RAGE-mediated effects of formaldehyde on the course of Alzheimer’s disease

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

To date, Alzheimer's disease (AD) is an incurable disease with enormous socioeconomic consequences. One of the known mechanisms of Alzheimer's disease pathogenesis is the deposition of amyloid plaques as a result of beta-amyloid (Aβ) accumulation. Receptor for glycation end products (RAGE) plays an important role in the transport of Aβ across the GEB. Also, ligand interaction with RAGE regulates the expression of amyloid precursor protein (APP), which plays a key role in Aβ accumulation. In this analytical review, we dissect the biochemical mechanism of toxic effects of exogenous formaldehyde in the hippocampus leading to the development of insulin resistance and further molecular mechanisms of neuroinflammation contributing to increased RAGE expression. Accumulation of endogenous formaldehyde in the body may occur as a result of impaired utilization. However, the accumulation associated with the ingestion of exogenous formaldehyde has much more acute and dangerous consequences. Formaldehyde is one of the main toxins, MAC of which is stably exceeded in many cities of Russia, as well as in countries of East, South and South-East Asia, Central Africa, North and South America. Formaldehyde plays a major role in the pathogenesis of neurodegenerative diseases, as its biochemical mechanism of action is closely related to increased Aβ accumulation. In individuals more susceptible to beta-amyloid accumulation (due to age or genetic predisposition), exposure to exogenous formaldehyde may have an additional effect on beta-amyloid accumulation. Experiments have previously been conducted investigating the role of formaldehyde in neurodegenerative diseases. A correlation was found between the degree of air pollution and hyperglycaemia. However, the detailed mechanism for the further development of neurodegeneration remains unclear. This review emphasizes the importance of studying the interaction between environmental toxins and neurodegenerative diseases, which may lead to the development of a therapeutic approach based on the protection of neurons from the effects of toxic substances in individuals susceptible to this pathology.

Авторлар туралы

I. Mikhailov

Voyno-Yasenetsky Krasnoyarsk State Medical University; Siberian Federal University

Хат алмасуға жауапты Автор.
Email: M.ilya.G@yandex.ru
Ресей, 660022 Krasnoyarsk; 660041 Krasnoyarsk

M. Mikhailova

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: M.ilya.G@yandex.ru
Ресей, 660022 Krasnoyarsk

A. Shuvaev

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: M.ilya.G@yandex.ru
Ресей, 660022 Krasnoyarsk

Y. Gorina

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: M.ilya.G@yandex.ru
Ресей, 660022 Krasnoyarsk

O. Belozor

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: M.ilya.G@yandex.ru
Ресей, 660022 Krasnoyarsk

