomonosov Moscow State University

Email: ksenofon@belozersky.msu.ru

Belozersky Institute of Physico-Сhemical Biology

Russian Federation, 119991 Moscow

M. V. Arkhipenko

Lomonosov Moscow State University

Email: ksenofon@belozersky.msu.ru

Faculty of Biology

Russian Federation, 119234 Moscow

N. A. Nikitin

Lomonosov Moscow State University

Email: ksenofon@belozersky.msu.ru

Faculty of Biology

Russian Federation, 119234 Moscow

O. V. Karpova

Lomonosov Moscow State University

Email: ksenofon@belozersky.msu.ru

Faculty of Biology

Russian Federation, 119234 Moscow

E. V. Shtykova

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ksenofon@belozersky.msu.ru
Russian Federation, 119071 Moscow

References

  1. Steele, J. F. C., Peyret, H., Saunders, K., Castells-Graells, R., Marsian, J., Meshcheriakova, Y., and Lomonossoff, G. P. (2017) Synthetic plant virology for nanobiotechnology and nanomedicine, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9, e1447, doi: 10.1002/wnan.1447.
  2. Balke, I., and Zeltins, A. (2019) Use of plant viruses and virus-like particles for the creation of novel vaccines, Adv. Drug Deliv. Rev., 145, 119-129, doi: 10.1016/j.addr.2018.08.007.
  3. Kondakova, O. A., Evtushenko, E. A., Baranov, O. A., Nikitin, N. A., and Karpova, O. V. (2022) Structurally modified plant viruses and bacteriophages with helical structure. Properties and applications, Biochemistry ( Moscow), 87, 548-558, doi: 10.1134/S0006297922060062.
  4. Baratova, L. A., Grebenshchikov, N. I., Dobrov, E. N., Gedrovich, A. V., Kashirin, I. A., Shishkov, A. V., Efimov, A. V., Jarvekulg, L., Radavsky, Y. L., and Saarma, M. (1992) The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building, Virology, 188, 175-180, doi: 10.1016/0042-6822(92)90747-d.
  5. Nemykh, M. A., Efimov, A. V., Novikov, V. K., Orlov, V. N., Arutyunyan, A. M., Drachev, V. A., Lukashina, E. V., Baratova, L. A., and Dobrov, E. N. (2008) One more probable structural transition in potato virus X virions and a revised model of the virus coat protein structure, Virology, 373, 61-71, doi: 10.1016/j.virol.2007.11.024.
  6. Yang, S., Wang, T., Bohon, J., Gagne, M. E., Bolduc, M., Leclerc, D., and Li, H. (2012) Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus, J. Mol. Biol., 422, 263-273, doi: 10.1016/j.jmb.2012.05.032.
  7. DiMaio, F., Chen, C. C., Yu, X., Frenz, B., Hsu, Y. H., Lin, N. S., and Egelman, E. H. (2015) The molecular basis for flexibility in the flexible filamentous plant viruses, Nat. Struct. Mol. Biol., 22, 642-644, doi: 10.1038/nsmb.3054.
  8. Agirrezabala, X., Mendez-Lopez, E., Lasso, G., Sanchez-Pina, M. A., Aranda, M., and Valle, M. (2015) The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses, eLife, 4, e11795, doi: 10.7554/eLife.11795.
  9. Grinzato, A., Kandiah, E., Lico, C., Betti, C., Baschieri, S., and Zanotti, G. (2020) Atomic structure of potato virus X, the prototype of the Alphaflexiviridae family, Nat. Chem. Biol., 16, 564-569, doi: 10.1038/s41589-020-0502-4.
  10. Koenig, R., Tremaine, J. H., Shepard, J. F. (1978) In situ degradation of the protein chain of Potato Virus X at the N- and C-termini, J. Gen. Virol., 38, 329-337, doi: 10.1099/0022-1317-38-2-329.
  11. Golshteĭn, M., Grebenshchikov, N., Kust, S., Kaftanova, A., Dobrov, E., and Atabekov, I. (1990) The effect of proteolytic cleavage of potato virus x coat protein on its ability to self-assemble with rna and viral infectivity, Mol. Gen. Mikrobiol. Virusol., 2, 9-16.
  12. Ksenofontov, A. L., Petoukhov, M. V., Matveev, V. V., Fedorova, N. V., Semenyuk, P. I., Arutyunyan, A. M., Manukhova, T. I., Evtushenko, E. A., Nikitin, N. A., Karpova, O. V., and Shtykova, E. V. (2023) Effect of the coat protein N-terminal domain structure on the structure and physicochemical properties of virions of Potato virus X and Alternanthera mosaic virus, Biochemistry (Moscow), 88, 119-130, doi: 10.1134/S0006297923010108.
  13. Svergun, D. I., Koch, M. H. J., Timmins, P. A., and May, R. P. (2013) Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules, First Edn., Oxford University Press, Oxford.
