Приложение. База данных лабораторных и полевых исследований по дозиметрии трития у референтных видов растений и животных

Тип исследования	Объекты исследования	Форма и соединение ³ Н	Источник излучения	Заключение	Ссылка на источник литературы	Всего единиц	Единиц с дозами	Примечание
				Модели без конкретного вида				
Моделирование	Ядро клетки	Меченые прекурсоры	³ Н-тимидин	Теоретические соображения о дозах облучения от внутриядерного ³ Н-тимидина опубликованы [1]. Внутриядерные источники рассматривались как точечные. Поэтому обычные формулы для расчета дозы, предполагающие однородное распределение поглощенной энергии, не применимы. Единица поглощенной дозы (рад)=100 эрг/г. В среднем на 1 распад ³ Н приходится 53.5 рад внутренней сферы радиусом 0.5 мкм и 5.8 рад до следующей оболочки 0.5 мкм. 10% всех распадов имеют энергию от 2 до 3 кэВ, и они доставляют 82.5 рад/распад во внутренней сфере радиусом 0.5 мкм	[2]	1	1	
Моделирование	Ядро клетки	Меченые прекурсоры	³ Н-тимидин	Мощность дозы (0.271 рад/распад) рассчитана на основании формулы [1] для ядра радиусом 2 микрона в зависимости от расстояния от центра ядра, содержащего инкорпорированный ³ Н	[3]	1	1	
Моделирование	Нуклеосомная ДНК	НТО	НТО	ОБЭ ³ Н к γ- и рентгеновскому облучению на основании выходов одно- и двухцепочечных разрывов ДНК (SSB и DSB)	[4]	1	0	
П.С.	D	HTTO	LUTTO	Вирусы	5.53		0	
Лабораторный	Вирус гриппа	НТО	НТО	Методика оценки и МПД не указаны	[5]	l	0	
Лабораторный	Streptococcus bovis	НТО	НТО	Бактерии Расчет дозы от HTO в клеточных суспензиях прост при	[6]	1	1	

				условии, что энергия, поглощенная на 1 г, равна энергии, излучаемой на 1 г, а ³ H равномерно распределен по всей суспензии				
Лабораторный	Rickettsia akari, R. mooseri	НТО	НТО	Методика оценки и МПД не указаны	[5, 7]	2	0	
Лабораторный	Escherichia coli	НТО	НТО	МПД рассчитывали по общей энергии, рассеянной β-лучами в 1 мл воды. Поскольку средняя энергия β-лучей ³ Н составляет 0.0057 Мэв, то при концентрации 1 мКи/мл поглощенная доза равна 0.12 Гр/ч (12 рад/ч)	[8]	1	1	
Лабораторный	Rhodopseudomonas spheroides	НТО	НТО	Методика оценки и МПД не указаны	[9]	1	0	Кинетика
Лабораторный	Escherichia coli	НТО	НТО	МПД рассчитывали по методу [10], исходя из активности ³ Н в клеточных суспензиях или экстрагированных ДНК, объема клеток и ядер <i>E. coli</i> (1.16 и 0.3×10 ⁻¹² см ³ соответственно). Предполагали, что содержание воды в <i>E. coli</i> составляет 70% от массы клетки, а плотность ядра равна 1.08 г/см ³ , энерговыделение ядра от НТО, равномерно распределенной по всей клетке, оценивается в 0.661 кэВ на внутренний распад. Полученное значение увеличивали на 93% для учета внешних распадов [11]. Таким образом, дозу на бактериальное ядро можно оценить как эффективный энергетический вклад в 1.27 кэВ/массы ядра (63 рад/распад)	[12]	1	1	
Лабораторный	Escherichia coli	Меченые прекурсоры	³ Н-тимидин	Энергия, выделяемая ядру при распаде тимидина, содержащего ³ Н, включенного в ДНК, была аналогичным образом оценена в 1.58 кэВ/распад (79 рад/распад). Поглощенная доза γ-излучения оценивалась с помощью решения Фрика, занимающего ту же геометрию, что и образец	[12]	1	1	
Лабораторный	Thiobacillus,	НТО	НТО	Методика оценки и МПД не указаны	[13]	8	0	

	Bacteroidetes vadin HA17, Sphingomonas, TRA3-20, CCM19a, Sva0081, Desulfatiglans, Gamma- proteobacteria, Alpha-proteobacteria							
Лабораторный	Photobacterium phosphoreum	НТО	НТО	Методика оценки и МПД не указаны	[14]	1	0	
Лабораторный	P. phosphoreum	НТО	НТО	Методика оценки и МПД не указаны	[15]	1	0	
Лабораторный	P. phosphoreum	НТО	НТО	Методика оценки и МПД не указаны	[16]	1	0	
Лабораторный	P. phosphoreum	НТО	НТО	Методика оценки и МПД не указаны	[17]	1	0	
Лабораторный	P. leiognathi	НТО	НТО	Методика оценки и МПД не указаны	[18]	1	0	
Лабораторный	Bacillus subtilis	НТО	НТО	Поглощенная доза ³ Н рассчитывалась по общей энергии, рассеянной β-лучами в 1 мл воды. Поскольку средняя энергия β-лучей ³ Н составляет 0.0057 Мэв, то β-лучи с энергией 1 мкКи/мл рассеивают энергию 1.2 эрг/1 мл воды/1 ч. Растворы ДНК, использованные в настоящих экспериментах, по существу рассматривались как вода для расчета поглощенной дозы. Доза 0.012 рад принята за 1 мкКл/мл×ч	[19]	1	1	
Лабораторный	P. phosphoreum	НТО	нто	МПД рассчитана исходя из способности бактерий накапливать 18–23% ³ H, находящегося в окружающей суспензии Грибы	[20]	1	1	
Полевой / Лабораторный	Flammulina velutipes (Curt:Fr.) Sing.	Газы	нт	Методика оценки и МПД не указаны	[21]	1	0	Окисление НТ до НТО
Полевой / Лабораторный	Lentinus edodes (Burg.) Sing.	Газы	НТ	Методика оценки и МПД не указаны	[21]	1	0	Окисление НТ до НТО

Лабораторный	Saccharomyces cerevisiae	НТО	НТО	МПД рассчитана исходя из предположения, что (1) содержание воды в дрожжах составляет 70% во всей клетке [22], (2) ³ Н равномерно распределен в клетке и (3) размер клеток (диаметр 5 мкм) значительно превышает средний диапазон β-частиц ³ Н [23]	[24]	1	1	
Лабораторный	S. cerevisiae	Меченые прекурсоры	³ Н-аланин, 5- ³ Н-тимин, 5- ³ Н-цитозин, 6- ³ Н-тимин	МПД, создаваемая в ядре клетки при распаде ³ H, включенного в ДНК, рассчитана исходя из (1) объема ядра гаплоидной клетки, равного 0.3 мкм ³ [25], (2) образования дозы 80 рад при распаде ³ H в таком объеме [26], (3) равномерного распределения ³ H в клетке, включенного в виде ³ H-аланина [27], 5- ³ H-тимина, 5- ³ H-цитозина, 6- ³ H-тимина, с учетом поправочного коэффициента и числа распадов ³ H в клетке	[28–31]	4	4	
		•	l	Мхи и лишайники		1	ı	
Полевой / Лабораторный	Parmelia tinctorum Nyl., Glyphomitrium humillium (Mitt.) Card., Barbula unguiculata Hedw., Pogonatum inflexum (Lind.) Lac., Marchantia polymorpha L.	Газы	НТ	Методика оценки и МПД не указаны	[21]	5	0	Окисление НТ до НТО
Полевой / Лабораторный	P. tinctorum Nyl., B. unguiculata Hedw., Glyphomitrium humillium (Mitt.) Card., M. polymorpha L., P. inflexum (Lind.) Lac., Ditrichum pallidum	Газы	НТ	Методика оценки и МПД не указаны	[32]	9	0	Окисление HT до HTO

	(Hedw.) Hampe, Hypnum plumaeforme Wils., Cladia aggregata (Sw.) Nyl., Cladonia rangiferina (L.) Web.							
				Пресноводные водоросли				Только
Лабораторный	Chlamydomonas reinhardtii	НТО	НТО	Методика оценки и МПД не указаны	[33]	1	0	абстракт: накопление, эффекты
Лабораторный	Chlorella vulgaris, C. reinhardtii	НТО	НТО	Методика оценки МПД не указаны	[34]	2	2	
Лабораторный	Leptolyngbya sp., Synechococcus elongatus, Nostoc sp., Anabaena sp. и другие	НТО	НТО	Методика оценки и МПД не указаны	[13]	4	0	
Лабораторный	Ch. reinhardtii	НТО	НТО	МПД для организмов рассчитана в программе EDEN [35] на основании удельной активности ³ H в воде и DCC (3.29×10 ⁻⁶ мкГр/ч на Бк/мл) с допущениями, что ³ H в организме находится в равновесном состоянии со средой обитания [36]	[37]	1	1	
				Морские водоросли				
Лабораторный	Acetabularia	НТО	НТО	Методика оценки и МПД не указаны	[33]	1	0	Только абстракт: накопление, эффекты
Лабораторный	Porphyra	НТО	НТО	Методика оценки и МПД не указаны	[33]	1	0	Только абстракт: накопление,

								эффекты
Лабораторный	Chaetoceros gracilis	НТО	НТО	МПД для организмов при воздействии НТО рассчитана на основании МПД общего ³ H с учетом связанного с тканью ³ H	[38]	1	1	
Лабораторный	Dunaliella salina	НТО	НТО	Методика оценки и МПД не указаны	[39]	1	0	Пищевые цепи, дозы в системе «водоросли— медака— человек»
Полевой / Лабораторный	Nitellopsis obtusa	НТО	НТО	Методика оценки и МПД не указаны	[40]	1	0	
Полевой / Лабораторный	Ulva prolifera	НТО	OBD	Методика оценки и МПД не указаны	[41]	1	0	Модель переноса
				Высшая водная растительность				
Полевой / Лабораторный	Elodea canadensis	НТО	НТО	Методика оценки и МПД не указаны	[42]	1	0	Накопление FTWT и OBT
Лабораторный	Hydrilla verticillata	НТО	НТО	Методика оценки МПД не указана	[34]	1	1	
Лабораторный	Pistia stratiotes, Spirodela polyrhiza	НТО	НТО	Методика оценки и МПД не указаны	[13]	2	0	
Полевой	Lemna minor, S. polyrhiza	НТО	НТО	МПД рассчитана на основании времени воздействия, средней энергии распада β-излучения, удельной активности ³ Н в питьевой воде, расхода питьевой воды, коэффициента передачи в критическом органе, эффективного периода полураспада и массы тела с допущением, что ³ Н равномерно распределен в организме	[43]	2	2	
Лабораторный	Ceratophyllum, Lemna	НТО	НТО	Методика оценки и МПД не указаны	[44]	2	0	
Полевой	Vallisneria spiralis	НТО	НТО	Методика оценки и МПД не указаны	[45]	1	0	
Лабораторный	Ceratophyllum, Lemna	НТО	НТО	Методика оценки и МПД не указаны	[46]	2	0	Накопление

Лабораторный	Ceratophyllum, Lemna	OBT	OBT	Методика оценки и МПД не указаны	[46]	2	0	Накопление
			Дикорастущие	е травы, сельскохозяйственные растения, кустарники				
Лабораторный	Oryza sativa Koshihikari variety	HDO	HDO	Методика оценки и МПД не указаны	[47]	1	0	Компартментн ая модель образования ОВD в зерне и колосе
Лабораторный	Zea mays, Hordeum	нто	НТО	Методика оценки МПД не указана. С учетом вклада ОВТ из семян и влияния испарения на увеличение удельной активности водной фазы в листьях удельная активность TFWT в посевах будет на 20–30% ниже, чем в окружающей среде. Возможное снижение нагрузки на организмы около 10%	[48]	2	0	Накопление Т/Н в ОВТ, накопление Т/Н в воде
Лабораторный	Ceratopteris thalictroides	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[49]	1	0	Накопление, авторадио- графическая пленка
Лабораторный	Chenopodium album	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[50]	1	0	Накопление, авторадио- графическая пленка
Полевой / Лабораторный	Zoysia japonica Steud., Trifolium repens L., Houttuynia cordata	Газы	НТ	Методика оценки и МПД не указаны	[21]	3	0	Окисление HT до HTO
Полевой / Лабораторный	Бактерии на растениях	nd	nd	Методика оценки и МПД не указаны	[51]	1	0	
Полевой / Лабораторный	T. repens L., Plantago asiatica L., Z. japonica Steud.,	Газы	НТ	Методика оценки и МПД не указаны	[32]	11	0	Окисление НТ до НТО

	Phalaris arundinacea							
	L., Arundinaria							
	pygmaea (Miq.)							
	Mitford var. glabra							
	(Makino) Ohwi,							
	Eragrostis ferruginea							
	(Thunb.) P. Beauv.,							
	Struthiopteris							
	niponica (Kunze)							
	Nakai, Themeda							
	triandra Forssk.							
	subsp. <i>japonica T</i> .							
	koyama, Eragrostis							
	curvula Schrad. Nees,							
	Lycopodium							
	clavatum L. var.							
	nipponicum Nakai,							
	Pteridium aquilinum							
	(L.) Kuhn var.							
	latiusculum (Desv.)							
	Und.							
I	Vaccinium smallii A							
	Gray var. glabrum							
	Koidz., V. oldhami,							
	Smilax china Linn.,							
Полевой /	Eurya japonica	Газы	НТ	Методика оценки и МПД не указаны	[32]	10	0	Окисление НТ
Лабораторный	Thunb, Pieris	1 4351		The regulation of the results of the	[82]		Ů	до НТО
	japonica (Thunb.) D.							
	Don, <i>Ilex</i>							
	pedunculosa Miq,							
	Juniperus conferta							

	Parlat., Lespedeza homoloba Nakai, Rhododendron obtusum (Lind.), Planchon var. kaempferi (Planchon) Wilson							
Лабораторный	Oryza sativa yumehitachi var., соя	HDO	HDO	Методика оценки и МПД не указаны	[52]	1	0	Кинетика поглощения и потери D ₂ O листьями и образование, перемещение и удержание ОВD
Полевой	Рис, пекинская капуста, редис, тыква	TFWT	TFWT	Методика оценки и МПД не указаны	[53]	4	0	МПД для населения рассчитана на основании DCC, рекомендованн ых в Публикации 56 [54]. ³ H в воздухе рассматривался как вода, содержащая ³ H
Полевой	Рис, пекинская капуста, редис, тыква	OBT	TBT	Методика оценки и МПД не указаны	[53]	4	0	