Әдебиет тізімі

  1. Всемирная организация здравоохранения ВОЗ, (2025), информационный бюллетень «Деменция».
  2. Bhatt, D. P., Puig, K. L., Gorr, M. W., Wold, L. E., and Combs, C. K. (2015) A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain, PLoS One, 10, e0127102, doi: 10.1371/journal.pone.0127102.
  3. Государственный доклад «О состоянии и охране окружающей среды в Красноярском крае в 2022 году» (2023), Красноярск.
  4. Huang, S., Wei, W., Weschler, L. B., Salthammer, T., Kan, H., Bu, Z., and Zhang, Y. (2017) Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors, Sci. Total Environ., 590-591, 394-405, doi: 10.1016/j.scitotenv.2017.02.187.
  5. Wu, Y., Huo, J., Yang, G., Wang, Y., Wang, L., Wu, S., Yao, L., Fu, Q., and Wang, L. (2023) Measurement report: Production and loss of atmospheric formaldehyde at a suburban site of Shanghai in summertime, Atmos. Chem. Phys., 23, 2997-3014, doi: 10.5194/acp-23-2997-2023.
  6. Vohra, K., Marais, E. A., Suckra, S., Kramer, L., Bloss, W. J., Sahu, R., Gaur, A., Tripathi, S. N., Van Damme, M., Clarisse, L., and Coheur, P. F. (2021) Long-term trends in air quality in major cities in the UK and India: a view from space, Atmos. Chem. Phys., 21, 6275-6296, doi: 10.5194/acp-21-6275-2021.
  7. Parrish, D. D., Ryerson, T. B., Mellqvist, J., Johansson, J., Fried, A., Richter, D., Walega, J. G., Washenfelder, R. A., de Gouw, J. A., Peischl, K. C., Aikin, S. A., McKeen, G. J., Frost, F. C., Fehsenfeld, F. C., and Herndon, S. C. (2012) Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region, Atmos. Chem. Phys, 12, 3273-3290, doi: 10.5194/acp-12-3273-2012.
  8. Аналитический бюллетень «Тенденции и динамика состояния и загрязнения окружающей среды Российской Федерации по данным многолетнего мониторинга Росгидромета». Отчет за 2014-2023 гг.
  9. Tulpule, K., and Dringen, R. (2013) Formaldehyde in brain: an overlooked player in neurodegeneration? J. Neurochem., 127, 7-21, doi: 10.1111/jnc.12356.
  10. Tong, Z., Han, C., Luo, W., Li, H., Luo, H., Qiang, M., Su, T., Wu, B., Liu, Y., Yang, X., Wan, Y., Cui, D., and He, R. (2013) Aging-associated excess formaldehyde leads to spatial memory deficits, Sci. Rep., 3, 1807, doi: 10.1038/srep01807.
  11. Qiang, M., Xiao, R., Su, T., Wu, B. B., Tong, Z. Q., Liu, Y., and He, R. Q. (2014) A novel mechanism for endogenous formaldehyde elevation in SAMP8 mouse, J. Alzheimer's Dis., 40, 1039-1053, doi: 10.3233/JAD-131595.
  12. Tong, Z., Zhang, J., Luo, W., Wang, W., Li, F., Li, H., Luo, H., Lu, J., Zhou, J., Wan, Y., and He, R. (2011) Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia, Neurobiol. Aging, 32, 31-41, doi: 10.1016/j.neurobiolaging.2009.07.013.
  13. Tan, T., Zhang, Y., Luo, W., Lv, J., Han, C., Hamlin, J. N. R., Luo, H., Li, H., Wan, Y., Yang, X., Song, W., and Tong, Z. (2018) Formaldehyde induces diabetes-associated cognitive impairments, FASEB J., 32, 3669-3679, doi: 10.1096/fj.201701239R.
  14. Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares, R., Xu, X. J., Wands, J. R., and de la Monte, S. M. (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? J. Alzheimer's Dis., 7, 63-80, doi: 10.3233/jad-2005-7107.
  15. Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K., and Gong, C. X. (2011) Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes, J. Pathol., 225, 54-62, doi: 10.1002/path.2912.
  16. Pugazhenthi, S., Qin, L., and Reddy, P. H. (2017) Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease, Biochim. Biophys. Acta, 1863, 1037-1045, doi: 10.1016/j.bbadis.2016.04.017.
  17. Sędzikowska, A., and Szablewski, L. (2021) Insulin and insulin resistance in Alzheimer's disease, Int. J. Mol. Sci., 22, 9987, doi: 10.3390/ijms22189987.
