Assessing the reproduction quality of meteorological characteristics by several atmospheric reanalysis models on the territory of Crimean Peninsula

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The diversity of natural conditions of the Crimean Peninsula determines different regimes of the main meteorological characteristics that determine the water availability for the territory. The estimation of the spatiotemporal heterogeneity of these characteristics and the solution of the problem of gaps in the ground-based observation data can be based on the results of calculations by general circulation models of the Earth’s atmosphere with assimilation of ground-based observation data, also known as atmospheric reanalysis. Estimates of the quality of reproduction of the surface air temperature and the total precipitation by atmospheric reanalysis models EWEMBI, ERA5-Land, and MSWEP are given and compared with data from ground-based meteorological observations. The main characteristics of the data sets used (both observational and calculated), the main verification methods, the results of estimates and the conclusions regarding the applicability of the data used in simulation problems are given. The mean errors of the models in air temperature and the amount of precipitation over various averaging periods (day, month, year) are given. Thus, the mean coefficients of correlation over different averaging periods vary within 0.74–0.97 for temperature and 0.52–0.79 for precipitation. The results show that all model reproduce the values of the temperature and total precipitation over different averaging periods with an acceptable accuracy; however, all of them show a tendency toward underestimation of the daily sums of precipitation along with an overestimation of the number of days with precipitation.

About the authors

V. M. Moreido

Water Problems Institute, Russian Academy of Sciences; Moscow State University

Author for correspondence.
Email: vsevolod.moreydo@iwp.ru
Russian Federation, Moscow, 119333; Moscow, 119991

P. N. Terskii

Water Problems Institute, Russian Academy of Sciences; State Oceanographic Institute

Email: vsevolod.moreydo@iwp.ru
Russian Federation, Moscow, 119333; Moscow, 119034