Лабораторный	Кукуруза, картофель, райграс	Газы	НТ	Методика оценки и МПД не указаны	[55]	3	0	Только абстракт: окисление НТ до НТО
Лабораторный	Allium cepa L.	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[56]	1	0	
Лабораторный	Triticum aestivum	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[57]	1	0	Накопление, авторадиогра- фическая пленка
Полевой	Bambusa	TFWT	TFWT	Методика оценки и МПД не указаны	[58]	1	0	Накопление
Полевой	Bambusa	OBT	OBT	Методика оценки и МПД не указаны	[58]	1	0	Накопление
Лабораторный	Vicia faba L.	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[59]	1	0	Авторадиогра- фическая пленка
Лабораторный	Ornithogalum virens Lindl.	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[60]	1	0	
Полевой / Лабораторный	Raphanus sativus var. hortensis, Brassica oleracea var. capitata, Dactylis glomerata, O. sativa subsp. japonica, Raphanus sativus L. var. sativus	ОВТ	С/Н	Методика оценки и МПД не указаны	[61]	6	0	Оценка отношения С/Н в сельско- хозяйственных растениях для оценки их продуктивности по ОВТ
Лабораторный	Соя, Zea mays	Газы	НТ	Методика оценки МПД не указана	[62]	2	0	Только абстракт: окисление НТ до НТО
Лабораторный	Zea mays, Pisum sativum, Cucumis	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[63]	3	0	

	sativus							
Лабораторный	Phleum pratense L.	HDO	HDO	Методика оценки и МПД не указаны	[64]	1	0	Накопление eOBD и neOBD, 6-компартментная модель переноса
Лабораторный	Tradescantia клон 02	НТО	НТО	Методика оценки и МПД не указаны	[65]	1	0	
Лабораторный	Tradescantia клон 02	Меченые прекурсоры	5- ³ Н-уридин, 6- ³ Н-уридин, 5,6- ³ Н-уридин, 6- ³ Н- тимидин, Ме-6- ³ Н-тимидин	Методика оценки и МПД не указаны	[66]	5	0	
Лабораторный	Tradescantia palidosa	Меченые прекурсоры	³ Н-тимидин	МПД рассчитана на основании количества распадов на ядро исходя из того, что на 1 распад, зафиксированный авторадиографической пленкой, приходится 143 распада ³ Н	[67]	1	1	
Лабораторный	Crepis capillaris	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[68]	1	0	
Полевой	Phragmites australis	НТО	НТО	Методика оценки и МПД не указаны	[69]	1	0	
				Деревья		•	•	
Полевой	Pinus taeda	OBT	OBT	Методика оценки и МПД не указаны	[70]	1	0	neOBT в эталонном образце хвои NIST 1575а
Полевой	Pinus taeda, P. palustris, Quercus laurifolia	НТО	НТО	Методика оценки и МПД не указаны	[71]	3	0	
Лабораторный	Pinus banksiana	НТО	НТО	Методика оценки и МПД не указаны	[72]	1	0	
Полевой	Pinus	НТО	НТО	Методика оценки и МПД не указаны	[73]	1	0	Накопление хвоей TFWT и neOBT из

								атмосферной влаги в процессе фотосинтеза
Полевой	Pinus	НТО	НТО	Методика оценки и МПД не указаны	[74]	1	0	Накопление хвоей TFWT и пеОВТ из атмосферной влаги и НТ из почвы
Полевой	Сосна, дзельква	Газы	НТ	Методика оценки и МПД не указаны	[75]	2	0	Только абстракт: окисление НТ до НТО
Полевой / Лабораторный	P. thunbergii Parl.	Газы	НТ	Методика оценки и МПД не указаны	[21]	1	0	Окисление НТ до НТО
Полевой / Лабораторный	P. thunbergii Parl., Quercus serrata Murray	газы	НТ	Методика оценки и МПД не указаны	[32]	2	0	Окисление НТ до НТО
Полевой	Pinus	НТО	НТО	Методика оценки и МПД не указаны	[58]	1	0	Накопление хвоей TFWT и OBT
Полевой	Pinus	НТО	НТО	Методика оценки и МПД не указаны	[76]	1	0	еОВТ и neOВТ более прочно включались в древесину, НТО – в хвою
Полевой / Лабораторный	Malus domestica сорта Tsugaru и Fuji	OBT	С/Н	Методика оценки и МПД не указаны	[61]	2	0	Оценка отношения С/Н в сельско- хозяйственных

								растениях для оценки их продуктивност и по ОВТ
Лабораторный	Pinus strobus L., Populus tremula L., Alnus incana (L.) Moench	Газы	НТ	Методика оценки МПД не указана	[62]	3	0	Только абстракт: окисление НТ до НТО
Полевой	Pinus	НТО	НТО	Методика оценки и МПД не указаны	[77]	1	0	Накопление хвоей TFWT и ОВТ из атмосферы
Полевой	Pinus	Газы	НТ	Методика оценки и МПД не указаны	[77]	1	0	Накопление хвоей TFWT и ОВТ из атмосферы
				Кольчатые черви (дождевые черви)				
Лабораторный	Nereis virens	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[78]	1	0	Оценка развития мозга
Лабораторный	Eisenia fatida	Меченые прекурсоры	³ Н-лейцин	Методика оценки и МПД не указаны	[79]	1	0	Оценка метаболизма активности половых желез
Лабораторный	Nereis virens	Меченые прекурсоры	³ H-5- гидрокситрип- тамин, ³ H-норд- адреналин, ³ H- ди- гидроксифенил- аланин, ³ H- дофамин	Методика оценки и МПД не указаны	[80]	1	0	Оценка метаболизма активности половых желез
Моделирование	Кольчатые черви	Газы	HT	МПД рассчитана на основе прогнозируемых выбросов с	[82]	1	1	

				помощью ERICA Tool [81]				
Моделирование	Кольчатые черви	НТО	НТО	МПД рассчитана на основе прогнозируемых выбросов с помощью ERICA Tool [81]	[82]	1	1	
				Моллюски				
Полевой / Лабораторный	Pollicipes polymerus	НТО	НТО	МПД рассчитана согласно [83] на основании концентрации ³ Н в воде, времени воздействия и средней энергии β-излучения (0.00569 МэВ) с допущением, что ³ Н в тканях находится в равновесии со средой обитания	[84, 85]	2	2	
Полевой / Лабораторный	Mytilus galloprovincialis	НТО	НТО	МПД рассчитана на основе общей активности в целом организме с помощью ERICA Tool [81]. Получены различия по МПД в зависимости от времени воздействия и температуры (при 15°С максимальная доза – через 12 ч, а при 25°С – через 72 и 168 ч)	[86]	1	1	
Полевой / Лабораторный	M. edulis	НТО	НТО	МПД от интернализованного ³ Н рассчитана согласно [87] на основе концентрации ³ Н в воде, средней энергии β-излучения (0.00569 МэВ) и DCC, равного 2.13 с допущениями, что (1) ³ Н, введенный в морскую воду, быстро достигает равновесия в тканях как ТFWT, (2) распределен в организме равномерно в течение всего воздействия, (3) в эмбрионах не наблюдается превышение концентрации ³ Н выше равновесного уровня ³ Н в воде	[88–91]	4	4	
Полевой / Лабораторный	M. edulis	Меченые прекурсоры	³ Н-глицин	МПД от интернализованного ³ Н рассчитана согласно [87] на основе концентрации ³ Н в воде, средней энергии β-излучения (0.00569 МэВ) и DCC, равного 2.13, с допущениями, что (1) ³ Н, введенный в морскую воду, быстро достигает равновесия в тканях как TFWT, (2) распределен в организме равномерно в течение всего воздействия, (3) в эмбрионах не наблюдается превышение концентрации ³ Н выше равновесного уровня ³ Н в воде. Неизвестно, достигла ли концентрация	[88–91]	4	4	

Полевой	M. galloprovincialis	НТО	НТО	активности ³ Н-глицина в тканях равновесия с окружающей средой, так как предполагается, что ³ Н-глицин активно поглощается организмами [92] МПД рассчитана на основе общей активности с помощью ERICA Tool [81]	[93]	1	1	
Полевой / Лабораторный	Anisus vortex (L., 1758)	Нераство- римые частицы	Наночастицы ³ Н- нержавеющей стали	Методика оценки и МПД не указаны	[94]	1	0	В каждом сосуде, кроме улиток, находились искусственные отложения с первичными продуцентами пикопланктона и пикобентоса (бактерии, водоросли, простейшие)
Полевой	Planorbis vortex	НТО	НТО	Методика оценки и МПД не указаны	[45]	1	0	
				Ракообразные (крабы и омары)				
Лабораторный	Artemia salina	НТО	НТО	МПД для организмов рассчитана на основании мощности дозы общего ³ H с учетом связанного с тканью ³ H	[38]	1	1	
Полевой	Daphnia magna Str.	НТО	НТО	Методика оценки и МПД не указаны	[45]	1	0	
				Насекомые (пчелы и осы)				
Лабораторный	Chironomus riparius	НТО	НТО	МПД рассчитана на основании концентрации ³ H в воде, средней энергии β-частиц при распаде ³ H (0.057 МэВ) и DCC (5.76×10 ⁻⁹) [95] и допущениями, что (1) ³ H распределен равномерно в тканях личинок и в окружающей воде и (2) диапазон β-частиц мал по сравнению с размерами среды, в которой изотоп был	[96]	1	1	

				распределен							
Лабораторный	Drosophila melanogaster	Меченые прекурсоры	³ Н-тимидин	Методика оценки доз не указана	[97]	1	0				
	Рыбы										
Полевой / Лабораторный	Водные беспозвоночные и позвоночные животные	НТО	НТО	Указаны МПД, рассчитанные авторами цитируемых работ. Если они не приводились в оригинальных статьях, то МПД рассчитана на основании концентрации ³ Н в среде обитания, средней энергии ³ Н (0.057 МэВ) и DCC (5.76×10 ⁻⁹) в соответствии с модифицированным уравнением согласно [88], с допущениями, что (1) ³ Н распределен в организме равномерно в течение периода воздействия, (2) в организме не наблюдается превышение концентрации ³ Н выше равновесного уровня ³ Н в воде (коэффициент концентрации равен 1)	[98]			Обзор			
Лабораторный	Danio rerio	НТО	НТО	МПД рассчитана на основании коэффициента дозы внешнего облучения в среде обитания (воде), измеренной активности НТО, рассчитанного коэффициента внутренней дозы, измеренной активности ³ Н в организмах. Дозовые коэффициенты рассчитаны в программе EDEN v. 2 с допущением, что ³ Н распределен в организме равномерно в течение периода воздействия и с использованием весового коэффициента 3	[99]	1	1				
Лабораторный	D. rerio	OBT	ОВТ	Оценена интернализация ОВТ и TFWT на ранних этапах развития <i>D. rerio</i> (точное измерение ³ Н затруднено у небольших организмов (мальков) из-за быстрого обмена между изотопами водорода) по соотношению между концентрацией в загрязненной воде и организмах. МПД рассчитана на основе измеренной концентрации НТО в среде обитания, дозового коэффициента для внутреннего облучения, равного 3, рассчитанного в программе EDEN v. 3 [100], и измеренной активности ³ Н	[101, 102]	2	2				

				в организмах, с учетом геометрии организмов и				
				допущением, что ³ Н в тканях распределен равномерно				
				Оценена интернализация ОВТ и TFWT на ранних этапах				
				развития <i>Danio rerio</i> (точное измерение ³ H затруднено у				
				небольших организмов (мальков) из-за быстрого обмена				
				между изотопами водорода) по соотношению между				
				концентрацией в загрязненной воде и в организмах.				
Лабораторный	D. rerio	TFWT	TFWT	МПД рассчитана на основе измеренной концентрации	[101, 102]	2	2	
1 1				НТО в среде обитания, дозового коэффициента для				
				внутреннего облучения, равного 3, рассчитанного в				
				программе EDEN v. 3 [100], и измеренной активности ³ H				
				в организмах, с учетом геометрии организмов и с				
				допущением, что ³ Н в тканях распределен равномерно				
Лабораторный	D. rerio	НТО	НТО	Аналогично [99]	[103]	1	1	
				МПД рассчитана на основании содержания НТО и ОВТ				
				в тканях рыб с использованием внутреннего DCC				
				$(5.38 \times 10^{-3} \mathrm{Mk}\Gamma \mathrm{p/v}$ на Бк/г), рассчитанного в программе				
Лабораторный	D. rerio	НТО	НТО	EDEN v. 2 [100], с использованием дозового	[105, 106]	2	2	
лаоораторныи	D. rerio	пю	пю	коэффициента излучения, равного 3 [104], и	[103, 100]	2	Δ	
				допущением, что ³ H в тканях разделен равномерно.				
				Внешний DCC был незначительным по сравнению с				
				внутренним DCC, поэтому исключен из расчетов				
				МПД рассчитана на основании содержания НТО и ОВТ				
				в тканях рыб с использованием внутреннего				
				$DCC(5.38\times10^{-3}\text{мк}\Gamma p/\text{ч}$ на $\text{Бк/r})$, рассчитанного в				
Полевой / Лабораторный	Pimephales promelas	НТО	НТО	программе EDEN v. 2 [100], с использованием дозового	[105, 106]	2	2	
	1 intepnates prontetas	1110	1110	коэффициента излучения, равного 3 [104], и с	[105, 100]			
				допущением, что ³ H в тканях разделен равномерно.				
				Внешний DCC был незначительным по сравнению с			2 0	
				внутренним DCC, поэтому исключен из расчетов				
Лабораторный	Carassius gibelio	НТО	НТО	Методика оценки доз не указана	[107]	1	0	