  18. Burillo, J., Marqués, P., Jiménez, B., González-Blanco, C., Benito, M., and Guillén, C. (2021) Insulin resistance and diabetes mellitus in Alzheimer's disease, Cells, 10, 1236, doi: 10.3390/cells10051236.
  19. Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism, Diabetes, 54, 1615-1625, doi: 10.2337/diabetes.54.6.1615.
  20. Obrenovich, M. E., Monnier, V. M. (2004) Glycation stimulates amyloid formation, Sci. Aging Knowledge Environ., 14, pe3, doi: 10.1126/sageke.2004.2.
  21. Li, X. H., Lv, B. L., Xie, J. Z., Liu, J., Zhou, X. W., and Wang, J. Z. (2012). AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation, Neurobiol. Aging, 33, 1400-1410, doi: 10.1016/j.neurobiolaging.2011.02.003.
  22. Tao, R., Liao, M., Wang, Y., Wang, H., Tan, Y., Qin, S., Wei, W., Tang, C., Liang, X., Han, Y., and Li, X. (2022) In situ imaging of formaldehyde in live mice with high spatiotemporal resolution reveals aldehyde dehydrogenase-2 as a potential target for Alzheimer's disease treatment, Anal. Chem., 94, 1308-1317, doi: 10.1021/acs.analchem.1c04520.
  23. Fei, X., Zhang, Y., Mei, Y., Yue, X., Jiang, W., Ai, L., Yu, Y., Luo, H., Li, H., Luo, W., Yang, X., Lyv, J., He, R., Song, W., and Tong, Z. (2021) Degradation of FA reduces Aβ neurotoxicity and Alzheimer-related phenotypes, Mol. Psychiatry, 26, 5578-5591, doi: 10.1038/s41380-020-00929-7.
  24. Dingler, F. A., Wang, M., Mu, A., Millington, C. L., Oberbeck, N., Watcham, S., Pontel, L. B., Kamimae-Lanning, A. N., Langevin, F., Nadler, C., Cordell, R. L., Monks, P. S., Yu, R., Wilson, N. K., Hira, A., Yoshida, K., Mori, M., Okamoto, Y., Okuno, Y., Muramatsu, H., Shiraishi, Y., Kobayashi, M., Moriguchi, T., Osumi, T., Kato, M., Miyano, S., Ito, E., Kojima, S., Yabe, H., Yabe, M., Matsuo, K., Ogawa, S., Göttgens, B., Hodskinson, M. R. G., Takata, M., and Patel, K. J. (2020) Two aldehyde clearance systems are essential to prevent lethal formaldehyde accumulation in mice and humans, Mol. Cell, 80, 996-1012, doi: 10.1016/j.molcel.2020.10.012.
  25. Uotila, L., and Koivusalo, M. (1974) Formaldehyde dehydrogenase from human liver. Purification, properties, and evidence for the formation of glutathione thiol esters by the enzyme, J. Biol. Chem., 249, 7653-7663.
  26. Liu, X., Zhang, Y., Wu, R., Ye, M., Zhao, Y., Kang, J., Ma, P., Li, J., and Yang, X. (2018) Acute formaldehyde exposure induces early Alzheimer-like changes in mouse brain, Toxicol. Mech. Methods, 28, 95-104, doi: 10.1080/15376516.2017.1368053.
  27. Yi, J., Zhu, M., Qiu, F., Zhou, Y., Shu, P., Liu, N., Wei, C., and Xiang, S. (2020) TNFAIP1 mediates formaldehyde-induced neurotoxicity by inhibiting the Akt/CREB pathway in N2a cells, Neurotox. Res., 38, 184-198, doi: 10.1007/s12640-020-00199-9.
  28. Suresh, S., Singh, S. A., Rushendran, R., Vellapandian, C., and Prajapati, B. (2023) Alzheimer's disease: the role of extrinsic factors in its development – an investigation of the environmental enigma, Front. Neurol., 14, 1303111, doi: 10.3389/fneur.2023.1303111.
  29. Vasefi, M., Ghaboolian-Zare, E., Abedelwahab, H., and Osu, A. (2020) Environmental toxins and Alzheimer's disease progression, Neurochem. Int., 141, 104852, doi: 10.1016/j.neuint.2020.104852.
  30. Seike, T., Chen, C. H., and Mochly-Rosen, D. (2023) Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer's disease, Front. Aging Neurosci., 15, 1223977, doi: 10.3389/fnagi.2023.1223977.
  31. Burgos-Barragan, G., Wit, N., Meiser, J., Dingler, F. A., Pietzke, M., Mulderrig, L., Pontel, L. B., Rosado, I. V., Brewer, T. F., Cordell, R. L., Monks, P. S., Chang, C. J., Vazquez, A., and Patel, K. J. (2017) Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism, Nature, 548, 549-554, doi: 10.1038/nature23481.
