Markov chain Monte Carlo based video tracking algorithm


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper considers a problem of multiple person tracking. We present the algorithm to automatic people tracking on surveillance videos recorded by static cameras. Proposed algorithm is an extension of approach based on tracking-by-detection of people heads and data association using Markov chain Monte Carlo (MCMC). Short track fragments (tracklets) are built by local tracking of people heads. Tracklet postprocessing and accurate results interpolation were shown to reduce number of false positives. We use position deviations of tracklets and revised entry/exit points factor to separate pedestrians from false positives. The paper presents a new method to estimate body position, that increases precision of tracker. Finally, we switched HOG-based detector to cascade one. Our evaluation shows proposed modifications significantly increase tracking quality.

Авторлар туралы

D. Kuplyakov

Moscow State University Department of Computational Mathematics and Cybernetics

Хат алмасуға жауапты Автор.
Email: denis.kuplyakov@graphics.cs.msu.ru
Ресей, Moscow, 119991

E. Shalnov

Moscow State University Department of Computational Mathematics and Cybernetics

Email: denis.kuplyakov@graphics.cs.msu.ru
Ресей, Moscow, 119991

A. Konushin

Moscow State University Department of Computational Mathematics and Cybernetics; NRU Higher School of Economics

Email: denis.kuplyakov@graphics.cs.msu.ru
Ресей, Moscow, 119991; Moscow, 101000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017