Лабораторный	C. gibelio	НТО	НТО	Методика оценки доз не указана	[44, 108]	1	0	
Лабораторный	C. gibelio	НТО	НТО	Внешняя и внутренняя МПД рассчитаны на основании рекомендаций [109–111], общего содержания ³ Н в икре и рыбе при условии, что максимальное внесение ³ Н на стадии икры составило 50 кБк/л и длительности облучения 550 дней	[42]	1	1	
Лабораторный	D. rerio	OBT	OBT	МПД для организмов рассчитана в программе EDEN v.3 [100] на основании удельной активности ³ H в воде, организме и рассчитанных DCC с допущениями, что ³ H в организме находится в равновесном состоянии со средой обитания	[112]	1	1	
Лабораторный	Oryzias latipes	НТО	НТО	МПД рассчитана на основании концентрации ³ H в икринке, средней энергии ³ H (5.69 кэВ), коэффициента преобразования (1.602×10 ⁻⁹ эрг/кэВ), фактора конверсии эрг/г в рад, равного 100, или эрг/г в Гр, равного 10000, и веса икринки с допущением, что фактор концентрации ³ H равен 0.6 [113]	[114–116]	3	3	
Лабораторный	Oncorhynchus mykiss	НТО	НТО	Методика оценки и МПД не указаны	[117, 118]	2	0	
Лабораторный	O. mykiss	OBT	OBT	Методика оценки и МПД не указаны	[117, 118]	2	0	
Лабораторный	D. rerio	НТО	НТО	МПД рассчитана на основании содержания ³ Н в окружающей среде, икре и мальках с применением дозовых коэффициентов, рассчитанных с помощью программы EDEN v. 2, с использованием дозового коэффициента излучения, равного 3 [81], и допущением, что ³ Н в тканях разделен равномерно. Также для минимизации обмена между организмами и окружающей средой учитывалась интернализация ³ Н [101]	[119]	1	1	
Лабораторный	D. rerio	OBT	ОВТ	МПД рассчитана на основе содержания ³ Н в окружающей среде, икре и мальках с применением дозовых коэффициентов, рассчитанных с помощью	[119]	1	1	

Лабораторный	D. rerio	НТО	НТО	программы EDEN v. 2, с использованием дозового коэффициента излучения, равного 3 [81], и с допущением, что ³ H в тканях разделен равномерно. Также для минимизации обмена между организмами и окружающей средой учитывалась интернализация ³ H [101] Методика оценки МПД не указана, но есть доза	[34]	1	1	
лаоораторный	D. Terio	1110	1110	МПД рассчитана на основании концентрации ³ Н в среде	[34]	1	1	
Лабораторный	O. latipes	НТО	НТО	обитания и в тканях рыб, веса ткани, средней энергии ³ H (5.69 кэВ), коэффициента преобразования (1.602×10 ⁻⁹ эрг/кэВ), фактора конверсии эрг/г в рад, равного 100, с допущениями, что (1) фактор концентрации ³ H равен 0.7 и (2) ³ H был равномерно распределен по организму	[120]	1	1	
Полевой / Лабораторный	Paralichthys olivaceus, Fugu niphobles	НТО	НТО	МПД для икры рассчитана на основании модифицированной формулы, предложенной МКРЗ [121] на основании концентрации ³ H в среде обитания и икринке, веса икры, средней энергии ³ H (0.0057 МэВ) с допущениями, что (1) ³ H в икринках распределен равномерно, (2) обогащение ³ H из воды не происходит и (3) концентрация ³ H была одинаковой как внутри, так и снаружи икры	[122]	2	2	
Лабораторный	O. mykiss	НТО	НТО	Методика оценки и МПД не указаны	[123, 124]	2	0	
Лабораторный	O. mykiss	OBT	OBT	Методика оценки и МПД не указаны	[123, 124]	2	0	
Полевой	Esox lucius, Coregonus clupeaformis, Catostomus commersonii	НТО	НТО	МПД рассчитана с помощью ERICA Tool [81] на основании измеренной активности ³ Н в рыбах	[125]	3	3	
Полевой	E. lucius, C. clupeaformis, Cat. commersonii	OBT	ОВТ	МПД рассчитана с помощью ERICA Tool [81] на основании измеренной активности ³ Н в рыбах	[125]	3	3	

Лабораторный	Oryzias latipes	НТО	НТО	МПД для организмов при воздействии только НТО рассчитана на основании МД общего ³ Н с учетом связанного с тканью ³ Н. Увеличение мощности дозы связанного с тканями ³ Н зависело от содержания воды в контрольном органе и составило 12% для семенников (содержание воды 80%) и 69% для костей и жира (20%). Для организмов, подвергшихся воздействию ³ Н через пищевую цепочку, МПД рассчитана исходя из доли нагрузки на организм в контрольном органе, эффективной поглощенной энергии при распаде ³ Н и массы контрольного органа с допущением, что для рыбы коэффициент накопления ³ Н сухой тканью органов составляет 0.71	[38]	1	1	
Лабораторный	D. rerio	Меченые прекурсоры	³ Н-тимидин	МПД рассчитывали согласно [112]	[126]	1	1	
Полевой / Лабораторный	Scomber scombrus, Micropterus salmoides	ОВТ	ОВТ	Методика оценки и МПД не указаны	[127]	2	0	Оптимизация метода определения ОВТ у рыб, основанного на термическом окислении пробы
Лабораторный	Salmo gairdneri	НТО	НТО	Методика оценки доз для икры не указана.	[128]	1	0	_
Лабораторный	S. gairdneri	НТО	НТО	МПД рассчитана на основании концентрации ³ Н в воде, средней энергии β-частиц при распаде ³ Н, коэффициента преобразования мэВ в Дж [95]	[129]	1	1	
Лабораторный	Ictalurus punctatus, Pimephales promelas	НТО	НТО	Методика оценки доз не указана	[130]	2	0	
Лабораторный	O. latipes	НТО	НТО	МПД рассчитана на основании концентрации ³ Н в икринке, средней энергии ³ Н (5.69 кэВ), коэффициента	[131]	1	1	

				преобразования (1.602×10^{-9} эрг/кэВ), фактора конверсии (эрг/г в рад), равного 100, и веса икринки с допущениями, что (1) ³ Н равномерно распределился внутри икринки и (2) ³ Н линейно поступал в икринку с начала экспозиции				
Полевой / Лабораторный	P. olivaceus	HDO	HDO	Методика оценки и МПД не указаны	[132]	1	0	Метаболизм neOBD в мышцах
Лабораторный	C. gibelio	OBT	OBT	Методика оценки и МПД не указаны	[44]	1	0	
Полевой	Cy. carpio L.	НТО	НТО	Методика оценки и МПД не указаны	[45]	1	0	
				Амфибии (лягушки)				
Полевой	Rana catesbeiana	НТО	НТО	Методика оценки и МПД не указаны	[133]	1	0	
Полевой	R. pipiens, R. septentrionalis	НТО	НТО	Методика оценки и МПД не указаны	[134]	2	0	
Полевой	R. septentrionalis	НТО	НТО	Методика оценки и МПД не указаны	[135]	1	0	
Полевой	R. pipiens, R. septentrionalis, Lithobates catesbeiana	НТО	НТО	Методика оценки и МПД не указаны	[136]	3	0	
				Птицы (утки и гуси)				
Лабораторный	Куриные эмбрионы	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[137]	1	0	
Лабораторный	Куриные эмбрионы белого легорна	Меченые прекурсоры	СН3- ³ Н- тимидин	Методика оценки и МПД не указаны. Есть данные о концентрации раствора и времени воздействия	[138]	1	0	Датирование времени возникновения нейронов
	I			Млекопитающие (олень, крыса)				
Лабораторный	Мышь	НТО	НТО	Расчет дозы внутреннего облучения проведен на основании концентрации ³ Н в питьевой воде, оценок достижения 50%-ного уровня максимальной равновесной концентрации в тканях через 10 дней после	[139]	1	1	

				начала введения, средней энергии β-частиц при распаде ³ H, коэффициента преобразования МэВ в Дж и времени экспозиции. Кроме того, оценена также мощность				
Лабораторный	Мышь	Меченые прекурсоры	³ Н-тимидин	амбиентной дозы в помещениях Расчет дозы облучения проведен на основании концентрации ³ Н-тимидин вводимой инъекции	[140]	1	1	
Лабораторный	Мышь	НТО	НТО	МПД рассчитана на основании концентрации ³ Н в питьевой воде, содержания ³ Н в тканях по отношению к его концентрации в питьевой воде, средней энергии β-частиц при распаде ³ Н, коэффициента преобразования МэВ в Дж и времени экспозиции. Накопленная доза контролировалась термолюминесцентными дозиметрами	[141]	1	1	
Лабораторный	Мышь	НТО	НТО	МПД рассчитывали исходя из концентрации ³ H в печени в равновесном состоянии, средней β-энергии ³ H (5.7 кэВ) и понимания, что 1 Ки НТО/мл воды будет выделять 29.1 эрг/г воды в день	[142]	1	1	
Лабораторный	Мышь	Меченые прекурсоры	СН ₃ - ³ Н-тимидин	Методика оценки и МПД не указаны	[143]	1	0	Накопление
Лабораторный	Мышь	НТО	НТО	Методика оценки и МПД не указаны	[143]	1	0	Накопление
Лабораторный	Мышь	Меченые прекурсоры	³ Н-уридин, ³ Н- гистидин, ³ Н- лизин	Методика оценки и МПД не указаны	[144]	3	0	
Лабораторный	Крыса	НТО	НТО	МПД рассчитывали исходя из удельной активности ³ H в воде организма, числа распадов в минуту (2.22×10 ⁶ на 1 мкКи), средней энергии ³ H (5.6×10 ⁻⁸ MэВ/сут), времени облучения (1.44×10 ³ мин/день), коэффициента преобразования (1.6×10 ⁻⁶ эрг/МэВ), 0.9 мл воды на 1 г веса тела и фактора конверсии (100 эрг/г/рад)	[145]	1	1	
Лабораторный	Мышь	НТО	НТО	МПД рассчитана на основании концентрации ³ Н в питьевой воде, плазме крови, яичниках, семенниках, придатке яичка и других мягких тканях. Также были	[146]	1	1	

				определены активности, включенные в субъядерные				
				фракции (хроматин, гистоны, ДНК, РНК и остаточный				
				белок) этих тканей				
				МПД рассчитана на основании концентрации ³ Н в				
пс	M	HTO	што	питьевой воде, плазме крови и мягких тканях. Также	F1 477	1	1	
Лабораторный	Мышь	НТО	НТО	было определено количество ³ H, включенного во	[147]	1	1	
				фракции субклеточного белка				
				МПД рассчитана на основании концентрации ³ Н в				
П-б	M	НТО	НТО	питьевой воде, распределения ³ Н во фракциях белков в	F1.407	1	1	
Лабораторный	Мышь	ню	ню	тканях. Включение ³ Н в белковые фракции не было	[148]	1	1	
				значительным				
				МПД рассчитана на основании концентрации ³ Н в				
				плазме крови, печени, мышцах, гонадах и субклеточных				
				фракциях с учетом обмена ³ Н в ядре клетки, хроматине,				
Лабораторный	Мышь	НТО	HTO	ДНК и гистонах. Характер накопления ³ Н и уровни	[149]	1	1	
				равновесия определены путем измерения количества ³ H				
				в тканях в разное время после того, как животные				
				начали пить НТО				
		Меченые	³ H-					
Лабораторный	Лошадь	прекурсоры	диизопропил-	Методика оценки и МПД не указаны	[150]	1	0	
		прекурсоры	фторфосфат					
				Расчет дозы облучения проведен на основании				
T 6	37	Меченые	211	концентрации метил- ³ Н в среде и концентрации ³ Н в	51.513			
Лабораторный	Хомячок китайский	прекурсоры	³ Н-тимидин	сыворотке для выращивания клеток с последующим	[151]	1	1	
				определением МПД при использовании облученного				
_				термолюминесцентного порошка фторида лития				
Лабораторный	Мышь	Меченые	³ Н-аргинин	Методика оценки и МПД не указаны	[152]	1	0	
п с) /	прекурсоры	UTO	2 - 16-/ 5	[152]	1	1	
Лабораторный	Мышь	НТО	НТО	2 мкКи/мл обеспечивает дозу облучения 0.44 рад/сут	[153]	1	I	
Лабораторный	Мышь	НТО	НТО	Расчет дозы облучения проведен на основании	[23]	1	1	
				концентрации НТО и допущений, что (1) вода				

				составляет 80–90% мягких тканей, (2) ³ Н распределен в организме равномерно; принят во внимание вклад дозы от ³ Н, включенного в неводные компоненты. Поскольку при низких концентрациях ³ Н единица дозы имеет тенденцию терять свое значение, дополнительно оценено количество распадов на ядро клетки				
Лабораторный	Мышь	НТО	НТО	Расчет дозы облучения проведен на основании допущений, что (1) концентрация НТО в 1 мкКи/мл дает МПД 0.291 рад/день, (2) вода составляет 70–80% мягких тканей, (3) ³ Н распределен в организме равномерно, (4) коэффициент для оценки дополнительной дозы от ³ Н, включенного в неводные компоненты клеток, составляет 0.3	[154]	1	1	
Лабораторный	Мышь	НТО	НТО	Расчет дозы облучения проведен на основании концентрации НТО, кинетики накопления и удержания ³ Н в тканях при достижении устойчивого уровня ³ Н через 14 дней	[155]	1	1	
Моделирование	Крыса, овца	OBT	OBT	Оценка многокомпонентной удерживающей функции различных органов и выявления взаимосвязи между периодами полувыведения и вкладом быстрых и медленных компонентов для ¹⁴ С и ³ Н	[156]	2	0	Создание общих правил для моделирования
Лабораторный	Крыса	НТО	НТО	Расчет дозы облучения проведен на основании средних уровней ³ Н в моче за 8 дней с установленным биологическим периодом полувыведения ³ Н, равным 2 дня, быстрым начальным снижением активности ³ Н после последней инъекции НТО и небольшого количества (0.05% от начальной концентрации) ³ Н с периодом полувыведения 40–50 дней	[157]	1	1	
Лабораторный	Мышь	Меченые прекурсоры	³ Н-тимидин	Расчет дозы облучения проведен на основании концентрации ³ Н-тимидин в воде и исходя из потребления воды	[158]	1	1	