  14. Shtykova, E. V., Dubrovin, E. V., Ksenofontov, A. L., Gifer, P. K., Petoukhov, M. V., Tokhtar, V. K., Sapozhnikova, I. M., Stavrianidi, A. N., Kordyukova, L. V., and Batishchev, O. V. (2024) Structural insights into plant viruses revealed by small-angle X-ray scattering and atomic force microscopy, Viruses, 16, 427, doi: 10.3390/v16030427.
  15. Ksenofontov, A. L., Petoukhov, M. V., Prusov, A. N., Fedorova, N. V., and Shtykova, E. V. (2020) Characterization of tobacco mosaic virus virions and repolymerized coat protein aggregates in solution by small-angle X-Ray scattering, Biochemistry (Moscow), 85, 310-317, doi: 10.1134/S0006297920030062.
  16. Shtykova, E. V., Petoukhov, M. V., Fedorova, N. V., Arutyunyan, A. M., Skurat, E. V., Kordyukova, L. V., Moiseenko, A. V., and Ksenofontov, A. L. (2021) The structure of the potato virus A particles elucidated by small angle X-ray scattering and complementary techniques, Biochemistry (Moscow), 86, 230-240, doi: 10.1134/S0006297921020115.
  17. Баратова Л. А., Богачева Е. Н., Гольданский В. И., Колб В. А., Спирин А. С., Шишков А. В. (1999) Тритиевая планиграфия биологических макромолекул, Наука, Москва.
  18. Dobrov, E. N., Badun, G. A., Lukashina, E. V., Fedorova, N. V., Ksenofontov, A. L., Fedoseev, V. M., and Baratova, L. A. (2003) Tritium planigraphy comparative structural study of tobacco mosaic virus and its mutant with altered host specificity, Eur. J. Biochem., 270, 3300-3308, doi: 10.1046/j.1432-1033.2003.03680.x.
  19. Lukashina, E., Ksenofontov, A., Fedorova, N., Badun, G., Mukhamedzhanova, A., Karpova, O., Rodionova, N., Baratova, L., and Dobrov, E. (2012) Analysis of the role of the coat protein N-terminal segment in Potato virus X virion stability and functional activity, Mol. Plant Pathol., 13, 38-45, doi: 10.1111/j.1364-3703.2011.00725.x.
  20. Ksenofontov, A. L., Baratova, L. A., Semenyuk, P. I., Fedorova, N. V., and Badun, G. A. (2023) Changes in the structure of potato virus A virions after limited in situ proteolysis according to tritium labeling data and computer simulation, Biochemistry (Moscow), 88, 2146-2156, doi: 10.1134/S0006297923120167.
  21. Nikitin, N., Ksenofontov, A., Trifonova, E., Arkhipenko, M., Petrova, E., Kondakova, O., Kirpichnikov, M., Atabekov, J., Dobrov, E., and Karpova, O. (2016) Thermal conversion of filamentous potato virus X into spherical particles with different properties from virions, FEBS Lett., 590, 1543-1551, doi: 10.1002/1873-3468.12184.
  22. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, doi: 10.1038/227680a0.
  23. Peters, G. S., Zakharchenko, O. A., Konarev, P. V., Karmazikov, Y. V., Smirnov, M. A., Zabelin, A. V., Mukhamedzhanov, E. H., Veligzhanin, A. A., Blagov, A. E., and Kovalchuk, M. V. (2019) The small-angle X-ray scattering beamline BioMUR at the Kurchatov synchrotron radiation source, Nuclear Inst. Methods Phys. Res. A, 945, 162616, doi: 10.1016/j.nima.2019.162616.
  24. Peters, G. S., Gaponov, Y. A., Konarev, P. V., Marchenkova, M. A., Ilina, K. B., Volkov, V. V., Pisarevskiy, Y. V., and Kovalchuk, M. V. (2022) Upgrade of the BioMUR beamline at the Kurchatov synchrotron radiation source for serial small-angle X-ray scattering experiments in solutions, Nuclear Inst. Methods Phys. Res. A, 1025, 166170, doi: 10.1016/j.nima.2021.166170.
  25. Hammersley, A. P. (2016) FIT2D: a multi-purpose data reduction, analysis and visualization program, J. Appl. Cryst., 49, 646-652, https://doi.org/10.1107/S1600576716000455.
  26. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J., and Svergun, D. I. (2003) PRIMUS – a Windows-PC based system for small-angle scattering data analysis, J. Appl. Cryst., 36, 1277-1282, doi: 10.1107/S0021889803012779.
  27. Manalastas-Cantos, K., Konarev, P. V., Hajizadeh, N. R., Kikhney, A. G., Petoukhov, M. V., Molodenskiy, D. S., Panjkovich, A., Mertens, H. D. T., Gruzinov, A., Borges, C., Jeffries, C. M., Svergun, D. I., and Franke, D. (2021) ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis, J. Appl. Cryst., 54, 343-355, doi: 10.1107/S1600576720013412.
