Procedures for searching local solutions of linear differential systems with infinite power series in the role of coefficients


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Construction of Laurent, regular, and formal (exponential–logarithmic) solutions of full-rank linear ordinary differential systems is discussed. The systems may have an arbitrary order, and their coefficients are formal power series given algorithmically. It has been established earlier that the first two problems are algorithmically decidable and the third problem is not decidable. A restricted variant of the third problem was suggested for which the desired algorithm exists. In the paper, a brief survey of algorithms for the abovementioned decidable problems is given. Implementations of these algorithms in the form of Maple procedures with a uniform interface and data representation are suggested.

Авторлар туралы

S. Abramov

Dorodnicyn Computing Center

Хат алмасуға жауапты Автор.
Email: sergeyabramov@mail.ru
Ресей, ul. Vavilova 40, Moscow, 119333

A. Ryabenko

Dorodnicyn Computing Center

Email: sergeyabramov@mail.ru
Ресей, ul. Vavilova 40, Moscow, 119333

D. Khmelnov

Dorodnicyn Computing Center

Email: sergeyabramov@mail.ru
Ресей, ul. Vavilova 40, Moscow, 119333

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016