Лабораторный	Мышь	НТО	НТО	МПД рассчитана с использованием биокинетических моделей ICRP [159] и WHO [160]	[161]	1	1	
Лабораторный	Мышь	OBT	OBT	МПД рассчитана с использованием биокинетических моделей ICRP [159] и WHO [160]	[161]	1	1	
Лабораторный	Крыса	Газы	HT	Методика оценки и МПД не указаны	[162]	1	0	
Лабораторный	Крыса	НТО	НТО	Методика оценки и МПД не указаны	[163]	1	0	
Лабораторный	Крыса	Газы	HT	Методика оценки и МПД не указаны	[164]	1	0	
Лабораторный	Мышь	НТО	НТО	МПД рассчитывали исходя из концентрации 3 H, средней энергии облучения 3 H (5.7×10 $^{-3}$ МэВ) и того, что воздействие 3 H составляет 10 Бк/г массы тела/день, как указано в работе [142]	[165]	1	1	
Лабораторный	Мышь	Меченые прекурсоры	³ Н-тимидин, ³ Н- лейцин, ³ Н- глюкоза	МПД рассчитывали исходя из концентрации ³ H, средней энергии облучения ³ H (5.7×10 ⁻³ MэВ) и того, что воздействие ³ H составляет 10 Бк/г массы тела/день, как указано в работе [142]	[165]	1	1	
Лабораторный	Мышь	НТО	НТО	Указаны только значения дозы	[166]	1	1	Только абстракт
Лабораторный	Мышь	НТО	НТО	Расчет дозы облучения проведен на основании концентрации НТО во вводимой инъекции с учетом содержания воды в теле и клетках, а также допущений, что (1) ³ Н распределен только в водной части клетки, (2) поглощенная доза в клетке от распавшегося ³ Н распределяется равномерно, (3) содержание воды в теле мыши и клетках принималось равным 70%. 1 МБк НТО/мышь (40 МБк/кг массы тела) дает мощность дозы 0.131 мГр/ч	[167]	1	1	
Лабораторный	Мышь	НТО	НТО	Расчет дозы облучения проведен на основании установленных уровней ³ Н в моче за 14 дней, исходя из биологического периода полувыведения ³ Н, равного 2.2 дня, и средней дозы для клеток, равной 0.733 от дозы для организма в целом	[168]	1	1	

Лабораторный	Мышь	Меченые прекурсоры	³ Н-триптофан, ³ Н-лейцин, ³ Н- глутамин	Методика оценки и МПД не указаны	[169]	3	0	
Лабораторный	Мышь	НТО	НТО	Методика оценки и МПД не указаны	[170]	1	0	
Лабораторный	Мышь	OBT	³ Н-кресс-салат	Методика оценки и МПД не указаны	[170]	1	0	
Лабораторный	Мышь	НТО	НТО	МПД рассчитана по формуле, описанной в работе [171], на основании концентрации ³ H/г живой ткани, средней энергии распада ³ H (5.7 кэВ), коэффициента преобразования (2.92×10 ⁻³) и времени воздействия.	[172]	1	1	
Лабораторный	Крыса	НТО	НТО	МПД рассчитывали исходя из удельной активности ³ H в воде организма, числа распадов в минуту (2.22×10 ⁶ на 1 мкКи), средней энергии ³ H (5.6×10 ⁻⁸ МэВ/сут.), времени облучения (1.44×10 ³ мин/день), коэффициента преобразования (1.6×10 ⁻⁶ эрг/МэВ), 0.9 мл воды на 1 г веса тела и фактора конверсии (100 эрг/г/рад)	[173]	1	1	
Лабораторный	Мышь	НТО	НТО	МПД рассчитывали согласно [172]. МПД в день (d β) прямо пропорциональна образованию радиоактивности 3 H на 1 кг влажной ткани (Q, Бк/кг), а среднюю энергию (Е β = 5.7 кэВ), выделяемую при распаде, можно рассчитать по формуле: d β (Гр/день) = $7.89 \times 10^{-11} \times Q$ (Бк/кг), где 7.89×10^{-11} – коэффициент пересчета, а Q (Бк/кг) – средняя концентрация 3 H в ткани в данный момент времени (t). Суммарную дозу рассчитывали на основании средней концентрации 3 H в ткани в момент времени [174]. Для культуральных клеток МПД (Гр/ч) рассчитывали по следующему уравнению: D = $3.29 \times 10^{-3} \times C \times W$, где 3.29×10^{-3} – коэффициент пересчета, W – содержание воды в клетках (0.80 мл/r) и C – удельная активность 3 H (МБк/мл); плотность клеток $\sim 3.2 \times 10^7$ /мл	[175]	1	1	
Лабораторный	Хомячок китайский	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[176]	1	0	
Лабораторный	Мышь	Меченые	³ Н-тимидин, ³ Н-	Методика оценки и МПД не указаны	[177]	1	0	

		прекурсоры	аргинин					
Лабораторный	Мышь	Меченые прекурсоры	³ Н-тимидин, ³ Н- аргинин	Методика оценки и МПД не указаны	[178]	1	0	
Лабораторный	Хомячок китайский	НТО	НТО	МПД НТО рассчитывали по формуле, описанной в работе [179]	[180, 181]	2	2	
Лабораторный	Мышь	НТО	НТО	МПД рассчитана по формуле, описанной в работе [171], на основании концентрации ³ Н в крови, селезенке, костном мозге и перитонеальном экссудате, средней энергии ³ Н (5.69 кэВ), коэффициента преобразования (1.602×10 ⁻⁹ эрг/кэВ) с учетом эффективного биологического периода полураспада НТО, равного 2.3 дня [182]	[183]	1	1	
Лабораторный	Мышь	ОВТ	ОВТ	МПД рассчитана по формуле, описанной в работе [171], на основании концентрации ³ Н в крови, селезенке, костном мозге и перитонеальном экссудате, средней энергии ³ Н (5.69 кэВ), коэффициента преобразования (1.602×10 ⁻⁹ эрг/кэВ) с учетом эффективного биологического периода полураспада НТО, равного 2.3 дня [182]	[183]	1	1	
Лабораторный	Крыса	НТО	НТО	МПД рассчитана на основании концентрации ³ H в яйцеклетках и моче с допущениями, что изотоп распределен в организме равномерно, его концентрация в виде НТО и ОВТ постоянна в течение всего эксперимента. Концентрация 1 кБк/г (1 кБк/мл) создает МД, равную 7.74 х 10 ⁻⁵ Гр/сут. Доля воды в яйцеклетках равна 0.722±0.030, сухого вещества – 0.278±0.030. При расчете дозы также учитывали концентрацию ОВТ в яйцеклетках	[184]	1	1	
Лабораторный	Крыса	OBT	OBT	МПД рассчитана на основании концентрации ³ Н в яйцеклетках и моче с допущениями, что изотоп распределен в организме равномерно, его концентрация	[184]	1	1	

				в виде НТО и ОВТ постоянна в течение всего эксперимента. Концентрация 1 кБк/г (1 кБк/мл) создает МД, равную 7.74×10 ⁻⁵ Гр/сут., доля воды в яйцеклетках равна 0.722±0.030, сухого вещества – 0.278±0.030. При расчете дозы также учитывали концентрацию ОВТ в яйцеклетках				
Лабораторный	Крыса	НТО	НТО	МПД рассчитана для отдельных тканей с использованием метода [185]. Концентрации ³ Н в сухих тканях и воде тела были изменены для получения концентраций у живых животных с использованием содержания воды, определенного для отдельных тканей	[186]	1	1	
Лабораторный	Крыса	ОВТ	Лиофилизиро- ванное кроличье мясо с ³ Н	МПД рассчитана для отдельных тканей с использованием метода [185]. Концентрации ³ Н в сухих тканях и воде тела были изменены для получения концентраций у живых животных с использованием содержания воды, определенного для отдельных тканей	[186]	1	1	
Лабораторный	Мышь	НТО	НТО	Расчет дозы внутреннего облучения проведен на основании концентрации ³ H в воде, данных о поглощении и удержании ³ H [187], кривых биокинетики, средней энергии испускаемых β-частиц при распаде ³ H, коэффициента перевода МэВ в Дж, времени экспозиции, а также данных о концентрации ³ H в тканях	[188]	1	1	
Лабораторный	Хомячок китайский	Меченые прекурсоры	³ Н-тимидин	МПД на ядро клетки оценена, используя коэффициенты [189]. Для 3 Н, входящего в состав ядра, коэффициент пересчета составляет 1 распад — $2.7 \cdot 10^{-3}$ Гр	[190]	1	1	
Лабораторный	Мышь	НТО	НТО	МПД рассчитана, исходя из начального содержания ³ H в организме на единицу массы, фактора тканевого распределения и дозового коэффициента 7.87×10 ⁻⁸ , описанного в работе [191]	[192, 193]	2	2	
Лабораторный	Мышь	Меченые прекурсоры	³ Н-аланин, ³ Н- лейцин, ³ Н- глутаминовая	МПД рассчитана, исходя из начального содержания ³ Н в организме на единицу массы, фактора тканевого	[192, 193]	10	10	

			кислота, ³ Н- фенилаланин, ³ Н-валин	распределения и дозового коэффициента 7.87×10 ⁻⁸ , описанного в работе [191]				
Лабораторный	Мышь	НТО	НТО	МПД рассчитана для различных органов и оценен вклад нерастворимых в кислоте компонентов в общую дозу. Процентный вклад нерастворимых в кислоте компонентов в общую дозу зависит от органа и составляет примерно 17–42%, что указывает на неоднородный характер распределения ³ Н в субклеточных структурах. Вклад ОВТ в дозу сравним с TFWT	[194]	1	1	
Лабораторный	Крыса	Меченые прекурсоры	³ Н-тимидин	Методика оценки и МПД не указаны	[195]	1	0	
Лабораторный	Мышь	НТО	НТО	Поглощенные дозы рассчитаны на основании общепринятого перевода дозы облучения из Бк в Гр	[196]	1	1	
Лабораторный	Хомячок китайский	НТО	НТО	МПД рассчитана в программе COOLER на основании S-значения (поглощенная доза в целевой области за один распад в исходной области) [197], времени воздействия и геометрии клеток с допущениями, что (1) диффузия HTO идентична диффузии воды, (2) HTO распределяется внутри клетки однородно в течение короткого времени и (3) содержание клеточной воды в цитоплазме и ядре клетки составляет примерно 80%	[198]	1	1	
Лабораторный	Крыса	Нераствори мые частицы	³ Н-стальные частицы	МПД рассчитана с помощью биокинетической модели и данных, полученных в ходе экспериментов	[199]	1	1	Полная биокинетическая модель крысы реализована в SAAM [200]
Лабораторный	Мышь	Меченые прекурсоры	³ Н-тимидин	Расчет дозы проводился для клеточного ядра	[201]	1	1	Только абстракт
Лабораторный	Мышь	НТО	НТО	Расчет дозы проводился для клеточного ядра	[201]	1	1	Только

								абстракт
Лабораторный	Крыса	OBT	OBT	МПД рассчитана с помощью биокинетической модели по формуле, содержащей сведения о концентрации, средней энергии распада ³ H (5.69 кэВ) и коэффициента преобразования дозы (1.38×10 ⁻²), и предположения, что воздействие ³ H составило 37 кБк/г веса	[202–208]	7	7	Кинетика
Лабораторный	Крыса	НТО	НТО	МПД рассчитана с помощью биокинетической модели по формуле, содержащей сведения о концентрации, средней энергии распада ³ H (5.69 кэВ) и коэффициента преобразования дозы (1.38×10 ⁻²), и предположения, что воздействие ³ H составило 37 кБк/г веса	[202, 204, 206–209]	6	6	Кинетика
Лабораторный	Крыса	Меченые прекурсоры	³ Н-тимидин	Для этого расчета концентрации ³ Н в летучих и нелетучих фракциях тканей были пересчитаны для получения концентраций в живых тканях с учетом содержания воды. Предполагалось, что активность ³ Н в каждой ткани постоянна в течение первых 24 ч после введения и снижается экспоненциально в ходе эксперимента	[210]	1	1	
Лабораторный	Клетки хомяка, несущие X- хромосому человека	НТО	НТО	Методика оценки и МПД не указаны	[211, 212]	2	0	
Лабораторный	Клетки лимфоидной лейкемии <i>L5178Y</i> мышей	НТО	НТО	МПД рассчитана по формуле, содержащей концентрацию ³ Н в среде на начало эксперимента, коэффициент преобразования (12.14), предполагаемое содержание воды в клетках (0.8) и поправку на уменьшение (0.9), как было описано в [213]	[214]	1	1	
Лабораторный	Мышь	НТО	НТО	Расчет дозы облучения проведен на основании концентрации ³ Н в разных органах (головном мозге, печени, мышцах, легких, селезенке и почках) через 50, 100 и 200 дней после начала введения НТО	[182, 215]	2	2	
Лабораторный	Мышь	НТО	НТО	Кумулятивная поглощенная доза для потомства	[216]	1	1	

				оценивалась на основании внутриутробной и постнатальной дозы, которые рассчитывали на основании обнаруженного быстрого и равномерного распределения ³ Н по организму и периоду полувыведения 3.5 дня [121, 145, 209]. Вклад дозы, абсорбированной при питании материнским молоком из ОВТ, был незначительным				
Лабораторный	Мышь	Меченые прекурсоры	СН3- ³ Н- тимидин, ³ Н- уридин, ³ Н- аргинин, ³ Н- глутамин	МПД рассчитывали с допущениями, что ОВТ в основном включен в макромолекулы (СН3-³Н-тимидин – в ДНК клеточных ядер, а ³Н-уридин, ³Н-аргинин и ³Н-глутамин распределены равномерно по всем клеткам) [189]. Общая МПД для клеток или ядер была оценена по формуле, описанной в Отчете 63. Поправочный коэффициент 0.8 для краевого эффекта использовался для оценки поглощенной дозы в ядре при воздействии СН3-³Н-тимидина [189]	[217]	4	4	ОБЭ к рентгеновскому облучению (4.6–8.7)
Лабораторный	Мышь	Меченые прекурсоры	СН3- ³ Н-тимидин	МПД рассчитана с использованием формулы и параметров из исследования [217], предполагая, что HTO равномерно распределен по всем клеткам и ³ H-тимидин был включен в ДНК ядер клеток	[218]	1	1	
Лабораторный	Мышь	НТО	НТО	МПД рассчитана с использованием формулы и параметров из исследования [217], предполагая, что HTO равномерно распределен по всем клеткам и ³ H-тимидин был включен в ДНК ядер клеток	[218]	1	1	
Лабораторный	Мышь	Меченые прекурсоры	³ Н-лейцин	Методика оценки и МПД не указаны	[219]	1	0	
Лабораторный	Обезьяна-крабоед, крыса, мышь	НТО	НТО	МПД рассчитывается на основании концентрации уравновешенной НТО определенной концентрации в клетке, средней энергии распада ³ H (5.69 кэВ), коэффициента преобразования (1.602×10 ⁻⁹ эрг/кэВ) и доли воды в клетке. Часто в работах используют	[174]	1	1	Измерение количества воды в клетках для уточнения дозы

