РЕПОРТЁРНАЯ СИСТЕМА ДЛЯ ДЕТЕКЦИИ G-KBAДРУПЛЕКСОВ В ПРОМОТОРНОЙ ОБЛАСТИ ГЕНА ОБРАТНОЙ ТРАНСКРИПТАЗЫ ТЕЛОМЕРАЗЫ ЧЕЛОВЕКА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В 80–100% случаев трансформация соматических клеток человека в опухолевые ассоциирована с повышенной экспрессией каталитической субъединицы теломеразы – обратной транскриптазы (hTERT). Ингибирование эффективности транскрипции гена hTERT в опухолевых клетках может стать одним из подходов к противопухолевой терапии. Промотор hTERT содержит G-богатую область длиной 68 нуклеотидов, которая в определённых условиях in vitro способна формировать G-квадруплексы (G4). Известно, что G4 препятствуют работе РНК-полимераз человека, поэтому стабилизацию G4-структуры в промоторе можно рассматривать как возможный путь снижения экспрессии hTERT. Для доказательства образования G4 фрагментом G-богатой последовательности промотора hTERT в двуспиральном контексте в условиях суперскрученности ДНК сконструированы репортёрные конструкции на основе плазмиды рRPPCER, содержащие гены флуоресцентных белков (RFP и Cerulean) и последовательность центрального G4 промоторной области hTERT. Продемонстрировано образование центрального G4 промоторной области hTERT в полученных конструкциях методом «остановки» полимеразы, показано влияние замен G228A и G250A в составе G4 на его стабильность в физиологических условиях. Установлено, что низкомолекулярные лиганды BRACO19 и TMPyP4 – хорошо изученные стабилизаторы G4-структуры, могут эффективно взаимодействовать с G4 hTERT в диапазоне концентраций 5–25 мкМ.