  32. Ai, L., Tan, T., Tang, Y., Yang, J., Cui, D., Wang, R., Wang, A., Fei, X., Di, Y., Wang, X., Yu, Y., Zhao, S., Wang, W., Bai, S., Yang, X., He, R., Lin, W., Han, H., Cai, X., and Tong, Z. (2019) Endogenous formaldehyde is a memory-related molecule in mice and humans, Commun. Biol., 2, 446, doi: 10.1038/s42003-019-0694-x.
  33. Chi, Y. N., Zhang, X., Cai, J., Liu, F. Y., Xing, G. G., and Wan, Y. (2012) Formaldehyde increases intracellular calcium concentration in primary cultured hippocampal neurons partly through NMDA receptors and T-type calcium channels, Neurosci. Bull., 28, 715-722, doi: 10.1007/s12264-012-1284-9.
  34. Tong, Z., Han, C., Qiang, M., Wang, W., Lv, J., Zhang, S., Luo, W., Li, H., Luo, H., Zhou, J., Wu, B., Su, T., Yang, X., Wang, X., Liu, Y., and He, R. (2015) Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer's disease, Neurobiol. Aging, 36, 100-110, doi: 10.1016/j.neurobiolaging.2014.07.018.
  35. Tian, Z., Huang, K., Yang, W., Chen, Y., Lyv, W., Zhu, B., Yang, X., Ma, P., and Tong, Z. (2024) Exogenous and endogenous formaldehyde-induced DNA damage in the aging brain: mechanisms and implications for brain diseases, Cell Biol. Toxicol., 40, 83-95, doi: 10.1007/s10565-024-09926-w.
  36. Li, T., Wei, Y., Qu, M., Mou, L., Miao, J., Xi, M., Liu, Y., and He, R. (2021) Formaldehyde and de/methylation in age-related cognitive impairment, Genes (Basel), 12, 913, doi: 10.3390/genes12060913.
  37. Cloos, P. A., Christensen, J., Agger, K., and Helin, K. (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease, Genes Dev., 22, 1115-1140, doi: 10.1101/gad.1652908.
  38. Lee, E. S., Chen, H., Hardman, C., Simm, A., and Charlton, C. (2008) Excessive S-adenosyl-L-methionine-dependent methylation increases levels of methanol, formaldehyde and formic acid in rat brain striatal homogenates: possible role in S-adenosyl-L-methionine-induced Parkinson's disease-like disorders, Life Sci., 83, 821-827, doi: 10.1016/j.lfs.2008.09.020.
  39. O'Sullivan, J., Unzeta, M., Healy, J., O'Sullivan, M. I., Davey, G., and Tipton, K. F. (2004) Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do, Neurotoxicology, 25, 303-315, doi: 10.1016/S0161-813X(03)00117-7.
  40. Wang, F., Chen, D., Wu, P., Klein, C., and Jin, C. (2019) Formaldehyde, epigenetics, and Alzheimer's disease, Chem. Res. Toxicol., 32, 820-830, doi: 10.1021/acs.chemrestox.9b00090.
  41. Moulton, P. V., and Yang, W. (2012) Air pollution, oxidative stress, and Alzheimer’s disease, J. Environ. Public Health, 2012, 472751, doi: 10.1155/2012/472751.
  42. Metz, B., Kersten, G. F., Baart, G. J., de Jong, A., Meiring, H., ten Hove, J., van Steenbergen, M. J., Hennink, W. E., Crommelin, D. J. A., and Jiskoot, W. (2006) Identification of formaldehyde-induced modifications in proteins: reactions with insulin, Bioconjug. Chem., 17, 815-822, doi: 10.1021/bc050340f.
  43. Olson, A. L., and Pessin, J. E. (1996) Structure, function and regulation of the mammalian facilitative glucose transporter gene family, Annu. Rev. Nutr., 16, 235-256, doi: 10.1146/annurev.nu.16.070196.001315.
  44. Uemura, E., and Greenlee, H. W. (2006) Insulin regulates neuronal glucose uptake by promoting translocation of glucose transporter GLUT3, Exp. Neurol., 198, 48-53, doi: 10.1016/j.expneurol.2005.10.035.
  45. Skolnik, E. Y., Batzer, A., Li, N., Lee, C. H., Lowenstein, E., Mohammadi, M., Margolis, B., and Schlessinger, J. (1993) The function of GRB2 in linking the insulin receptor to Ras signaling pathways, Science, 260, 1953-1955, doi: 10.1126/science.8316835.
  46. Arnold, S. E., Arvanitakis, Z., Macauley-Rambach, S. L., Koenig, A. M., Wang, H. Y., Ahima, R. S., Craft, S., Gandy, S., Buettner, C., Stoeckel, L. E., Holtzman, D. M., and Nathan, D. M. (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums, Nat. Rev. Neurol., 14, 168-181, doi: 10.1038/nrneurol.2017.185.
