Parameterization of the discriminant set of a polynomial


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The discriminant set of a real polynomial is studied. It is shown that this set has a complex hierarchical structure and consists of algebraic varieties of various dimensions. A constructive algorithm for a polynomial parameterization of the discriminant set in the space of the coefficients of the polynomial is proposed. Each variety of a greter dimension can be geometrically considered as a tangent developable surface formed by one-dimensional linear varieties. The role of the directrix is played by the component of the discriminant set with the dimension by one less on which the original polynomial has a single multiple root and the other roots are simple. The relationship between the structure of the discriminant set and the partitioning of natural numbers is revealed. Various algorithms for the calculation of subdiscriminants of polynomials are also discussed. The basic algorithms described in this paper are implemented as a library for Maple.

Об авторах

A. Batkhin

Keldysh Institute of Applied Mathematics

Автор, ответственный за переписку.
Email: batkhin@gmail.com
Россия, Miusskaya pl. 4, Moscow, 125047

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).