Об авторах

Ю. В Якушкина

Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского

119992 Москва, Россия

Е. А Кубарева

Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского

119992 Москва, Россия

Л. А Никифорова

Московский государственный университет имени М.В. Ломоносова

119991 Москва, Россия

А. М Арутюнян

Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского

119992 Москва, Россия

М. Э Зверева

Московский государственный университет имени М.В. Ломоносова

119991 Москва, Россия

М. В Монахова

Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского

Email: monakhovamv@gmail.com
119992 Москва, Россия

Список литературы

  1. Cong, Y. S., Wen, J., and Bacchetti, S. (1999) The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter, Hum. Mol. Genet., 8, 137-142, https://doi.org/10.1093/hmg/8.1.137.
  2. Xu, D., Dwyer, J., Li, H., Duan, W., and Liu, J.-P. (2008) Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc, J. Biol. Chem., 283, 23567-23580, https://doi.org/10.1074/jbc.M800790200.
  3. Li, H., Lee, T.-H., and Avraham, H. (2002) A novel tricomplex of BRCA1, Nmi, and c-Myc inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer, J. Biol. Chem., 277, 20965-20973, https://doi.org/10.1074/jbc.M112231200.
  4. Monsen, R. C., DeLeeuw, L., Dean, W. L., Gray, R. D., Sabo, T. M., Chakravarthy, S., Chaires, J. B., and Trent, J. O. (2020) The hTERT core promoter forms three parallel G-quadruplexes, Nucleic Acids Res., 48, 5720-5734, https://doi.org/10.1093/nar/gkaa107.
  5. Bochman, M. L., Paeschke, K., and Zakian, V. A. (2012) DNA secondary structures: stability and function of G-quadruplex structures, Nat. Rev. Genet., 13, 770-780, https://doi.org/10.1038/nrg3296.
  6. Verma, A., Yadav, V. K., Basundra, R., Kumar, A., and Chowdhury, S. (2009) Evidence of genome-wide G4 DNAmediated gene expression in human cancer cells, Nucleic Acids Res., 37, 4194-4204, https://doi.org/10.1093/nar/gkn1076.
  7. Holder, I. T., and Hartig, J. S. (2014) A matter of location: influence of G-quadruplexes on Escherichia coli gene expression, Chem. Biol., 21, 1511-1521, https://doi.org/10.1016/j.chembiol.2014.09.014.
  8. Lee, C.-Y., Joshi, M., Wang, A., and Myong, S. (2024) 5′UTR G-quadruplex structure enhances translation in size dependent manner, Nat. Commun., 15, 3963, https://doi.org/10.1038/s41467-024-48247-8.
  9. Burger, A. M., Dai, F., Schultes, C. M., Reszka, A. P., Moore, M. J., Double, J. A., and Neidle, S. (2005) The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function, Cancer Res., 65, 1489-1496, https://doi.org/10.1158/0008-5472.CAN-04-2910.
  10. Han, F. X., Wheelhouse, R. T., and Hurley, L. (1999) Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition, J. Am. Chem. Soc., 121, 3561-3570, https://doi.org/10.1021/ja984153m.
  11. Piazza, A., Boulé, J. B., Lopes, J., Mingo, K., Largy, E., Teulade-Fichou, M.-P., and Nicolas, A. (2010) Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae, Nucleic Acids Res., 38, 4337-4348, https://doi.org/10.1093/nar/gkq136.
  12. Obi, I., Rentoft, M., Singh, V., Jamroskovic, J., Chand, K., Chorell, E., Westerlund, F., and Sabouri, N. (2020) Stabilization of G-quadruplex DNA structures in Schizosaccharomyces pombe causes single-strand DNA lesions and impedes DNA replication, Nucleic Acids Res., 48, 10998-11015, https://doi.org/10.1093/nar/gkaa820.
  13. Green, M. R., and Sambrook, J. (2016) Precipitation of DNA with ethanol, Cold Spring Harb. Protoc., 12, https://doi.org/10.1101/pdb.prot093377.
  14. Osterman, I. A., Prokhorova, I. V., Sysoev, V. O., Boykova, Y. V., Efremenkova, O. V., Svetlov, M. S., Kolb, V. A., Bogdanov, A. A., Sergiev, P. V., and Dontsova, O. A. (2012) Attenuation-based dual-fluorescent-protein reporter for screening translation inhibitors, Antimicrob. Agents Chemother., 56, 1774-1783, https://doi.org/10.1128/AAC.05395-11.
  15. Osterman, I. A., Evfratov, S. A., Sergiev, P. V., and Dontsova, O. A. (2013) Comparison of mRNA features affecting translation initiation and reinitiation, Nucleic Acids Res., 41, 474-486, https://doi.org/10.1093/nar/gks989.
  16. Polikanov, Y. S., Osterman, I. A., Szal, T., Tashlitsky, V. N., Serebryakova, M. V., Kusochek, P., Bulkley, D., Malanicheva, I. A., Efimenko, T. A., Efremenkova, O. V., Konevega, A. L., Shaw, K. J., Bogdanov, A. A., Rodnina, M. V., Dontsova, O. A., Mankin, A. S., Steitz, T. A., and Sergiev, P. V. (2014) Amicoumacin a inhibits translation by stabilizing mRNA interaction with the ribosome, Mol. Cell., 56, 531-540, https://doi.org/10.1016/j.molcel.2014.09.020.