  47. O'Shea, E. K., Rutkowski, R., Stafford, W. F. 3rd, and Kim, P. S. (1989) Preferential heterodimer formation by isolated leucine zippers from fos and jun, Science, 245, 646-648, doi: 10.1126/science.2503872.
  48. Badowska-Szalewska, E., Klejbor, I., Ludkiewicz, B., Domaradzka-Pytel, B., Dziewiatkowski, J., Spodnik, J. H., and Moryś, J. (2006) Immunoreactivity of c-Fos, NGF and its receptor TrkA in the periventricular zone of the rat hypothalamus after open field exposure, Pol. J. Vet. Sci., 9, 171-180.
  49. Katche, C., and Medina, J. H. (2017) Requirement of an early activation of BDNF/c-Fos cascade in the retrosplenial cortex for the persistence of a long-lasting aversive memory, Cereb. Cortex, 27, 1060-1067, doi: 10.1093/cercor/bhv284.
  50. Omsland, T. K., Bangstad, H. J., Berg, T. J., and Kolset, S. O. (2006) Advanced glycation end products and hyperglycaemia, Tidsskr Nor Laegeforen, 12, 155-158.
  51. Yatime, L., and Andersen, G. R. (2013) Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products, FEBS J., 280, 6556-6568, doi: 10.1111/febs.12556.
  52. Chellappa, R. C., Palanisamy, R., and Swaminathan, K. (2020) RAGE isoforms, its ligands and their role in pathophysiology of Alzheimer's disease, Curr. Alzheimer Res., 17, 1262-1279, doi: 10.2174/1567205018666210218164246.
  53. Tolstova, A. P., Adzhubei, A. A., Mitkevich, V. A., Petrushanko, I. Y., and Makarov, A. A. (2022) Docking and molecular dynamics-based identification of interaction between various beta-amyloid isoforms and RAGE receptor, Int. J. Mol. Sci., 23, 11816, doi: 10.3390/ijms231911816.
  54. Wang, L., Li, S., and Jungalwala, F. B. (2008) Receptor for advanced glycation end products (RAGE) mediates neuronal differentiation and neurite outgrowth, J. Neurosci. Res., 86, 1254-1266, doi: 10.1002/jnr.21578.
  55. Kärkkäinen, V., Pomeshchik, Y., Savchenko, E., Dhungana, H., Kurronen, A., Lehtonen, S., Naumenko, N., Tavi, P., Levonen, A. L., Yamamoto, M., Malm, T., Magga, J., Kanninen, K. M., and Koistinaho, J. (2014) Nrf2 regulates neurogenesis and protects neural progenitor cells against Aβ toxicity, Stem Cells, 32, 1904-1916, doi: 10.1002/stem.1666.
  56. Zhang, H., Davies, K. J. A., and Forman, H. J. (2015) Oxidative stress response and Nrf2 signaling in aging, Free Radic. Biol. Med., 88, 314-336, doi: 10.1016/j.freeradbiomed.2015.05.036.
  57. Bierhaus, A., Humpert, P. M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., Stern, D. M., and Nawroth, P. P. (2005) Understanding RAGE, the receptor for advanced glycation end products, J. Mol. Med. (Berl), 83, 876-886, doi: 10.1007/s00109-005-0688-7.
  58. Ray, R., Juranek, J. K., and Rai, V. (2016) RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis, Neurosci. Biobehav. Rev., 62, 48-55, doi: 10.1016/j.neubiorev.2015.07.006.
  59. Son, S. M., Jung, E. S., Shin, H. J., Byun, J., and Mook-Jung, I. (2012) Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling, Neurobiol. Aging, 33, 11-23, doi: 10.1016/j.neurobiolaging.2011.09.039.
  60. Kim, S. W., Lim, C. M., Kim, J. B., Shin, J. H., Lee, S., Lee, M., and Lee, J. K. (2011) Extracellular HMGB1 released by NMDA treatment confers neuronal apoptosis via RAGE-p38 MAPK/ERK signaling pathway, Neurotox. Res., 20, 159-169, doi: 10.1007/s12640-010-9231-x.
  61. Ko, S. Y., Lin, Y. P., Lin, Y. S., and Chang, S. S. (2010) Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species, Free Radic. Biol. Med., 49, 474-480, doi: 10.1016/j.freeradbiomed.2010.05.005.
  62. Ko, S. Y., Ko, H. A., Chu, K. H., Shieh, T. M., Chi, T. C., Chen, H. I., Chang, W. C., and Chang, S. S. (2015) The possible mechanism of advanced glycation end products (AGEs) for Alzheimer's disease, PLoS One, 10, e0143345, doi: 10.1371/journal.pone.0143345.
