On the issue of forecasting catastrophic floods in the territory of Crimea

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The catastrophic situations of recent years – in June 2021 in the Yalta region and in January 2024 in Sevastopol – associated with heavy precipitation, rising water levels in rivers and the formation of mudflows, once again demonstrated the need for an early forecast of events with extreme precipitation in Crimea for a timely response and minimization of economic losses. The region of mountainous Crimea with its complex terrain and large slopes is especially susceptible to the emergence of dangerous situations after heavy (often multi-day) rains. Based on daily precipitation data from the Ai-Petri meteorological station, cases with a precipitation amount of ≥40 mm over three consecutive days were calculated and analyzed. Such conditions were used in the analysis as a threshold for extreme precipitation leading to erosion of river beds in mountainous Crimea and the formation of mudflows. The situation of a catastrophic flood on the river Chernaya in January 2024 is considered, caused by extreme precipitation that fell over three days in the Sevastopol region. Then, for such a situation, a study was conducted on the possibility of forecasting them with a lead time of 3 months using the developed artificial neural network model. The results showed satisfactory quality of the developed neural network for forecasting with a lead time of 3 months of 2–3-day extreme precipitation that intensifies erosion processes in the mountainous Crimea.

Авторлар туралы

A. Lubkov

Institute of natural and technical systems

Email: aveiro_7@mail.ru
Ресей, Sevastopol, 299011

E. Vyshkvarkova

Institute of natural and technical systems

Хат алмасуға жауапты Автор.
Email: aveiro_7@mail.ru
Ресей, Sevastopol, 299011

E. Voskresenskaya

Institute of natural and technical systems

Email: aveiro_7@mail.ru
Ресей, Sevastopol, 299011

A. Shchodro

Institute of natural and technical systems

Email: aveiro_7@mail.ru
Ресей, Sevastopol, 299011

Әдебиет тізімі

  1. Алешина М.А., Семенов В.А. Изменения характеристик осадков на территории России в XX–XXI вв. по данным ансамбля моделей CMIP6 // Фундаментал. приклад. климатология. 2022. Т. 8. № 4. С. 424–440.
  2. Воскресенская Е., Вышкваркова Е. Экстремальные осадки в Украине и глобальные климатические процессы. Saarbrucken: LAP LAMBERT Acad. Publ., 2014. 147 c.
  3. Гидрогеология СССР. Т. VIII. Крым / Гл. ред. А.В. Сидоренко. М.: Недра, 1970. 364 с.
  4. Землянскова А.А., Макарьева О.М., Нестерова Н.В., Федорова А.Д. Моделирование формирования стока горной реки Дерекойки (полуостров Крым) // Cбор. докл. международ. науч. конф. памяти Ю.Б. Виноградова “Четвертые Виноградовские чтения. Гидрология от познания к мировоззрению’’ СПб., 2020. С. 78–83.
  5. Коваленко О.Ю., Бардин М.Ю., Воскресенская Е.Н. Изменения характеристик экстремальности температуры воздуха в причерноморском регионе и их изменчивость в связи с крупномасштабными климатическими процессами межгодового масштаба // Фундаментал. приклад. климатология. 2017. Т. 2. С. 42–62.
  6. Куксина Л.В., Голосов В.Н., Жданова Е.Ю., Цыпленков А.С. Гидролого-климатические факторы формирования экстремальных эрозионных событий в горном Крыму // Вестн. Моск. ун-та. Сер. 5, География. 2021. № 5. С. 36–50.
  7. Лубков А.С., Воскресенская Е.Н., Марчукова О.В. Новый подход к использованию нейронных сетей для долгосрочного прогноза Эль-Ниньо и Ла-Нинья // Фундаментал. приклад. климатология. 2023. Т. 9. № 4. С. 432–466. doi: 10.21513/2410-8758-2023-4-432-466
  8. Лубков А.С., Воскресенская Е.Н., Сухонос О.Ю. Прогноз выпадения осадков в районе Ай-Петри на основе модели искусственной нейронной сети // Вод. ресурсы. 2022. Т. 49. № 4. С. 517–526.