  17. Vorlíčková, M., Kejnovská, I., Sagi, J., Renčiuk, D., Bednářová, K., Motlová, J., and Kypr, J. (2012) Circular dichroism and guanine quadruplexes, Methods, 57, 64-75, https://doi.org/10.1016/j.ymeth.2012.03.011.
  18. Sambrook, J., and Russell, D. W. (2006) Purification of nucleic acids by extraction with phenol:chloroform, CSH Protoc., https://doi.org/10.1101/pdb.prot4455.
  19. Froger, A., and Hall, J. E. (2007) Transformation of plasmid DNA into E. coli using the heat shock method, J. Vis. Exp., 6, 253, https://doi.org/10.3791/253.
  20. Mishra, P., Singh, U., Pandey, C. M., Mishra, P., and Pandey, G. (2019) Application of student’s t-test, analysis of variance, and covariance, Ann. Card. Anaesth., 22, 407-411, https://doi.org/10.4103/aca.ACA_94_19.
  21. Yang, D., and Hurley, L. H. (2006) Structure of the biologically relevant G-quadruplex in the c-Myc promoter, Nucleosides Nucleotides Nucleic Acids, 25, 951-968, https://doi.org/10.1080/15257770600809913.
  22. Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., and Hurley, L. H. (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-Myc transcription, Proc. Natl. Acad. Sci. USA, 99, 11593-11598, https://doi.org/10.1073/pnas.182256799.
  23. Kouzine, F., Sanford, S., Elisha-Feil, Z., and Levens, D. (2008) The functional response of upstream DNA to dynamic supercoiling in vivo, Nat. Struct. Mol. Biol., 15, 146-154, https://doi.org/10.1038/nsmb.1372.
  24. Sekibo, D. A. T., and Fox, K. R. (2017) The effects of DNA supercoiling on G-quadruplex formation, Nucleic Acids Res., 45, 12069-12079, https://doi.org/10.1093/nar/gkx856.
  25. Savitskaya, V. Y., Novoselov, K. A., Dolinnaya, N. G., Monakhova, M. V., Snyga, V. G., Diatlova, E. A., Peskovatskova E. S., Golyshev, V. M., Kitaeva, M. I., Eroshenko, D. A., Zvereva, M. I., Zharkov, D. O., and Kubareva, E. A. (2025) Position-dependent effects of AP sites within an hTERT promoter G-quadruplex scaffold on quadruplex stability and repair activity of the APE1 enzyme, Int. J. Mol. Sci., 26, 337, https://doi.org/10.3390/ijms26010337.
  26. Campbell, N. H., Parkinson, G. N., Reszka, A. P., and Neidle, S. (2008) Structural basis of DNA quadruplex recognition by an acridine drug, J. Am. Chem. Soc., 130, 6722-6724, https://doi.org/10.1021/ja8016973.
  27. Wheelhouse, R. T., Sun, D., and Hurley, L. H. (1998) Cationic porphyrins as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl)porphine with quadruplex DNA, J. Am. Chem. Soc., 120, 3261-3262, https://doi.org/10.1021/ja973792e.
  28. De Cian, A., Delemos, E., Mergny, J.-L., Teulade-Fichou, M.-P., and Monchaud, D. (2007) Highly efficient G-quadruplex recognition by bisquinolinium compounds, J. Am. Chem. Soc., 129, 1856-1857, https://doi.org/10.1021/ja067352b.
  29. Parkinson, G. N., and Collie, G. W. (2019) X-Ray crystallographic studies of G-quadruplex structures, Methods Mol. Biol., 2035, 131-155, https://doi.org/10.1007/978-1-4939-9666-7_8.
  30. Dolinnaya, N. G., Ogloblina, A. M., and Yakubovskaya, M. G. (2016) Structure, properties, and biological relevance of the DNA and RNA G-quadruplexes: overview 50 years after their discovery, Biochemistry (Moscow), 81, 1602-1649, https://doi.org/10.1134/S0006297916130034.
  31. Simonsson, T., Pecinka, P., and Kubista, M. (1998) DNA tetraplex formation in the control region of c-myc, Nucleic Acids Res., 26, 1167-1172, https://doi.org/10.1093/nar/26.5.1167.
  32. Sun, D., Guo, K., Rusche, J. J., and Hurley, L. H. (2005) Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents, Nucleic Acids Res., 33, 6070-6080, https://doi.org/10.1093/nar/gki917.
  33. Rankin, S., Reszka, A. P., Huppert, J., Zloh, M., Parkinson, G. N., Todd, A. K., Ladame, S., Balasubramanian, S., and Neidle, S. (2005) Putative DNA quadruplex formation within the human c-kit oncogene, J. Am. Chem. Soc., 127, 10584-10589, https://doi.org/10.1021/ja050823u.
  34. Dai, J., Dexheimer, T. S., Chen, D., Carver, M., Ambrus, A., Jones, R. A., and Yang, D. (2006) An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution, J. Am. Chem. Soc., 128, 1096-1098, https://doi.org/10.1021/ja055636a.
  35. Eddy, J., and Maizels, N. (2006) Gene function correlates with potential for G4 DNA formation in the human genome, Nucleic Acids Res., 34, 3887-3896, https://doi.org/10.1093/nar/gkl529.
  36. Berner, A., Das, R. N., Bhuma, N., Golebiewska, J., Abrahamsson, A., Andréasson, M., Chaudhari, N., Doimo, M., Bose, P. P., Chand, K., Strömberg, R., Wanrooij, S., and Chorell, E. (2024) G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures, J. Am. Chem. Soc., 146, 6926-6935, https://doi.org/10.1021/jacs.3c14408.