  63. D'Cunha, N. M., Sergi, D., Lane, M. M., Naumovski, N., Gamage, E., Rajendran, A., Kouvari, M., Gauci, S., Dissanayka, T., Marx, W., and Travica, N. (2022) The effects of dietary advanced glycation end-products on neurocognitive and mental disorders, Nutrients, 14, 2421, doi: 10.3390/nu14122421.
  64. Gustems, M., Woellmer, A., Rothbauer, U., Eck, S. H., Wieland, T., Lutter, D., and Hammerschmidt, W. (2014) c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs, Nucleic Acids Res., 42, 3059-3072, doi: 10.1093/nar/gkt1323.
  65. Yeop Han, C., Kargi, A. Y., Omer, M., Chan, C. K., Wabitsch, M., O'Brien, K. D., Wight, T. N., and Chait, A. (2010) Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: dissociation of adipocyte hypertrophy from inflammation, Diabetes, 59, 386-396, doi: 10.2337/db09-0925.
  66. Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., and Alhojaily, S. M. (2023) From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration, Front. Pharmacol., 14, 1269581, doi: 10.3389/fphar.2023.1269581.
  67. Steinberg, J. G., Ba, A., Brégeon, F., Delliaux, S., and Jammes, Y. (2007) Cytokine and oxidative responses to maximal cycling exercise in sedentary subjects, Med. Sci. Sports Exerc., 39, 964-968, doi: 10.1097/mss.0b013e3180398f4b.
  68. Abimannan, T., Peroumal, D., Parida, J. R., Barik, P. K., Padhan, P., and Devadas, S. (2016) Oxidative stress modulates the cytokine response of differentiated Th17 and Th1 cells, Free Radic. Biol. Med., 99, 352-363, doi: 10.1016/j.freeradbiomed.2016.08.026.
  69. Eisenbarth, S. C., and Flavell, R. A. (2009) Innate instruction of adaptive immunity revisited: the inflammasome, EMBO Mol. Med., 1, 92-98, doi: 10.1002/emmm.200900014.
  70. Горина Я. В., Салмина А. Б., Кувачева Н. В., Комлева Ю. К., Федюкович Л. В., Успенская Ю. А., Морозова Г. А., Демко И. В., Петрова М. М. (2014) Нейровоспаление и инсулинорезистентность при болезни Альцгеймера, Сиб. Мед. Обозрение, 88, 11-19.
  71. Li, W., Li, J., Sama, A. E., and Wang, H. (2013) Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release, Mol. Med., 19, 203-211, doi: 10.2119/molmed.2013.00064.
  72. De Felice, F. G. (2013) Alzheimer's disease and insulin resistance: translating basic science into clinical applications, J. Clin. Invest., 123, 531-539, doi: 10.1172/JCI64595.
  73. Van der Heide, L. P., Kamal, A., Artola, A., Gispen, W. H., and Ramakers, G. M. (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner, J. Neurochem., 94, 1158-1166, doi: 10.1111/j.1471-4159.2005.03269.x.
  74. Chiu, S. L., Chen, C. M., and Cline, H. T. (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo, Neuron, 58, 708-719, doi: 10.1016/j.neuron.2008.04.014.
  75. Zhang, H., Ma, Q., Zhang, Y. W., and Xu, H. (2012) Proteolytic processing of Alzheimer's β-amyloid precursor protein, J. Neurochem., 120, 9-21, doi: 10.1111/j.1471-4159.2011.
  76. Chantry, A., and Glynn, P. (1990) A novel metalloproteinase originally isolated from brain myelin membranes is present in many tissues, Biochem. J., 268, 245-248, doi: 10.1042/bj2680245.
  77. Esch, F. S., Keim, P. S., Beattie, E. C., Blacher, R. W., Culwell, A. R., Oltersdorf, T., McClure, D., and Ward, P. J. (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor, Science, 248, 1122-1124, doi: 10.1126/science.2111583.
  78. Peppercorn, K., Kleffmann, T., Hughes, S. M., and Tate, W. P. (2023) Secreted Amyloid Precursor Protein Alpha (sAPPα) regulates the cellular proteome and secretome of mouse primary astrocytes, Int. J. Mol. Sci., 24, 7165, doi: 10.3390/ijms24087165.
  79. Chasseigneaux, S., Dinc, L., Rose, C., Chabret, C., Coulpier, F., Topilko, P., Mauger, G., and Allinquant, B. (2011) Secreted amyloid precursor protein β and secreted amyloid precursor protein α induce axon outgrowth in vitro through Egr1 signaling pathway, PLoS One, 6, e16301, doi: 10.1371/journal.pone.0016301.