				значение 0.8 мл/г в культивируемых клетках млекопитающих. В работе показано, что оно варьирует от 0.68 до 0.92 мл/г				
Лабораторный	Мышь	НТО	НТО	Суточная доза органа рассчитана как произведение удельной радиоактивности 3 H в питьевой воде (Бк/г), средней энергии распада 3 H (5.7 кэВ/г) и времени воздействия в сутки ($60 \times 60 \times 24$)	[220]	1	1	
Лабораторный	Мышь	НТО	НТО	Расчет дозы облучения проведен на основании концентрации ³ Н в крови, головном мозге, печени, мышцах, легких, селезенке и почках через регулярные промежутки времени после начала перорального введения НТО, исходя из концентрации ³ Н и средней энергии распада ³ Н (5.69 кэВ/г)	[221, 222]	2	2	
Лабораторный	Крыса, мышь	НТО	НТО	МПД рассчитана как произведение коэффициента 3.06×10 ⁵ на экспоненту средней удельной активности организма за сутки и числа суток после введения ³ Н	[223]	2	2	
Лабораторный	Крыса	Меченые прекурсоры	³ Н-тимидин	Мощность поглощенной органами и тканями дозы рассчитывали согласно [224]	[225]	1	1	Кинетика
Лабораторный	Крыса	НТО	НТО	МПД рассчитывали на основании ОБЭ к ү-излучению с допущениями, что вклад ОВТ составляет 9.5% суммарной дозы, 2/3 дозы в ОВТ создается после 10 суток, поэтому мощность за первые сутки следует увеличить на 5%	[226]	1	1	
Лабораторный	Крыса	НТО	НТО	МПД ³ Н находили графически, приняв за основу эффект γ-облучения	[227]	1	1	
Лабораторный	Крыса	НТО	НТО	Методика оценки МПД не указана	[228]	1	1	Есть доза
Лабораторный	Крыса	НТО	НТО	МПД рассчитана на основании концентрации ³ Н в крови на основании допущений, что (1) концентрация НТО в 1 мкКи/мл дает МПД 0.291 рад/день, (2) вода составляет 70–80% мягких тканей; (3) ³ Н распределен в организме равномерно, (4) коэффициент для оценки	[229]	1	1	

				дополнительной дозы от ³ H, включенного в неводные				
				компоненты клеток, составляет 0.3, как указано в [154]				
Лабораторный	Крыса	НТО	НТО	ОБЭ к гамма-излучению по выживаемости (1.2–1.3)	[230]	1	0	

Примечание. МПД — мощность поглощенной дозы; МД — мощность дозы; ОБЭ — относительная биологическая эффективность; одно- (SSB) и двухцепочечные (DSB) разрывы ДНК; НТО — тритиевая несвязанная вода; ТГWТ — тритий свободной воды тканей; ОВТ — органически связанный ³H; DCC — коэффициент преобразования дозы; ICRP — Международная комиссия по радиологической защите; WHO — Всемирная организация здравоохранения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Robertson J.S., Hughes W.L. Intranuclear irradiation with tritium-labeled thymidine // Proc. of the First National Biophysics Conference / Eds. Quastler H., Morowitz H. J. New Haven: Yale University Press, 1959. P. 278–283.
- 2. Cronkite E.P., Fliedner T.M., Killmann S.A. et al. Tritium-labelled thymidine (H³TDR): its somatic toxicity and use in the study of growth rates and potentials in normal and malignant tissue of man and animals // Proc. of the Symp. on the Detection and Use of Tritium in the Physical and Biological Sciences. V. II. Tritium in the Physical and Biological Sciences. Vienna: IAEA, 1962. P. 189–209.
- 3. *Goodheart C.R.* Radiation dose calculation in cells containing intranuclear tritium // Radiation Research. 1961. V. 15. № 6. P. 767–773.
- 4. *Moiseenko V., Hamm R., Waker A.* et al. Calculation of radiation-induced DNA damage from photons and tritium beta-particles. Part I: Model formulation and basic results // Radiation and Environ. Biophysics. 2001. V. 40. № 1. P. 23–31.
- 5. *Greiff D*. The effect of beta rays (tritium) on the growth of rickettsiae and influenza virus // Proc. of the Symp. on the Detection and Use of Tritium in the Physical and Biological Sciences. V. II. Tritium in the Physical and Biological Sciences. Vienna: IAEA, 1962. P. 155–164.
- 6. Brüggemann J., Giesecke D. Studies on the influence of tritium radiation on anaerobic bacteria from the bovine rumen // Proc. of the Symp. on the Detection and Use of Tritium in the Physical and Biological Sciences. V. II. Tritium in the Physical and Biological Sciences. Vienna: IAEA, 1962. P. 179–187.
- 7. *Greiff D., Powers E.L., Kisieleski W.E.* et al. The effects of x-rays and beta rays (tritium) on the growth of *Rickettsia mooseri* and *Rickettsia akari* in embryonate eggs // J. of Experim. Medicine. 1960. V. 111. № 6. P. 841–849.
- 8. *Higo K.-I., Yamamoto O.* Effect of tritiated water on growth of a radiation-sensitive strain of *Escherichia coli*, NG30 // J. of Radiation Research. 1985. V. 26. № 3. P. 353–359.

- 9. *Inomata T., Higuchi M.* Accumulation and retention of tritium (tritiated water) in *Rhodopseudomonas spheroides* under aerobic condition // Radiation and Environ. Biophysics. 1982. V. 20. № 2. P. 123–136.
- 10. *Bockrath R., Person S., Funk F.* Calculated energy deposits from the decay of tritium and other radioisotopes incorporated into bacteria // Biophysical J. 1968. V. 8. № 9. P. 1027–1036.
- 11. Sands J.A., Snipes W., Person S. Mutagenesis by tritium: decays originating from growth and storage in tritiated water and from chemostatic growth in the presence of tritiated nucleic acid precursors // Int. J. of Radiation Biology. 1972. V. 22. № 2. P. 197–202.
- 12. *Ise T., Kato T., Glickman B.W.* Spectra of base substitution mutations induced in *Escherichia coli* by tritiated water and the decay of incorporated tritiated thymidine // Radiation Research. 1984. V. 97. № 1. P. 200–210.
- 13. *Lai J.-l.*, *Li Z.-g.*, *Han M.-w.* et al. Analysis of environmental biological effects and OBT accumulation potential of microalgae in freshwater systems exposed to tritium pollution // Water Research. 2024. V. 250. Art. 121013.
- 14. *Rozhko T.V.*, *Badun G.A.*, *Razzhivina I.A.* et al. On the mechanism of biological activation by tritium // J. of Environ. Radioactivity. 2016. V. 157. P. 131–135.
- 15. Rozhko T.V., Guseynov O.A., Guseynova V.E. et al. Is bacterial luminescence response to low-dose radiation associated with mutagenicity? // J. of Environ. Radioactivity. 2017. V. 177. P. 261–265.
- 16. Rozhko T.V., Nogovitsyna E.I., Badun G.A. et al. Reactive oxygen species and low-dose effects of tritium on bacterial cells // J. of Environ. Radioactivity. 2019. V. 208–209. Art. 106035.
- 17. *Rozhko T.V.*, *Kolesnik O.V.*, *Badun G.A*. et al. Humic substances mitigate the impact of tritium on luminous marine bacteria. involvement of reactive oxygen species // Int. J. of Molecular Sciences. 2020. V. 21. № 18. Art. 6783.

- 18. *Rozhko T.V.*, *Nemtseva E.V.*, *Gardt M.V.* et al. Enzymatic responses to low-intensity radiation of tritium // Int. J. of Molecular Sciences. 2020. V. 21. № 22. Art. 8464.
- 19. *Sadaie Y., Inoue T., Mochizuki H.* et al. Efficiencies of DNA inactivation and mutation induction by tritiated glycerol in bacterial systems // J. of Radiation Research. 1981. V. 22. № 4. P. 387–394.
- 20. *Selivanova M.A., Mogilnaya O.A., Badun G.A.* et al. Effect of tritium on luminous marine bacteria and enzyme reactions // J. of Environ. Radioactivity. 2013. V. 120. P. 19–25.
- 21. *Ichimasa M., Ichimasa Y., Yagi Y.* et al. Oxidation of atmospheric molecular tritium in plant leaves, lichens and mosses // J. of Radiation Research. 1989. V. 30. № 4. P. 323–329.
- 22. *Wood T.H.*, *Rosenberg A.M.* Freezing in yeast cells // Biochimica et Biophysica Acta. 1957. V. 25. P. 78–87.
- 23. *Dobson R.L.*, *Cooper M.F.* Tritium toxicity: effect of low-level ³HOH exposure on developing female germ cells in the mouse // Radiation Research. 1974. V. 58. № 1. P. 91–100.
- 24. *Ito T., Kobayashi K.* Mutagenesis in yeast cells by storage in tritiated water // Radiation Research. 1978. V. 76. № 1. P. 139–144.
- 25. *Mundkur B.D.* The nucleus of *Saccharomyces*: a cytological study of a frozendried polyploid series // J. of Bacteriology. 1954. V. 68. № 5. P. 514–529.
- 26. Ahnström G., Ehrenberg L., Hussain S. et al. On the killing and mutagenic action in E. coli associated with the Auger effect during 125 I decay // Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1970. V. 10. N_{\odot} 3. P. 247–250.
- 27. *Королев В.Г., Иванов Е.Л., Грачева Л.М.* Генетические эффекты распада трития, инкорпорированного в клетки дрожжей *Saccharomyces cerevisiae*. Сообщ. І. Общая схема и анализ неполярно комплементирующих мутаций // Генетика. 1980. Т. 24. № 2. С. 230–238.

- 28. *Иванов Е., Королев В.* Генетические эффекты распада трития, инкорпорированного в клетки дрожжей *Saccharomyces cerevisiae*. Сообщ. II. Мутагенное действие ³H-аланина и природа индуцированных мутаций // Генетика. 1981. Т. 17. № 2. С. 268–273.
- 29. *Иванов Е., Королев В.* Генетические эффекты распада трития, инкорпорированного в клетки дрожжей *Saccharomyces cerevisiae*. Сообщ. III. Летальный, мутагенный эффекты и природа мутаций, индуцированных распадом трития в 5-м положении тимина // Генетика. 1981. Т. 17. № 2. С. 274–281.
- 30. *Иванов Е., Королев В.* Генетические эффекты распада трития, инкорпорированного в клетки дрожжей *Saccharomyces cerevisiae*. Сообщ. IV. Летальный, мутагенный эффекты и природа мутаций, индуцированных распадом трития в 5-м положении цитозина // Генетика. 1981. Т. 17. № 6. С. 1000–1008.
- 31. *Иванов Е., Королев В.* Генетические эффекты распада трития, инкорпорированного в клетки дрожжей *Saccharomyces cerevisiae*. Сообщ. V. Летальный, мутагенный эффекты и природа мутаций, индуцированных распадом трития в 6-м положении тимина // Генетика. 1982. Т. 18. № 3. С. 368–376.
- 32. *Ichimasa M., Suzuki M., Obayashi H.* et al. *In vitro* determination of oxidation of atmospheric tritium gas in vegetation and soil in Ibaraki and Gifu, Japan // J. of Radiation Research. 1999. V. 40. № 3. P. 243–251.
- 33. *Bonotto S., Ndoite I.O., Nuyts G.* et al. Study of the distribution and biological effects of ³H in the algae *Acetabularia*, *Chlamydomonas* and *Porphyra* // Current Topics in Radiation Research Quarterly. 1978. V. 12. № 1–4. P. 115–132.
- 34. *Huang Y., Qin M., Lai J.* et al. Assessing OBT formation and enrichment: ROS signaling is involved in the radiation hormesis induced by tritium exposure in algae // J. of Hazardous Materials. 2022. V. 443. Part A. Art. 130159.