  9. Михайлов В.Н., Добролюбов С.А. Гидрология. М.; Берлин: Директ-медиа, 2017. 753 с.
  10. Олиферов А.Н., Тимченко З.В. Реки и озера Крыма. Симферополь: Доля, 2005. 216 с.
  11. Павлов И.Н. Реки Крыма: русловые процессы и их экологическая оценка // Вестн. Моск. ун-та. Сер. 5, География. 1994. № 3. С. 76–82.
  12. Современное состояние береговой зоны Крыма / Под ред. Ю.Н. Горячкина. Севастополь: ЭКОСИ-Гидрофизика, 2015. 252 с.
  13. Aksoy H., Dahamsheh A. Artificial neural network models for forecasting monthly precipitation in Jordan // Stoch. Environ. Res. Risk Assess. 2009. V. 23. P. 917–931.
  14. Deo R.C., Şahin M. Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia // Atmos. Res. 2015. V. 161–162. P. 65–81.
  15. Haidar A., Verma B. Monthly Rainfall Forecasting Using One-Dimensional Deep Convolutional Neural Network // IEEE Access. 2018. V. 6. P. 69053–69063.
  16. Hoeffding W. A non-parametric test of independence // Annals of Mathematical Statistics. 1948. V. 19. P. 293–325.
  17. IPCC 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Eds Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. Cambridge: Cambridge Univ. Press, 2021. In Press.
  18. Kendall M. G. A new measure of rank correlation // Biometrika. 1938. V. 30. P. 81–93.
  19. Lu W., Chu H., Zhang Z. Application of generalized regression neural network and support vector regression for monthly rainfall forecasting in western Jilin Province, China // J. Water Supply: Res. Technol.-Aqua. 2014. V. 64. № 1. P. 95–104.
  20. Maslova V.N., Voskresenskaya E.N., Lubkov A.S., Yurovsky A.V., Zhuravskiy V.Y., Evstigneev V.P. Intense Cyclones in the Black Sea Region: Change, Variability, Predictability and Manifestations in the Storm Activity // Sustainability. 2020. V. 12. № 11. P. 4468.
  21. Mekanik F., Imteaz M.A., Gato-Trinidad S., Elmahdi A. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes // J. Hydrol. 2013. V. 503. P. 11–21.
  22. Moustris K.P., Larissi I.K., Nastos P.T., Paliatsos A.G. Precipitation Forecast Using Artificial Neural Networks in Specific Regions of Greece // Water Resour. Manage. 2011. V. 25. P. 1979–1993.
  23. Nagahamulla H.R.K., Ratnayake U.R., Ratnaweera A. Monsoon rainfall forecasting in Sri Lanka using artificial neural networks // Proc. 6th Int. Conf. Ind. Inf. Syst. 2011. P. 305–309.
  24. Shukla R.P., Tripathi K.C., Pandey A.C., Das I.M.L. Prediction of Indian summer monsoon rainfall using Niño indices: A neural network approach // Atmospheric Res. 2011. V. 102. № 1–2. P. 99–109.
  25. Singh P., Borah B. Indian summer monsoon rainfall prediction using artificial neural network // Stoch. Environ. Res. Risk Assess. 2013. V. 27. P. 1585–1599.
  26. Voskresenskaya E., Vyshkvarkova E. Extreme precipitation over the Crimean peninsula // Quaternary Int. 2016. V. 409. P. 75–80.
  27. Vyshkvarkova E. Changes in extreme precipitation over the North Caucasus and the Crimean Peninsula during 1961–2018 // IDŐJÁRÁS. 2021. V. 125. № 2. P. 321–336.
  28. Vyshkvarkova E., Voskresenskaya E., Martin-Vide J. Spatial distribution of the daily precipitation concentration index in Southern Russia // Atmospheric Research. 2018. V. 203. P. 36 – 43. doi: 10.1016/j.atmosres.2017.12.003
  29. Zhang M., Su B., Nazeer M., Bilal M., Qi P., Han G. Climatic Characteristics and Modeling Evaluation of Pan Evapotranspiration over Henan Province, China // Land. 2020. V. 9. № 7. P. 229.
  30. Zhang X., Yang F. RClimDex (1.0) User Guide. Climate Research Branch Environment. Ontario: Climate Res. Branch Environ. Canada, 2004.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».