  80. Meziane, H., Dodart, J. C., Mathis, C., Little, S., Clemens, J., Paul, S. M., and Ungerer, A. (1998) Memory-enhancing effects of secreted forms of the beta-amyloid precursor protein in normal and amnestic mice, Proc. Natl. Acad. Sci. USA, 95, 12683-12688, doi: 10.1073/pnas.95.21.12683.
  81. Freude, K. K., Penjwini, M., Davis, J. L., LaFerla, F. M., and Blurton-Jones, M. (2011) Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells, J. Biol. Chem., 286, 24264-24274, doi: 10.1074/jbc.M111.227421.
  82. Furukawa, K., Sopher, B. L., Rydel, R. E., Begley, J. G., Pham, D. G., Martin, G. M., Fox, M., and Mattson, M. P. (1996) Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain, J. Neurochem., 67, 1882-1896, doi: 10.1046/j.1471-4159.1996.67051882.x.
  83. Gralle, M., Botelho, M. G., and Wouters, F. S. (2009) Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers, J. Biol. Chem., 284, 15016-15025, doi: 10.1074/jbc.M808755200.
  84. Obregon, D., Hou, H., Deng, J., Giunta, B., Tian, J., Darlington, D., Shahaduzzaman, M., Zhu, Y., Mori, T., Mattson, M. P., and Tan, J. (2012) Soluble amyloid precursor protein-α modulates β-secretase activity and amyloid-β generation, Nat. Commun, 3, 777, doi: 10.1038/ncomms1781.
  85. Zhao, G., Tan, J., Mao, G., Cui, M. Z., and Xu, X. (2007) The same gamma-secretase accounts for the multiple intramembrane cleavages of APP, J. Neurochem., 100, 1234-1246, doi: 10.1111/j.1471-4159.2006.04302.x.
  86. Kim, H. S., Kim, E. M., Lee, J. P., Park, C. H., Kim, S., Seo, J. H., Chang, K. A., Yu, E., Jeong, S. J., Chong, Y. H., and Suh, Y. H. (2003) C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression, FASEB J., 17, 1951-1953, doi: 10.1096/fj.03-0106fje.
  87. Cole, S. L., and Vassar, R. (2007) The Alzheimer's disease beta-secretase enzyme, BACE1, Mol. Neurodegener., 2, 22, doi: 10.1186/1750-1326-2-22.
  88. Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., Doan, M., Dovey, H. F., Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., Suomensaari, S. M., Wang, S., Walker, D., Zhao, J., and McConlogue, L. (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain, Nature, 402, 537-540, doi: 10.1038/990114.
  89. Hussain, I., Powell, D. J., Howlett, D. R., Chapman, G. A., Gilmour, L., Murdock, P. R., Tew, D. G., Meek, T. D., Chapman, C., Schneider, K., Ratcliffe, S. J., Tattersall, D., Testa, T. T., Southan, C., Ryan, D. M., Simmons, D. L., Walsh, F. S., Dingwall, C., and Christie, G. (2000) ASP1 (BACE2) cleaves the amyloid precursor protein at the beta-secretase site, Mol. Cell Neurosci., 16, 609-619, doi: 10.1006/mcne.2000.0884.
  90. Taylor, C. J., Ireland, D. R., Ballagh, I., Bourne, K., Marechal, N. M., Turner, P. R., Bilkey, D. K., Tate, W. P., and Abraham, W. C. (2008) Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory, Neurobiol. Dis., 31, 250-260, doi: 10.1016/j.nbd.2008.04.011.
  91. McPhie, D. L., Coopersmith, R., Hines-Peralta, A., Chen, Y., Ivins, K. J., Manly, S. P., Kozlowski, M. R., Neve, K. A., and Neve, R. L. (2003) DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3, J. Neurosci., 23, 6914-6927, doi: 10.1523/JNEUROSCI.23-17-06914.2003.
  92. Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., and Collin, F. (2018) Oxidative stress and the amyloid beta peptide in Alzheimer's disease, Redox Biol., 14, 450-464, doi: 10.1016/j.redox.2017.10.014.
  93. Bruban, J., Glotin, A.-L., Dinet, V., Chalour, N., Sennlaub, F., Jonet, L., An, N., Faussat, A.-M., and Mascarelli, F. (2009) Amyloid-beta(1-42) alters structure and function of retinal pigmented epithelial cells, Aging Cell, 8, 162-177, doi: 10.1111/j.1474-9726.2009.00456.x.