- 35. Beaugelin-Seiller K., Jasserand F., Garnier-Laplace J. et al. EDEN: Software to calculate the dose rate of energy for the non-human biota, due to the presence of radionuclides in the environment // WIT Transactions on Ecology and the Environment. 2004. V. 69. 10 p.
- 36. *Ulanovsky A., Pröhl G., Gómez-Ros J.* Methods for calculating dose conversion coefficients for terrestrial and aquatic biota // J. of Environ. Radioactivity. 2008. V. 99. № 9. P. 1440–1448.
- 37. *Réty C.*, *Gilbin R.*, *Gomez E.* Induction of reactive oxygen species and algal growth inhibition by tritiated water with or without copper // Environ. Toxicology. 2012. V. 27. № 3. P. 155–165.
- 38. Komatsu K., Higuchi M., Sakka M. Accumulation of tritium in aquatic organisms through a food chain with three trophic levels // J. of Radiation Research. 1981. V. 22. № 2. P. 226–241.
- 39. *Mao L., Miao Y., Dong S.* et al. Algae induced tritium organification promotes human exposure risk // Research Square. 2023. Preprint. 33 p.
- 40. Sevriukova O., Kanapeckaite A., Lapeikaite I. et al. Charophyte electrogenesis as a biomarker for assessing the risk from low-dose ionizing radiation to a single plant cell // J. of Environ. Radioactivity. 2014. V. 136. P. 10–15.
- 41. *Shibata T., Ishikawa Y.* Deuterium transfer analysis including food chain from seawater into abalone // Radiation Protection Dosimetry. 2022. V. 198. № 13–15. P. 1125–1130.
- 42. *Bondareva L., Kudryasheva N., Tananaev I.* Tritium: doses and responses of aquatic living organisms (model experiments) // Environments. 2022. V. 9. № 4. Art. 51.
- 43. *Synzynys B.I., Momot O.A., Mirzeabasov O.A.* et al. Radiological problems of tritium // KnE Engineering. 2018. V. 3. № 3. P. 249–260.
- 44. *Бондарева Л.Г.* Исследования по накоплению трития некоторыми водными организмами: икра и рыба (*Carassius gibelio*), водные растения

- (*Ceratophyllum* и *Lemna*) // Радиац. биология. Радиоэкология. 2020. Т. 60. № 1. С. 71–81.
- 45. *Гудков Д.И.* Тритий в пресных водах Украины и его действие на гидробионтов. Автореф. дис. ... канд. биол. наук. Киев, 1995. 24 с.
- 46. *Лащенова Т.Н., Бондарева Л.Г., Фёдорова Н.Е.* и др. Выявление путей поступления трития в пресноводные организмы при эксплуатации горно-химического комбината // Гигиена и санитария. 2017. Т. 96. № 9. С. 844—848.
- 47. *Atarashi-Andoh M., Amano H., Kakiuchi H.* et al. Formation and retention of organically bound deuterium in rice in deuterium water release experiment // Health Physics. 2002. V. 82. № 6. P. 863–868.
- 48. *Garland J.A., Ameen M.* Incorporation of tritium in grain plants // Health Physics. 1979. V. 36. № 1. P. 35–38.
- 49. Gifford Jr E.M. Incorporation of ³H-thymidine into shoot and root apices of Ceratopteris thalictroides // Am. J. of Botany. 1960. V. 47. № 10. P. 834–837.
- 50. Gifford E.M. Jr. Incorporation of tritiated-thymidine into nuclei of shoot apical meristems // Science. 1960. V. 131. № 3397. P. 360–360.
- 51. *Ichimasa Y., Ichimasa M., Jiang H.* et al. *In vitro* determination of HT oxidation activity and tritium concentration in soil and vegetation during the chronic HT release experiment at Chalk River // Fusion Technology. 1995. V. 28. № 3P1. P. 877–882.
- 52. *Ichimasa M., Weng C., Ara T.* et al. Organically bound deuterium in rice and soybean after exposure to heavy water vapor as a substitute for tritiated water // Fusion Science and Technology. 2002. V. 41. № 3P2. P. 393–398.
- 53. *Kim C.-K.*, *Han M.-J.* Dose assessment and behavior of tritium in environmental samples around Wolsong nuclear power plant // Applied Radiation and Isotopes. 1999. V. 50. № 4. P. 783–791.
- 54. ICRP Publication 56: Age-dependent doses to members of the public from intake of radionuclides: part 1 // Ann. ICRP. V. 20. № 2. 1990. 134 p.

- 55. Kirchmann R., Gerber G.B., Fagniart E. et al. Accidental release of elemental tritium gas and tritium oxide: models and *in situ* experiments on various plant species // Radiation Protection Dosimetry. 1986. V. 16. № 1–2. P. 107–110.
- 56. *McQuade H.A.* Radiation effects of and ¹⁴C-thymidine // Exp. Cell Research. 1960. V. 21. P. 118–125.
- 57. *McQuade H.A.* Induction of aberrations in meiotic chromosomes of wheat by means of ³H-thymidine // Radiation Research. 1963. V. 20. № 3. P. 451–465.
- 58. *Momoshima N., Kakiuchi H., Okai T.* et al. Tritium in a pine forest ecosystem: relation between fresh pine needles, organic materials on a forest floor and atmosphere // J. of Radioanal. and Nuclear Chemistry. 2000. V. 243. № 2. P. 479–482.
- 59. *Natarajan A*. Chromosome breakage and mitotic inhibition induced by tritiated thymidine in root meristems of *Vicia faba* // Exp. Cell Research. 1961. V. 22. P. 275–281.
- 60. *Rao B.V.R.*, *Rao M.V.K.*, *Raj A.S.* Induction of mitotic abnormalities in *Ornithogalum virens* by tritiated thymidine // Cytologia. 1969. V. 34. № 1. P. 52–56.
- 61. Satoh Y., Imada S., Tani T. et al. Investigation of ratio of carbon to hydrogen (C/H ratio) in agricultural plants for further estimation of their productivity of organically bound tritium // J. of Environ. Radioactivity. 2022. V. 246. Art. 106845.
- 62. *Spencer F.S., Dunstall T.G.* Molecular tritium conversion in vegetation, litter and soil // Radiation Protection Dosimetry. 1986. V. 16. № 1–2. P. 89–93.
- 63. Stein O.L., Quastler H. The effect of tritiated thymidine on the morphogenesis of lateral roots // Proc. of the Symp. on the Detection and Use of Tritium in the Physical and Biological Sciences. V. II. Tritium in the Physical and Biological Sciences. Vienna: IAEA, 1962. P. 149–153.

- 64. *Tani T., Nagai M.* Retention of organically bound deuterium in grass plants exposed to heavy water vapour at different growth stages // Radiation Protection Dosimetry. 2022. V. 198. № 13–15. P. 886–890.
- 65. *Tano S*. Effects of low dose tritiated water and tritium labelled compounds on the induction of somatic mutations in *Tradescantia* // Radiation Protection Dosimetry. 1986. V. 16. № 1–2. P. 141–144.
- 66. *Tano S*. Induced somatic mutations by radiation and chemicals in *Tradescantia* // Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1987. V. 181. № 1. P. 209–214.
- 67. Wimber D.E. Chromosome breakage produced by tritium-labeled thymidine in *Tradescantia paludosa* // Proc. Nat. Acad. Sci. 1959. V. 45. № 6. P. 839–846.
- 68. *Шевченко В.А.* О перестройках хромосом, индуцированных 3 Н-тимидином у *Crepis capillaris* // Генетика. 1971. Т. 7. № 5. С. 15–22.
- 69. Янкаускас А.Б., Ларионова Н.В., Шатров А.Н. Влияние трития на морфоанатомическую структуру растений вида тростник обыкновенный (Phragmites australis) // Радиация и риск. 2021. Т. 30. № 2. С. 133–145.
- 70. Akata N., Kakiuchi H., Shima N. et al. Determination of non-exchangeable organically bound tritium concentration in reference material of pine needles (NIST 1575a) // J. of Radioanal. and Nuclear Chemistry. 2019. V. 319. № 3. P. 1359–1363.
- 71. Brigmon R.L., McLeod K.W., Doman E. et al. The impact of tritium phytoremediation on plant health as measured by fluorescence // J. of Environ. Radioactivity. 2022. V. 255. Art. 107018.
- 72. Durzan D.J., Mia A.J., Wang B.S.P. Effects of tritiated water on the metabolism and germination of jack pine seeds // Canadian J. of Botany. 1971. V. 49. № 12. P. 2139–2149.
- 73. Hirao S., Kakiuchi H., Akata N. et al. Assessing the variability of tissue-free water tritium and non-exchangeable organically bound tritium in pine needles in

- Fukushima using atmospheric titrated water vapor // Science of the Total Environ. 2024. V. 907. Art. 168173.
- 74. *Hisamatsu S.I., Katsumata T.I., Takizawa Y.* Tritium concentrations in pine needle, litter and soil samples // J. of Radiation Research. 1998. V. 39. № 2. P. 129–136.
- 75. *Ichimasa M., Ichimasa Y., Akita Y. In vivo* Fixation of atmospheric tritium gas in pine and zelkova trees and their surroundings // J. of Radiation Research. 1989. V. 30. № 4. P. 330–337.
- 76. Pettitt E.A., Duff M.C., VerMeulen H. Influence of irrigation approaches and spatial geolocation on tritium speciation, uptake and depuration // Chemosphere. 2024. V. 349. Art. 140921.
- 77. *Takashima Y., Momoshima N., Inoue M.* et al. Tritium in pine needles and its significant sources in the environment // Int. J. of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes. 1987. V. 38. № 4. P. 255–261.
- 78. *Easdown J., Marsden J., Paradis K.* et al. A preliminary account of brain growth in postlarval *Nereis virens* (Polychaeta: Annelida): a ³H-thymidine study // Canadian J. of Zoology. 1980. V. 58. № 11. P. 2141–2149.
- 79. Lattaud C., Marcel R. Stimulating influence of cerebral ganglia on *in vitro* incorporation of tritiated leucine into ovaries of *Eisenia fetida* Sav. (Annelida: Oligochaeta) // Zoological Science. 1989. V. 6. № 4. P. 741–748.
- 80. *Marsden J.R., Coleman C., Richard R.* et al. Uptake of tritium-labelled biogenic amines by the prostomium of the polychaete *Nereis virens* (Sars) (Annelida) // Tissue and Cell. 1981. V. 13. № 2. P. 269–282.
- 81. *Brown J.E., Alfonso B., Avila R.* et al. The ERICA Tool // J. Environ. Radioact. 2008. V. 99. № 9. P. 1371–1383.
- 82. *Nushtaeva V.E.*, *Spiridonov S.I.*, *Mikailova R.A.* et al. Radiation dose assessment for representative biota organisms in the locale of NPP with VVER-1200 // Atomic Energy. 2020. V. 128. № 4. P. 251–258.

- 83. *Shapiro J.* Radiation protection: a guide for scientists, and physicians. Cambridge, Massachusetts: Harvard University Press, 1972. 339 p.
- 84. *Abbott D.T.* The effects of tritiated seawater on development of the goose barnacle *Pollicipes polymerus*. M.S. Thesis, Oregon State University, 1975. 54 p.
- 85. *Abbott D.T., Mix M.* Radiation effects of tritiated seawater on development of the goose barnacle, *Pollicipes polymerus* // Health Physics. 1979. V. 36. № 3. P. 283–287.
- 86. Dallas L.J., Bean T.P., Turner A. et al. Exposure to tritiated water at an elevated temperature: genotoxic and transcriptomic effects in marine mussels (M. galloprovincialis) // J. of Environ. Radioactivity. 2016. V. 164. P. 325–336.
- 87. *Strand J.A., Fujihara M., Burdett R.* et al. Suppression of the primary immune response in rainbow trout, *Salmo gairdneri*, sublethally exposed to tritiated water during embryogenesis // J. of the Fish. Board of Canada. 1977. V. 34. № 9. P. 1293–1304.
- 88. *Hagger J.A., Atienzar F.A., Jha A.N.* Genotoxic, cytotoxic, developmental and survival effects of tritiated water in the early life stages of the marine mollusc, *Mytilus edulis* // Aquatic Toxicology. 2005. V. 74. № 3. P. 205–217.
- 89. *Jaeschke B.C.*, *Millward G.E.*, *Moody A.J.* et al. Tissue-specific incorporation and genotoxicity of different forms of tritium in the marine mussel, *Mytilus edulis* // Environ. Pollution. 2011. V. 159. № 1. P. 274–280.
- 90. *Jha A.N., Dogra Y., Turner A.* et al. Impact of low doses of tritium on the marine mussel, *Mytilus edulis*: genotoxic effects and tissue-specific bioconcentration // Mutation Research/Genetic Toxicology and Environ. Mutagenesis. 2005. V. 586. № 1. P. 47–57.
- 91. *Jha A.N., Dogra Y., Turner A.* et al. Are low doses of tritium genotoxic to *Mytilus edulis?* // Marine Environ. Research. 2006. V. 62. P. S297–S300.
- 92. Cheney M.A., Keil D., Qian S. Uptake and effect of mercury on amino acid losses from the gills of the bivalve mollusks Mytilus californianus and Anodonta californiensis // J. of Col. and Interface Science. 2008. V. 320. № 2. P. 369–375.

- 93. *Pearson H.B.C., Dallas L.J., Comber S.D.W.* et al. Mixtures of tritiated water, zinc and dissolved organic carbon: assessing interactive bioaccumulation and genotoxic effects in marine mussels, *Mytilus galloprovincialis* // J. of Environ. Radioactivity. 2018. V. 187. P. 133–143.
- 94. *Slomberg D.L., Auffan M., Payet M.* et al. Tritiated stainless steel (nano)particle release following a nuclear dismantling incident scenario: significant exposure of freshwater ecosystem benthic zone // J. of Hazardous Materials. 2024. V. 465. Art. 133093.
- 95. *Hine G.J., Brownell G.L.* Radiation dosimetry. N.Y.: Academic Press, 1956. 932 p.
- 96. *Blaylock B*. The production of chromosome aberration in *Chironomus riparius* (Diptera: Chironomidae) by tritiated water // The Canadian Entomologist. 1971. V. 103. № 3. P. 448–453.
- 97. *Kaplan W., Gugler H., Kidd K.* et al. Nonrandom distribution of lethals induced by tritiated thymidine in *Drosophila melanogaster* // Genetics. 1964. V. 49. № 4. P. 701–714.
- 98. Adam-Guillermin C., Pereira S., Della-Vedova C. et al. Genotoxic and reprotoxic effects of tritium and external gamma irradiation on aquatic animals // Rev. Environ. Contam. Toxicology / Ed. Whitacre D.M. N.Y.: Springer, 2012. P. 67–103.
- 99. Arcanjo C., Armant O., Floriani M. et al. Tritiated water exposure disrupts myofibril structure and induces mis-regulation of eye opacity and DNA repair genes in zebrafish early life stages // Aquatic Toxicology. 2018. V. 200. P. 114–126.
- 100. Beaugelin-Seiller K., Jasserand F., Garnier-Laplace J. et al. Modeling radiological dose in non-human species: principles, computerization, and application // Health Physics. 2006. V. 90. № 5. P. 485–493.