  28. Svergun, D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria, J. Appl. Cryst., 25, 495-503, doi: 10.1107/S0021889892001663.
  29. Вайнштейн Б. (1963) Дифракция рентгеновских лучей на цепных молекулах, АН СССР, Москва.
  30. Kozin, M. B., and Svergun, D. I. (2000) A software system for rigid-body modelling of solution scattering data, J. Appl. Cryst., 33, 775-777, doi: 10.1107/S0021889800001382.
  31. Svergun, D., Barberato, C., and Koch, M. H. J. (1995) CRYSOL – a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Cryst., 28, 768-773, doi: 10.1107/S0021889895007047.
  32. Tozzini, A. C., Ek, B., Palva, E. T., and Hopp, H. E. (1994) Potato virus X coat protein: a glycoprotein, Virology, 202, 651-658, doi: 10.1006/viro.1994.1386.
  33. Baratova, L. A., Fedorova, N. V., Dobrov, E. N., Lukashina, E. V., Kharlanov, A. N., Nasonov, V. V., Serebryakova, M. V., Kozlovsky, S. V., Zayakina, O. V., and Rodionova, N. P. (2004) N-Terminal segment of potato virus X coat protein subunits is glycosylated and mediates formation of a bound water shell on the virion surface, Eur. J. Biochem., 271, 3136-3145, doi: 10.1111/j.1432-1033.2004.04243.x.
  34. Solovyev, A. G., and Makarov, V. V. (2016) Helical capsids of plant viruses: architecture with structural lability, J. Gen. Virol., 97, 1739-1754, doi: 10.1099/jgv.0.000524.
  35. Homer, R. B., and Goodman, R. M. (1975) Circular dichroism and fluorescence studies on potato virus X and its structural components, Biochim. Biophys. Acta, 378, 296-304, doi: 10.1016/0005-2787(75)90117-3.
  36. Semenyuk, P. I., Karpova, O. V., Ksenofontov, A. L., Kalinina, N. O., Dobrov, E. N., and Makarov, V. V. (2016) Structural properties of potexvirus coat proteins detected by Optical methods, Biochemistry (Moscow), 81, 1522-1530, doi: 10.1134/S0006297916120130.
  37. Ksenofontov, A. L., Parshina, E. Y., Fedorova, N. V., Arutyunyan, A. M., Rumvolt, R., Paalme, V., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2016) Heating-induced transition of Potyvirus Potato Virus A coat protein into beta-structure, J. Biomol. Struct. Dynamics, 34, 250-258, doi: 10.1080/07391102.2015.1022604.
  38. Gedrovich, A. V., and Badun, G. A. (1992) Study of the spatial structure of globular proteins by tritium planigraphy. Short peptides as a model of a fully extended polypeptide chain [in Russian], Mol. Biol., 26, 558-564.
  39. Ksenofontov, A. L., Paalme, V., Arutyunyan, A. M., Semenyuk, P. I., Fedorova, N. V., Rumvolt, R., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2013) Partially disordered structure in intravirus coat protein of potyvirus potato virus A, PLoS One, 8, e67830, doi: 10.1371/journal.pone.0067830.
  40. Charon, J., Theil, S., Nicaise, V., and Michon, T. (2016) Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation, Mol. bioSystems, 12, 634-652, doi: 10.1039/c5mb00677e.
  41. Atabekov, J., Dobrov, E., Karpova, O., and Rodionova, N. (2007) Potato virus X: structure, disassembly and reconstitution, Mol. Plant Pathol., 8, 667-675, doi: 10.1111/j.1364-3703.2007.00420.x.
  42. Karpova, O. V., Arkhipenko, M. V., Zaiakina, O. V., Nikitin, N. A., Kiseleva, O. I., Kozlovskii, S. V., Rodionova, N. P., and Atabekov, I. G. (2006) Translational regulation of potato virus X RNA-coat protein complexes: the key role of a coat protein N-terminal peptide [in Russian], Mol. Biol., 40, 703-710.
  43. Koenig, R. (1972) Anomalous behavior of the coat proteins of potato virus X and cactus virus X during electrophoresis in dodecyl sulfate-containing polyacrylamide gels, Virology, 50, 263-266, doi: 10.1016/0042-6822(72)90368-6.
  44. Makarov, V. V., and Kalinina, N. O. (2016) Structure and noncanonical activities of coat proteins of helical plant viruses, Biochemistry (Moscow), 81, 1-18, doi: 10.1134/S0006297916010016.
  45. Kavcic, L., Kezar, A., Koritnik, N., Znidaric, M. T., Klobucar, T., Vicic, Z., Merzel, F., Holden, E., Benesch, J. L. P., and Podobnik, M. (2024) From structural polymorphism to structural metamorphosis of the coat protein of flexuous filamentous potato virus Y, Commun. Chem., 7, 14, doi: 10.1038/s42004-024-01100-x.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».