Towards a Cloud Computing Paradigm for Big Data Analysis in Smart Cities


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we present a Big Data analysis paradigm related to smart cities using cloud computing infrastructures. The proposed architecture follows the MapReduce parallel model implemented using the Hadoop framework. We analyse two case studies: a quality-of-service assessment of public transportation system using historical bus location data, and a passenger-mobility estimation using ticket sales data from smartcards. Both case studies use real data from the transportation system of Montevideo, Uruguay. The experimental evaluation demonstrates that the proposed model allows processing large volumes of data efficiently.

Sobre autores

R. Massobrio

Universidad de la Republica

Autor responsável pela correspondência
Email: renzom@fing.edu.uy
Uruguai, Montevideo, 11200

S. Nesmachnow

Universidad de la Republica

Email: renzom@fing.edu.uy
Uruguai, Montevideo, 11200

A. Tchernykh

CICESE Research Center, Carretera Tijuana-Ensenada 3918; Institute for System Programming of the RAS; South Ural State University; Moscow Institute of Physics and Technology

Email: renzom@fing.edu.uy
México, Ensenada, BC, 22860; Moscow, 109004; Chelyabinsk, 454080; Dolgoprudny, Moscow oblast, 141701

A. Avetisyan

Institute for System Programming of the RAS; Lomonosov Moscow State University; Moscow Institute of Physics and Technology

Email: renzom@fing.edu.uy
Rússia, Moscow, 109004; Moscow, 119991; Dolgoprudny, Moscow oblast, 141701

G. Radchenko

South Ural State University

Email: renzom@fing.edu.uy
Rússia, Chelyabinsk, 454080

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018