- 101. *Arcanjo C., Maro D., Camilleri V.* et al. Assessing tritium internalisation in zebrafish early life stages: importance of rapid isotopic exchange // J. of Environ. Radioactivity. 2019. V. 203. P. 30–38.
- 102. Arcanjo C., Maro D., Camilleri V. et al. Errata: Assessing tritium internalisation in zebrafish early life stages: importance of rapid isotopic exchange // J. of Environ. Radioactivity. 2022. V. 242. Art. 106757.
- 103. Arcanjo C., Adam-Guillermin C., Murat El Houdigui S. et al. Effects of tritiated water on locomotion of zebrafish larvae: a new insight in tritium toxic effects on a vertebrate model species // Aquatic Toxicology. 2020. V. 219. Art. 105384.
- 104. *Hunt J., Bailey T., Reese A.* The human body retention time of environmental organically bound tritium // J. of Radiological Protection. 2009. V. 29. № 1. P. 23–36.
- 105. Gagnaire B., Adam-Guillermin C., Festarini A. et al. Effects of in situ exposure to tritiated natural environments: a multi-biomarker approach using the fathead minnow, *Pimephales promelas* // Science of the Total Environ. 2017. V. 599–600. P. 597–611.
- 106. *Beaton E., Gosselin I., Festarini A.* et al. Correlated responses for DNA damage, phagocytosis activity and lysosomal function revealed in a comparison between field and laboratory studies: fathead minnow exposed to tritium // Science of the Total Environ. 2019. V. 662. P. 990–1002.
- 107. Bondareva L.G. Accumulation and retention of tritium (tritiated water) in larval fish (Carassius gibelio) and radio toxicological effect // Open Acc. J. of Toxicol. 2017. V. 2. № 1. Art. 555580.
- 108. *Bondareva L.G.* Tritium in the freshwater ecosystem of the Yenisei River: behavior, accumulation, and transformation // Tritium: Advance in Research and Application / Ed. Jankovic M.M. N.Y.: Nova Science Publishers, 2018. P. 47–98.

- 109. Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards. Technical reports series № 332. Vienna: IAEA, 1992. 88 p.
- 110. ICRP Publication 136: dose coefficients for non-human biota environmentally exposed to radiation // Ann. ICRP. 2017. V. 46. № 2. 136 p.
- 111. Environmental Isotope Data № 6: World Survey of Isotope Concentration in Precipitation (1972–1975). Technical Reports Series № 192. Vienna: IAEA, 1979. 210 p.
- 112. *Di Lombo M.S., Cavalie I., Camilleri V.* et al. Tritiated thymidine internalization in zebrafish early life stages: joint use of experimental procedures and microdosimetry // Radiation Research. 2023. V. 199. № 4. P. 373–384.
- 113. *Ueno A.M.* Incorporation of tritium from tritiated water into nucleic acids of *Oryzias latipes* eggs // Radiation Research. 1974. V. 59. № 3. P. 629–637.
- 114. *Etoh H., Hyodo-Taguchi Y.* Effects of tritiated water on germ cells in medaka embryos // Radiation Research. 1983. V. 93. № 2. P. 332–339.
- 115. *Hyodo-Taguchi Y., Etoh H.* Effects of tritiated water on the testicular stem cells in medaka. I. Diminished reproductive capacity at 2 months following exposure [*Oryzias latipes*]. Chiba: Nat. Inst. Radiol. Sciences, 1986. P. 35–36.
- 116. *Hyodo-Taguchi Y., Etoh H.* Vertebral malformations in medaka (teleost fish) after exposure to tritiated water in the embryonic stage // Radiation Research. 1993. V. 135. № 3. P. 400–404.
- 117. Festarini A., Shultz C., Stuart M. et al. Cellular responses to tritium exposure in rainbow trout: HTO- and OBT-spiked feed exposure experiments // CNL Nuclear Review. 2016. V. 5. № 1. P. 155–172.
- 118. Festarini A., Shultz C., Stuart M. et al. Cellular responses in rainbow trout (Oncorhynchus mykiss) reared in tritiated water and/or fed organically bound tritium // Applied Radiation and Isotopes. 2019. V. 151. P. 217–225.

- 119. *Gagnaire B., Arcanjo C., Cavalié I.* et al. Tritiated water exposure in zebrafish (*Danio rerio*): effects on the early-life stages // Environ. Toxicology and Chemistry. 2020. V. 39. № 3. P. 648–658.
- 120. *Hyodo-Taguchi Y., Egami N.* Damage to spermatogenic cells in fish kept in tritiated water // Radiation Research. 1977. V. 71. № 3. P. 641–652.
- 121. ICRP Publication 10: Evaluation of radiation doses to body tissues: from internal contamination due to occupational exposure. Oxford: Pergamon Press, 1968. 26 p.
- 122. *Ichikawa R., Suyama I.* Effects of Tritiated water on the embryonic development of two marine teleosts // Bul. of the Jap. Soc. of Sci Fish. 1974. V. 40. № 8. P. 819–824.
- 123. *Kim S.B., Shultz C., Stuart M.* et al. Organically bound tritium (OBT) formation in rainbow trout (*Oncorhynchus mykiss*): HTO and OBT-spiked food exposure experiments // Applied Radiation and Isotopes. 2013. V. 72. P. 114–122.
- 124. *Kim S.B.*, *Shultz C.*, *Stuart M.* et al. Tritium uptake in rainbow trout (*Oncorhynchus mykiss*): HTO and OBT-spiked feed exposures simultaneously // Applied Radiation and Isotopes. 2015. V. 98. P. 96–102.
- 125. Kim S.B., Rowan D., Chen J. et al. Tritium in fish from remote lakes in northwestern Ontario, Canada // J. of Environ. Radioactivity. 2018. V. 195. P. 104–108.
- 126. *Magali S.D.L., Isabelle C., Virginie C.* et al. Tritiated thymidine induces developmental delay, oxidative stress and gene overexpression in developing zebrafish (*Danio rerio*) // Aquatic Toxicology. 2023. V. 265. Art. 106766.
- 127. Nayak S.R., D'Souza R.S., Purushotham M.M. et al. Determination of organically bound tritium (OBT) concentration in fish by thermal oxidation and liquid scintillation counting method // Health Physics. 2021. V. 120. № 1. P. 1–8.
- 128. Strand J.A., Templeton W.L., Tangen E.G. Accumulation and retention of tritium (tritiated water) in embryonic and larval fish, and radiation effect // 3rd Int. Symp. of Radioecology. Oak Ridge: U.S. AEC, 1971. 23 p.

- 129. Strand J.A., Fujihara M.P., Poston T.M. et al. permanence of suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryogenesis // Radiation Research. 1982. V. 91. № 3. P. 533–541.
- 130. *Stuart M., Festarini A., Schleicher K.* et al. Biological effects of tritium on fish cells in the concentration range of international drinking water standards // Int. J. of Radiation Biology. 2016. V. 92. № 10. P. 563–571.
- 131. Suyama I., Etoh H., Maruyama T. et al. Effects of ionizing radiation on the early development of *Oryzias* eggs // J. of Radiation Research. 1981. V. 22. № 1. P. 125–133.
- 132. *Tani T., Ishikawa Y.* A deuterium tracer experiment for simulating accumulation and elimination of organically bound tritium in an edible flatfish, olive flounder // Science of the Total Environ. 2023. V. 903. Art. 166792.
- 133. *Audette-Stuart M., Yankovich T.* Bystander effects in bullfrog tadpoles // Radioprotection. 2011. V. 46. № 6. P. S497–S502.
- 134. *Audette-Stuart M., Kim S.B., McMullin D.* et al. Adaptive response in frogs chronically exposed to low doses of ionizing radiation in the environment // J. of Environ. Radioactivity. 2011. V. 102. № 6. P. 566–573.
- 135. Audette-Stuart M., Ferreri C., Festarini A. et al. Fatty acid composition of muscle tissue measured in amphibians living in radiologically contaminated and non-contaminated environments // Radiation Research. 2012. V. 178. № 3. P. 173–181.
- 136. Audette-Stuart M., Kim S.-B., McMullin D. et al. Measuring adaptive responses following chronic and low dose exposure in amphibians // Biomarkers of Radiation in the Environment / Eds. Wood M.D., Mothersill C.E., Tsakanova G. et al. Dordrecht: Springer, 2022. P. 205–221.
- 137. Sauer M.E., Walker B.E. Radiation injury resulting from nuclear labeling with tritiated thymidine in the chick embryo // Radiation Research. 1961. V. 14. № 5. P. 633–642.

- 138. *Yurkewicz L., Lauder J.M., Marchi M.* et al. ³H-thymidine long survival autoradiography as a method for dating the time of neuronal origin in the chick embryo: the locus coeruleus and cerebellar Purkinje cells // J. of Comparative Neurology. 1981. V. 203. № 2. P. 257–267.
- 139. *Bannister L., Serran M., Bertrand L.* et al. Environmentally relevant chronic low-dose tritium and gamma exposures do not increase somatic intrachromosomal recombination in pKZ1 mouse spleen // Radiation Research. 2016. V. 186. № 6. P. 539–548.
- 140. *Bateman A., Chandley A.C.* Mutations induced in the mouse with tritiated thymidine // Nature. 1962. V. 193. № 4816. P. 705–706.
- 141. Bertho J.-M., Kereselidze D., Manens L. et al. HTO, tritiated amino acid exposure and external exposure induce differential effects on hematopoiesis and iron metabolism // Scientific Reports. 2019. V. 9. № 1. Art. 19919.
- 142. *Brooks A., Carsten A., Mead D.K.* et al. The effect of continuous intake of tritiated water (HTO) on the liver chromosomes of mice // Radiation Research. 1976. V. 68. № 3. P. 480–489.
- 143. *Bryant B.J.* The incorporation of tritium from thymidine into proteins of the mouse // J. of Cell Biology. 1966. V. 29. № 1. P. 29–36.
- 144. *Burki H.J., Okada S.* A Comparison of the killing of cultured mammalian cells induced by decay of incorporated tritiated molecules at −196°C // Biophysical J. 1968. V. 8. № 4. P. 445–456.
- 145. *Cahill D.F.*, *Yuile C.L*. Tritium: some effects of continuous exposure *in utero* on mammalian development // Radiation Research. 1970. V. 44. № 3. P. 727–737.
- 146. Carsten A.L., Commerford S.L. Dominant lethal mutations in mice resulting from chronic tritiated water (HTO) ingestion // Radiation Research. 1976. V. 66. № 3. P. 609–614.
- 147. Carsten A.L., Cronkite E.P. Comparison of late effects of single x-ray exposure, chronic tritiated water ingestion, and chronic cesium-137 gamma

- exposure in mice // Int. Symp. on Biological Implications of Radionuclides Released from Nuclear Industries. Vienna: IAEA, 1979. P. 1–12.
- 148. Carsten A.L., Commerford S.L., Cronkite E.P. The genetic and late somatic effects of chronic tritium ingestion in mice // Current Topics in Radiation Research Quarterly. 1978. V. 12. № 1–4. P. 212–224.
- 149. Carsten A., Brooks A., Commerford S. et al. Genetic and somatic effects in animals maintained on tritiated water // Proc. of the Workshop on Tritium Radiobiology and Health Physics, Chiba-Shi, Japan, 27-28 October 1981 / Eds. Matsudairia H., Yamaguchi T., Nakazawa T., Saito C. Upton: Brookhaven National Laboratory, 1981. P. 101–119.
- 150. Carter E.I., Valli V.E., McSherry B.J. et al. The kinetics of hematopoiesis in the light horse. I. The lifespan of peripheral blood cells in the normal horse // Can. J. Comp. Med. 1974. V. 38. № 3. P. 303–313.
- 151. Cleaver J.E., Thomas G.H., Burki H.J. Biological damage from intranuclear tritium: DNA strand breaks and their repair // Science. 1972. V. 177. № 4053. P. 996–998.
- 152. Clerici L., Carroll M.J., Merlini M. et al. The toxicity of tritium: the effects of tritiated amino-acids on preimplanted mouse embryos // Int. J. of Radiation Biology. 1984. V. 45. № 3. P. 245–250.
- 153. *Dobson R.L.* How toxic is tritium? Relevance of high-dose results and gamma-ray data to evaluating low-level, chronic exposure // Environ. Health Perspectives. 1978. V. 22. P. 145–147.
- 154. *Dobson R.L., Kwan T.C.* The RBE of tritium radiation measured in mouse oocytes: increase at low exposure levels // Radiation Research. 1976. V. 66. № 3. P. 615–625.
- 155. Flegal M., Blimkie M., Roch-Lefevre S. et al. The lack of cytotoxic effect and radioadaptive response in splenocytes of mice exposed to low level internal β-particle irradiation through tritiated drinking water *in vivo* // Int. J. of Molecular Sciences. 2013. V. 14. № 12. P. 23791–23800.

- 156. *Galeriu D., A. Beresford N., Takeda H.* et al. Towards a model for the dynamic transfer of tritium and carbon in mammals // Radiation Protection Dosimetry. 2003. V. 105. № 1–4. P. 387–390.
- 157. *Gragtmans N., Myers D., Johnson J.* et al. Occurrence of mammary tumors in rats after exposure to tritium beta rays and 200-kVp X rays // Radiation Research. 1984. V. 99. № 3. P. 636–650.
- 158. *Greulich R.C.* Deleterious influence of orally administered tritiated thymidine on reproductive capacity of mice // Radiation Research. 1961. V. 14. № 1. P. 83–95.
- 159. ICRP Publication 107: nuclear decay data for dosimetric calculations // Ann. Ann. ICRP. 2008. V. 38. № 3. 123 p.
- 160. Guidelines for drinking-water quality. Fourth edition incorporating the first addendum. Geneva: World Health Organization, 2017. 631 p.
- 161. *Guéguen Y., Priest N.D., Dublineau I.* et al. *In vivo* animal studies help achieve international consensus on standards and guidelines for health risk estimates for chronic exposure to low levels of tritium in drinking water // Environ. and Molecular Mutagenesis. 2018. V. 59. № 7. P. 586–594.
- 162. *Ichimasa Y., Ichimasa M., Shiba T.* et al. Fixation of tritium gas by rats // Radiation Protection Dosimetry. 1986. V. 16. № 1–2. P. 127–130.
- 163. *Ichimasa Y., Tanabe K., Ichimasa M.* et al. Absorption of tritiated water vapor by rat // J. of Radiation Research. 1986. V. 27. № 3. P. 267–276.
- 164. *Ichimasa Y., Tobita T., Ichimasa M.* et al. *In vitro* determination of age dependence of oxidation of tritium gas in rats // Radiation Protection Dosimetry. 1994. V. 53. № 1–4. P. 339–342.
- 165. *Ichimasa Y., Takano H., Uda T.* et al. Transfer of tritium from ³H-thymidine, ³H-leucine, ³H-glucose, and tritiated water into mouse tissue DNA during long-term exposure // Fusion Science and Technology. 2002. V. 41. № 3P2. P. 417–421.