  37. De Cian, A., Lacroix, L., Douarre, C., Temime-Smaali, N., Trentesaux, C., Riou, J. F., and Mergny, J. L. (2008) Targeting telomeres and telomerase, Biochimie, 90, 131-155, https://doi.org/10.1016/j.biochi.2007.07.011.
  38. Asamitsu, S., Obata, S., Yu, Z., Bando, T., and Sugiyama, H. (2019) Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy, Molecules, 24, 429, https://doi.org/10.3390/molecules24030429.
  39. Panebianco, F., Nikitski, A. V., Nikiforova, M. N., and Nikiforov, Y. E. (2019) Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer, Cancer Med., 8, 5831-5839, https://doi.org/10.1002/cam4.2467.
  40. Vinagre, J., Nabais, J., Pinheiro, J., Batista, R., Oliveira, R. C., Gonçalves, A. P., Pestana, A., Reis, M., Mesquita, B., Pinto, V., Lyra, J., Cipriano, M. A., Ferreira, M. G., Lopes, J. M., Sobrinho-Simões, M., and Soares, P. (2016) TERT promoter mutations in pancreatic endocrine tumours are rare and mainly found in tumours from patients with hereditary syndromes, Sci. Rep., 6, 29714, https://doi.org/10.1038/srep29714.
  41. Huang, D.-S., Wang, Z., He, X.-J., Diplas, B. H., Yang, R., Killela, P. J., Meng, Q., Ye, Z.-Y., Wang, W., Jiang, X.-T., Xu, L., He, X.-L., Zhao, Z.-S., Xu, W.-J., Wang, H.-J., Ma, Y.-Y., Xia, Y.-J., Li, L., Zhang, R.-X., Jin, T., Zhao, Z.-K., Xu, J., Yu, S., Wu, F., Liang, J., Wang, S., Jiao, Y., Yan, H., and Tao, H.-Q. (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation, Eur. J. Cancer, 51, 969-976, https://doi.org/10.1016/j.ejca.2015.03.010.
  42. Shanmugam, R., Ozturk, M. B., Low, J.-L., Akincilar, S. C., Chua, J. Y. H., Thangavelu, M., Periyasamy, G., DasGupta, R., and Tergaonkar, V. (2022) Genome-wide screens identify specific drivers of mutant hTERT promoters, Proc. Natl. Acad. Sci. USA, 119, e2105171119, https://doi.org/10.1073/pnas.2105171119.
  43. Morgan, R. K., and Brooks, T. A. (2018) Targeting promoter G-quadruplexes for transcriptional control, in Small-molecule Transcription Factor Inhibitors in Oncology (Rahman, K. M., and Thurston, D. E., eds) The Royal Society of Chemistry, Chapt. 7, p. 169-193, https://doi.org/10.1039/9781782624011-00169.
  44. Onel, B., Carver, M., Wu, G., Timonina, D., Kalarn, S., Larriva, M., and Yang, D. (2016) A new G-quadruplex with hairpin loop immediately upstream of the human BCL2 P1 promoter modulates transcription, J. Am. Chem. Soc., 138, 2563-2570, https://doi.org/10.1021/jacs.5b08596.
  45. McLuckie, K. I. E., Waller, Z. A. E., Sanders, D. A., Alves, D., Rodriguez, R., Dash, J., McKenzie, G. J., Venkitaraman, A. R., and Balasubramanian, S. (2011) G-quadruplex-binding benzo[a]phenoxazines down-regulate c-kit expression in human gastric carcinoma cells, J. Am. Chem. Soc., 133, 2658-2663, https://doi.org/10.1021/ja109474c.
  46. Kang, H.-J., Cui, Y., Yin, H., Scheid, A., Hendricks, W. P. D., Schmidt, J., Sekulic, A., Kong, D., Trent, J. M., Gokhale, V., Mao, H., and Hurley, L. H. (2016) A pharmacological chaperone molecule induces cancer cell death by restoring tertiary DNA structures in mutant hTERT promoters, J. Am. Chem. Soc., 138, 13673-13692, https://doi.org/10.1021/jacs.6b07598.
  47. Pavlova, A. V., Dolinnaya, N. G., Zvereva, M. I., Kubareva, E. A., and Monakhova, M. V. (2023) New DNA plasmid model for studying DNA mismatch repair response to the G4 structure, Int. J. Mol. Sci., 24, 1061, https://doi.org/10.3390/ijms24021061.
  48. Jana, J., and Weisz, K. A. (2020) Thermodynamic perspective on potential G-quadruplex structures as silencer elements in the MYC promoter, Chemistry, 26, 17242-17251, https://doi.org/10.1002/chem.202002985.
  49. Phan, A. T., Modi, Y. S., and Patel, D. J. (2004) Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter, J. Am. Chem. Soc., 126, 8710-8716, https://doi.org/10.1021/ja048805k.
  50. Santos, T., Lopes-Nunes, J., Alexandre, D., Miranda, A., Figueiredo, J., Silva, M. S., Mergny, J.-L., and Cruz, C. (2022) Stabilization of a DNA aptamer by ligand binding, Biochimie, 200, 8-18, https://doi.org/10.1016/j.biochi.2022.05.002.
  51. Laigre, E., Bonnet, H., Beauvineau, C., Lavergne, T., Verga, D., Defrancq, E., Dejeu, J., and Teulade-Fichou, M.-P. (2024) Systematic evaluation of benchmark G4 probes and G4 clinical drugs using three biophysical methods: a guideline to evaluate rapidly G4‐binding affinity, Chembiochem, 25, e202400210, https://doi.org/10.1002/cbic.202400210.
  52. Guimaraes, A. F. R., and de Oliveira, D. M. (2017) Effect of long term treatment with BRACO 19 on HeLa proliferation and senescence, Cancer Res., 77, 3476, https://doi.org/10.1158/1538-7445.AM2017-3476.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).