Active Learning and Crowdsourcing: A Survey of Optimization Methods for Data Labeling


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

High-quality annotated collections are a key element in constructing systems that use machine learning. In most cases, these collections are created through manual labeling, which is expensive and tedious for annotators. To optimize data labeling, a number of methods using active learning and crowdsourcing were proposed. This paper provides a survey of currently available approaches, discusses their combined use, and describes existing software systems designed to facilitate the data labeling process.

Sobre autores

R. Gilyazev

Ivannikov Institute for System Programming, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: gilyazev@ispras.ru
Rússia, ul. Solzhenitsyna 25, Moscow, 109004; Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701

D. Turdakov

Ivannikov Institute for System Programming, Russian Academy of Sciences; Moscow State University; National Research University Higher School of Economics

Autor responsável pela correspondência
Email: turdakov@ispras.ru
Rússia, ul. Solzhenitsyna 25, Moscow, 109004; Moscow, 119991; ul. Myasnitskaya 20, Moscow, 101000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018