  94. Kuperstein, I., Broersen, K., Benilova, I., Rozenski, J., Jonckheere, W., Debulpaep, M., Vandersteen, A., Segers-Nolten, I., Van Der Werf, K., Subramaniam, V., Braeken, D., Callewaert, G., Bartic, C., D'Hooge, R., Martins, I. C., Rousseau, F., Schymkowitz, J., and De Strooper, B. (2010) Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio, EMBO J., 29, 3408-3420, doi: 10.1038/emboj.2010.211.
  95. Charidimou, A., Boulouis, G., Gurol, M. E., Ayata, C., Bacskai, B. J., Frosch, M. P., Viswanathan, A., and Greenberg, S. M. (2017) Emerging concepts in sporadic cerebral amyloid angiopathy, Brain, 140, 1829-1850, doi: 10.1093/brain/awx047.
  96. Wiltfang, J., Esselmann, H., Bibl, M., Hüll, M., Hampel, H., Kessler, H., Frölich, L., Schröder, J., Peters, O., Jessen, F., Luckhaus, C., Perneczky, R., Jahn, H., Fiszer, M., Maler, J. M., Zimmermann, R., Bruckmoser, R., Kornhuber, J., and Lewczuk, P. (2007) Amyloid beta peptide ratio 42/40 but not A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta 40 load, J. Neurochem., 101, 1053-1059, doi: 10.1111/j.1471-4159.2006.04404.x.
  97. Yankner, B. A., Duffy, L. K., and Kirschner, D. A. (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides, Science, 250, 279-282, doi: 10.1126/science.2218531.
  98. Chen, Y., and Dong, C. (2009) Aβ40 promotes neuronal cell fate in neural progenitor cells, Cell Death Differ., 16, 386-394, doi: 10.1038/cdd.2008.94.
  99. Cai, Z., Liu, N., Wang, C., Qin, B., Zhou, Y., Xiao, M., Chang, L., Yan, L. J., and Zhao, B. (2016) Role of RAGE in Alzheimer's disease, Cell Mol. Neurobiol., 36, 483-495, doi: 10.1007/s10571-015-0233-3.
  100. Deane, R., Bell, R. D., Sagare, A., and Zlokovic, B. V. (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease, CNS Neurol. Disord. Drug Targets, 8, 16-30, doi: 10.2174/187152709787601867.
  101. Wilhelmus, M. M., Otte-Höller, I., van Triel, J. J., Veerhuis, R., Maat-Schieman, M. L., Bu, G., de Waal, R. M., and Verbeek, M. M. (2007) Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells, Am. J. Pathol., 171, 1989-1999, doi: 10.2353/ajpath.2007.070050.
  102. Wan, W., Chen, H., and Li, Y. (2014) The potential mechanisms of Aβ-receptor for advanced glycation end-products interaction disrupting tight junctions of the blood-brain barrier in Alzheimer's disease, Int. J. Neurosci., 124, 75-81, doi: 10.3109/00207454.2013.825258.
  103. Donahue, J. E., Flaherty, S. L., Johanson, C. E., Duncan, J. A. 3rd, Silverberg, G. D., Miller, M. C., Tavares, R., Yang, W., Wu, Q., Sabo, E., Hovanesian, V., and Stopa, E. G. (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease, Acta Neuropathol., 112, 405-415, doi: 10.1007/s00401-006-0115-3.
  104. Miller, M. C., Tavares, R., Johanson, C. E., Hovanesian, V., Donahue, J. E., Gonzalez, L., Silverberg, G. D., and Stopa, E. G. (2008) Hippocampal RAGE immunoreactivity in early and advanced Alzheimer's disease, Brain Res., 1230, 273-280, doi: 10.1016/j.brainres.2008.06.124.
  105. Deane, R., Singh, I., Sagare, A. P., Bell, R. D., Ross, N. T., LaRue, B., Love, R., Perry, S., Paquette, N., Deane, R. J., Thiyagarajan, M., Zarcone, T., Fritz, G., Friedman, A. E., Miller, B. L., and Zlokovic, B. V. (2012) A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease, J. Clin. Invest., 122, 1377-1392, doi: 10.1172/JCI58642.
  106. Горина Я. В., Осипова Е. Д., Моргун А. В., Бойцова Е. Б., Лопатина О. Л., Салмина А. Б. (2020) Оценка уровня RAGE в клетках гематоэнцефалического барьера при экспериментальной болезни Альцгеймера, Цитология, 63, 176-183, doi: 10.31857/S0041377121010041.
  107. Takuma, K., Fang, F., Zhang, W., Yan, S., Fukuzaki, E., Du, H., Sosunov, A., McKhann, G., Funatsu, Y., Nakamichi, N., Nagai, T., Mizoguchi, H., Ibi, D., Hori, O., Ogawa, S., Stern, D. M., Yamada, K., and Yan, S. S. (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction, Proc. Natl. Acad. Sci. USA, 106, 20021-20026, doi: 10.1073/pnas.0905686106.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».