D. V. Abramov

Skolkovo Institute for Science and Technology

Email: vsevolod.moreydo@iwp.ru
Russian Federation, Moscow, 121205

References

  1. Белякова П.А., Борщ С.В., Христофоров А.В., Юмина Н.М. Прогноз максимального стока рек Черноморского побережья Кавказа // Вод. хоз-во России: проблемы, технологии, управление. 2013. № 6. C. 4–16.
  2. Булыгина О.Н., Разуваев В.Н., Александрова Т.М. Температура воздуха и количество осадков (ежедневные данные) http://meteo.ru/data/162-temperature-precipitation
  3. Григорьев В.Ю., Фроловa Н.Л., Киреевa М.Б., Степаненко В.М. Пространственно-временная изменчивость ошибки воспроизведения слоя осадков ре анализом ERA5 на территории России // Изв. РАН. Сер. географическая. 2022. № 3 (86). C. 435–446.
  4. Мотовилов Ю.Г. Моделирование полей речного стока (на примере бассейна р. Лена) // Метеорология и гидрология. 2017. Т. 2. C. 78–88.
  5. Ayzel G., Varentsova N., Erina O., Sokolov D., Kurochkina L., Moreydo V. OpenForecast: The First Open-Source Operational Runoff Forecasting System in Russia // WATER. 2019. № 8 (11).
  6. Bastola S., Misra V. Evaluation of dynamically downscaled reanalysis precipitation data for hydrological application // Hydrol. Processes. 2014. № 4 (28). C. 1989–2002.
  7. Beck H.E., Wood E.F., Pan M., Fisher C.K., Miralles D.G., Van Dijk A.I.J.M., McVicar T.R., Adler R.F. MSWep v2 Global 3-hourly 0.1° precipitation: Methodology and quantitative assessment // Bull. Am. Meteorol. Soc. 2019. № 3 (100). C. 473–500.
  8. Calton B., Chellekens J., Martinez-de la Torre A. Water Resource Reanalysis v1: Data Access and Model Verification Results https://zenodo.org/records/57760 (дата обращения: 14.03.2024)
  9. Cox S.J., Stackhouse P.W., Gupta S.K., Mikovitz J.C., Zhang T. NASA/GEWEX shortwave surface radiation budget: Integrated data product with reprocessed radiance, cloud, and meteorology inputs, and new surface albedo treatment 2017.
  10. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., Berg L. van de, Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., Mcnally A.P., Monge-Sanz B.M., Morcrette J.J., Park B.K., Peubey C., Rosnay P. de, Tavolato C., Thépaut J.N., Vitart F. The ERA-Interim reanalysis: configuration and performance of the data assimilation system // Quarterly J. Royal Meteorol. Soc. 2011. № 656 (137). P. 553–597.
  11. Dublyansky Y.V., Klimchouk A.B., Tokarev S.V., Amelichev G.N., Langhamer L., Spötl C. Stable isotopic composition of atmospheric precipitation on the Crimean Peninsula and its controlling factors // J. Hydrol. 2018. № July (565). P. 61–73.
  12. Ebita A., Kobayashi S., Ota Y., Moriya M., Kumabe R., Onogi K., Harada Y., Yasui S., Miyaoka K., Takahashi K., Kamahori H., Kobayashi C., Endo H., Soma M., Oikawa Y., Ishimizu T. The Japanese 55-year Reanalysis “JRA-55”: An Interim Rep // SOLA. 2011. № 1 (7). P. 149–152.
  13. Frieler K. Frieler, Katja, Stefan Lange, Franziska Piontek et al. Assessing the impacts of 1.5°C global warming - Simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b) // Geosci. Model Development. 2017. № 12 (10). P. 4321–4345.
  14. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., Silva A.M. da, Gu W., Kim G.K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) // J. Climate. 2017. № 14 (30). P. 5419–5454.
  15. Gelfan A.N., Millionschikova T.D. Validation of a Hydrological Model Intended for Impact Study: Problem Statement and Solution Example for Selenga River Basin // Water Resour. 2018. № Suppl. 1 (45). P. S90–S101.
  16. Gomis-Cebolla J., Rattayova V., Salazar-Galán S., Francés F. Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951–2020) // Atmospheric Res. 2023. (284). P. 106606.
  17. GSOD NOAA National Centers of Environmental Information. 1999. Global Surface Summary of the Day – GSOD. 1.0. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516 (дата обращения: 04.03.2024)
  18. Hassler B., Lauer A. Comparison of Reanalysis and Observational Precipitation Datasets Including ERA5 and WFDE5 // Atmosphere 2021. V. 12. Page 1462. 2021. № 11 (12). C. 1462.
  19. Hersbach H. Hersbach, Hans, Bill Bell, Paul Berrisford et al. The ERA5 global reanalysis // Quarterly J. Royal Meteorol. Soc. 2020. № 730 (146). P. 1999–2049.
  20. Hijmans R.J. Raster: Geographic Data Analysis and Modeling // 2024.
  21. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K. C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project // Bull. Am. Meteorol. Soc. 1996. № 3 (77). P. 437–471.
  22. Kalugin A. Climate Change Attribution in the Lena and Selenga River Runoff: An Evaluation Based on the Earth System and Regional Hydrological Models // Water (Switzerland). 2022. № 1 (14). P. 118.
  23. Kanamitsu M., Ebisuzaki W., Woollen J., Yang S.K., Hnilo J.J., Fiorino M., Potter G.L. NCEP–DOE AMIP-II Reanalysis (R-2) // Bull. Am. Meteorol. Soc. 2002. № 11 (83). P. 1631–1644.
  24. Lange S. EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI) https://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:3928916 (дата обращения: 24.11.2021)
  25. Muñoz-Sabater J., Dutra E., Agustí-Panareda A., Albergel C., Arduini G., Balsamo G., Boussetta S., Choulga M., Harrigan S., Hersbach H., Martens B., Miralles D.G., Piles M., Rodríguez-Fernández N.J., Zsoter E., Buontempo C., Thépaut J.-N. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications Earth System Science Data Discussions // Earth System Sci. Data. 2021. № January 2020 (82). P. 1–50.
  26. Rienecker M.M., Suarez M.J., Gelaro R., Todling R., Bacmeister J., Liu E., Bosilovich M. G., Schubert S.D., Takacs L., Kim G.K., Bloom S., Chen J., Collins D., Conaty A., Da Silva A., Gu W., Joiner J., Koster R.D., Lucchesi R., Molod A., Owens T., Pawson S., Pegion P., Redder C.R., Reichle R., Robertson F.R., Ruddick A.G., Sienkiewicz M., Woollen J. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications // J. Climate. 2011. № 14 (24). P. 3624–3648.
  27. Sharifi E., Eitzinger J., Dorigo W. Performance of the State-Of-The-Art Gridded Precipitation Products over Mountainous Terrain: A Regional Study over Austria // Remote Sensing. 2019. V. 11. 2019. 17 (11). P. 2018. https://www.mdpi.com/2072-4292/11/17/2018
  28. Sorman A.A., Yang H., Hafizi H., Sorman A.A. Assessment of 13 Gridded Precipitation Datasets for Hydrological Modeling in a Mountainous Basin // Atmosphere 2022. V. 13. P. 143. 2022. № 1 (13). P. 143. https://doi.org/10.3390/atmos13010143
  29. Tarek M., Brissette F.P., Arsenault R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America // Hydrol. Earth System Sci. 2020. № 5 (24). P. 2527–2544.
  30. Uppala S.M., Kållberg P.W., Adrian J. Simmons et al. The ERA-40 re-analysis // Quarterly J. Royal Meteorol. Soc. 2005. № 612 (131). P. 2961–3012.
  31. Ward E., Buytaert W., Peaver L., Wheater H. Evaluation of precipitation products over complex mountainous terrain: A water resources perspective // ADVANCES IN WATER RESOURCES. 2011. № 10 (34). P. 1222–1231.
  32. Weedon G.P., Balsamo G., Bellouin N., Gomes S., Best M.J., Viterbo P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data // Water Resour. Res. 2014. № 9 (50). P. 7505–7514.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».