- 166. *Ijiri K., Morikawa N., Shiroya T.* Cell death induced by tritiated water in mouse intestine studied in a new tritium safety clean cabinet // Radiation Protection Dosimetry. 1986. V. 16. № 1–2. P. 169–172.
- 167. *Ijiri K*. Cell death (apoptosis) in mouse intestine after continuous irradiation with γ -rays and with β -rays from tritiated water // Radiation Research. 1989. V. 118. № 1. P. 180–191.
- 168. *Johnson J., Myers D., Jackson J.* et al. Relative biological effectiveness of tritium for induction of myeloid leukemia in CBA/H mice // Radiation Research. 1995. V. 144. № 1. P. 82–89.
- 169. *Killen H.M., Carroll J.* The effects of tritium on embryo development: the embryotoxic effects of [³H]-tryptophan // Int. J. of Radiation Biology. 1989. V. 56. № 2. P. 139–149.
- 170. Kozlowski S.B., Haines J.W., Harrison J.D., Cox R. In utero haemopoietic sensitivity to alpha, beta or X-irradiation in CBA/H mice // Int. J. of Radiation Biology. 2001. V. 77. № 7. P. 805–815.
- 171. *Tsuchiya T., Norimura T., Yamamoto H.* et al. Estimation of absorbed dose of beta radiation into the critical tissues by a single injection of tritiated water // J. of UOEH. 1988. V. 10. № 4. P. 403–409.
- 172. *Kunugita N., Dohi S., Yamamoto H.* et al. Biological assessment of the enhancement of tritium excretion by administration of diuretics and excessive water in mice // J. of Radiation Research. 1990. V. 31. № 4. P. 361–374.
- 173. Laskey J.W., Bursian S.J. Some effects of chronic tritium exposure during selected ages in the rat // Radiation Research. 1976. V. 67. № 2. P. 314–323.
- 174. *Yamaguchi T., Muraiso C., Furuno-Fukushi I.* et al. Water content in cultured mammalian cells for dosimetry of beta-rays from tritiated water // J. of Radiation Research. 1990. V. 31. № 4. P. 333–339.
- 175. *Li H., Yin Y., Liu J.* et al. Hydrogen-rich water attenuates the radiotoxicity induced by tritium exposure in vitro and *in vivo* // J. of Radiation Research. 2020. V. 62. № 1. P. 34–45.

- 176. *Marin G., Prescott D.M.* The frequency of sister chromatid exchanges following exposure to varying doses of ³H-thymidine or x-rays // J. of Cell Biology. 1964. V. 21. № 2. P. 159–167.
- 177. *Müller W.U., Streffer C., Molls M.* et al. Radiotoxicities of [³H]-thymidine and of [³H]-arginine compared in mouse embryos *in vitro* // Radiation Research. 1987. V. 110. № 2. P. 192–198.
- 178. Müller W.U., Heckeley N., Streffer C. Effects of cell cycle specific exposure to ³H-thymidine or ³H-arginine on development and cell proliferation of mouse embryos // Radiation and Environ. Biophysics. 1996. V. 35. № 4. P. 267–271.
- 179. *Nakamura N*. RBE of tritium beta-rays for cell killing of normal human cells in vitro // Proc. 3rd Japan–US Workshop on Tritium Radiobiology and Health Physics. 1989. P. 159–163.
- 180. *Nagashima H., Hayashi Y., Sakamoto Y.* et al. Induction of somatic mutations by low concentrations of tritiated water (HTO): evidence for the possible existence of a dose-rate threshold // J. of Radiation Research. 2021. V. 62. № 4. P. 582–589.
- 181. *Nagashima H., Hayashi Y., Tanimoto S.* et al. Dose and dose-rate dependence of DSB-type mutants induced by x-rays or tritium beta-rays: an approach using a hypersensitive system // Radiation Protection Dosimetry. 2022. V. 198. № 13–15. P. 1009–1013.
- 182. *Umata T., Kunugita N., Norimura T.* A comparison of the mutagenic and apoptotic effects of tritiated water and acute or chronic caesium-137 gamma exposure on spleen T-lymphocytes on normal and p53-deficient mice // Int. J. of Radiation Biology. 2009. V. 85. № 12. P. 1082–1088.
- 183. Nowosielska E.M., Cheda A., Zdanowski R. et al. Effect of internal contamination with tritiated water on the neoplastic colonies in the lungs, innate anti-tumour reactions, cytokine profile, and haematopoietic system in radioresistant and radiosensitive mice // Radiation and Environ. Biophysics. 2018. V. 57. № 3. P. 251–264.

- 184. *Pietrzak-Flis Z., Wasilewska-Gomułka M.* Effect of lifetime intake of organically bound tritium and tritiated water on the oocytes of rats // Radiation and Environmental Biophysics. 1984. V. 23. № 1. P. 61–68.
- 185. *Patzer R.G.* Radiation dose from non-exchangeable tritium in rats after tritium-oxide ingestion. Ph.D. Thesis. University of Michigan, 1968. 24 p.
- 186. *Pietrzak-Flis Z., Radwan I., Major Z.* et al. Tritium incorporation in rats chronically exposed to tritiated food or tritiated water for three successive generations // J. of Radiation Research. 1981. V. 22. № 4. P. 434–442.
- 187. *Priest N.D., Blimkie M.S.J., Wyatt H.* et al. Tritium (³H) retention in mice: administered as HTO, DTO or as ³H-labeled amino-acids // Health Physics. 2017. V. 112. № 5. P. 439–444.
- 188. *Roch-Lefèvre S., Grégoire E., Martin-Bodiot C.* et al. Cytogenetic damage analysis in mice chronically exposed to low-dose internal tritium beta-particle radiation // Oncotarget. 2018. V. 9. № 44. P. 27397–27411.
- 189. Tritium and other radionuclide labeled organic compounds incorporated in genetic material. NCRP Report № 063. Washington: National Council on Radiation Protection and Measurements, 1979. 147 p.
- 190. Saintigny Y., Roche S., Meynard D. et al. Homologous recombination is involved in the repair response of mammalian cells to low doses of tritium // Radiation Research. 2008. V. 170. № 2. P. 172–183.
- 191. Johnson J.R. The estimation of the effective dose equivalent from tritiated water exposures using tritium concentrations in urine // Radiation Protection Dosimetry. 1982. V. 2. № 4. P. 245–247.
- 192. *Saito M.* Blood tritium level as a conservative estimate of soft tissue dose after tritium injection in mice // Health Physics. 1998. V. 74. № 5. P. 561–567.
- 193. *Saito M.* Dose absorbed by mouse red bone marrow after oral administration of tritiated water // Health Physics. 2001. V. 80. № 6. P. 571–575.

- 194. *Saito M., Ishida M.R.* Tritium metabolism in newborn mice and estimation of the accumulated dose // Radiation Protection Dosimetry. 1986. V. 16. № 1–2. P. 131–134.
- 195. Scheving L.E., Pauly J.E. Circadian phase relationships of thymidine-³H uptake, labeled nuclei, grain counts, and cell division rate in rat corneal epithelium // J. of Cell Biology. 1967. V. 32. № 3. P. 677–683.
- 196. Seyama T., Yamamoto O., Kinomura A. et al. Carcinogenic effects of tritiated water (HTO) in mice: in comparison to those of neutrons and gamma-rays // J. of Radiation Research. 1991. V. 32. № Suppl 2. P. 132–142.
- 197. *Siragusa M., Baiocco G., Fredericia P.M.* et al. The COOLER code: a novel analytical approach to calculate subcellular energy deposition by internal electron emitters // Radiation Research. 2017. V. 188. № 2. P. 204–220.
- 198. *Siragusa M., Fredericia P.M., Jensen M.* et al. Radiobiological effects of tritiated water short-term exposure on V79 clonogenic cell survival // Int. J. of Radiation Biology. 2018. V. 94. № 2. P. 157–165.
- 199. *Smith R., Ellender M., Guo C.* et al. Biokinetics and internal dosimetry of tritiated steel particles // Toxics. 2022. V. 10. № 10. Art. 602.
- 200. Barrett P.H.R., Bell B.M., Cobelli C. et al. SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies // Metabolism. 1998. V. 47. № 4. P. 484–492.
- 201. Streffer C., Van Beuningen D., Elias S. Comparative effects of tritiated water and thymidine on the preimplanted mouse embryo in vitro // Current Topics in Radiation Research Quarterly. 1978. V. 12. № 1–4. P. 182–193.
- 202. *Takeda H., Lu H.M., Miyamoto K.* et al. Comparative biokinetics of tritium in rats during continuous ingestion of tritiated water and tritium-labeled food // Int. J. of Radiation Biology. 2001. V. 77. № 3. P. 375–381.
- 203. *Takeda H., Iwakura T.* Incorporation and distribution of tritium in rats exposed to tritiated rice or tritiated soybean // J. of Radiation Research. 1992. V. 33. № 4. P. 309–318.

- 204. *Takeda H., Nishimura Y., Inaba J.* Transfer of tritium to prenatal and neonatal rats from their mothers exposed to tritiated compounds // Radiation Protection Dosimetry. 1994. V. 53. № 1–4. P. 281–284.
- 205. *Takeda H.* metabolic and dosimetric study to estimate an annual limit on intake for organic tritium // Fusion Technology. 1995. V. 28. № 3P1. P. 964–969.
- 206. *Takeda H*. Comparative metabolism of tritium in rat after single ingestion of some tritiated organic compounds versus tritiated water // J. of Radiation Research. 1982. V. 23. № 3. P. 345–357.
- 207. *Takeda H., Arai K., Iwakura T.* Comparison of tritium metabolism in rat following single or continuous ingestion of tritium labeled wheat versus tritiated water // J. of Radiation Research. 1985. V. 26. № 1. P. 131–139.
- 208. *Takeda H*. Incorporation and distribution of tritium in rats after chronic exposure to various tritiated compounds // Int. J. of Radiation Biology. 1991. V. 59. № 3. P. 843–853.
- 209. *Takeda H., Kasida Y.* Biological behavior of tritium after administration of tritiated water in the rat // J. of Radiation Research. 1979. V. 20. № 2. P. 174–185.
- 210. *Takeda H., Iwakura T., Mabuchi Y.* Radiation doses to the tissues of rat from tritiated thymidine administered by three different routes // J. of Radiation Research. 1984. V. 25. № 3. P. 194–202.
- 211. *Tauchi H., Imamura H., Inoue M.* et al. Assessment of biological effect of tritiated water by using hypersensitive system // Fusion Science and Technology. 2011. V. 60. № 3. P. 1173–1178.
- 212. *Tauchi H., Ichimasa M., Ichimasa Y.* et al. Studies of mutagenesis caused by low dose rate tritium radiation using a novel hyper-sensitive detection system // Fusion Science and Technology. 2002. V. 41. № 3P2. P. 413–416.
- 213. *Dewey W.C.*, *Humphrey R.M.*, *Jones B.A.* Comparisons of tritiated thymidine, tritiated water, and colbalt-60 gamma rays in inducing chromosomal aberrations // Radiation Research. 1965. V. 24. № 2. P. 214–238.

- 214. *Ueno A.M.*, *Furuno-Fukushi I.*, *Matsudaira H.* Induction of cell killing, micronuclei, and mutation to 6-thioguanine resistance after exposure to low-doserate γ rays and tritiated water in cultured mammalian cells (L5178Y) // Radiation Research. 1982. V. 91. № 3. P. 447–456.
- 215. *Umata T*. Study of biological effects of tritium in mice // Radiation Protection Dosimetry. 2022. V. 198. № 13–15. P. 1071–1076.
- 216. Wang B., Zhou X.-Y. Effects of prenatal exposure to low-dose β radiation from tritiated water on the neurobehavior of mice // J. of Radiation Research. 1995. V. 36. № 2. P. 103–111.
- 217. Wang B., Watanabe K., Yamada T. et al. Effects of beta radiation from organically bound tritium on cultured mouse embryonic mid brain cells // Health Physics. 1996. V. 71. № 6. P. 915–921.
- 218. Wang B., Takeda H., Gao W.-M. et al. Induction of apoptosis by beta radiation from tritium compounds in mouse embryonic brain cells // Health Physics. 1999. V. 77. № 1. P. 16–23.
- 219. *Wiebold J.L., Anderson G.B.* Lethality of a tritiated amino acid in early mouse embryos // Development. 1985. V. 88. № 1. P. 209–217.
- 220. *Yamamoto O., Yokoro K., Seyama T.* et al. HTO oral administration in mice. I: Threshold dose rate for haematopoietic death // Int. J. of Radiation Biology. 1990. V. 57. № 3. P. 543–549.
- 221. *Yamamoto O., Seyama T., Jo T.* et al. Oral administration of tritiated water (HTO) in mouse. II: Tumour development // Int. J. of Radiation Biology. 1995. V. 68. № 1. P. 47–54.
- 222. *Yamamoto O., Seyama T., Itoh H.* et al. Oral administration of tritiated water (HTO) in mouse. III: Low dose-rate irradiation and threshold dose-rate for radiation risk // Int. J. of Radiation Biology. 1998. V. 73. № 5. P. 535–541.
- 223. Журавлев В.Ф., Бугрышев П.Ф., Истомина А.Г. Токсичность оксида трития для крыс и мышей при внутрибрюшинном введении // Радиобиология. 1966. Т. 1. № 5. С. 59–64.

- 224. Осанов Д.П., Лихтарев И.А. Дозиметрия излучений инкорпорированных радиоактивных веществ. М.: Атомиздат, 1977. 200 с.
- 225. *Калязина Н.С., Журавлев В.Ф., Москалев Ю.И.* Кинетика обмена в организме тимидина, меченного тритием // Гигиена и санитария. 1980. № 12. С. 40–43.
- 226. *Москалев Ю.И., Журавлев В.Ф., Истомина А.Г.* и др. К вопросу об относительной биологической эффективности окиси трития // Гигиена и санитария. 1970. № 9. С. 45–50.
- 227. *Русинова Г.Г., Турдакова В.А., Шорохова В.Б.* и др. Сравнение структуры и катаболизма ДНК вилочковой железы крыс при действии окиси трития и γ -облучения в равных дозах // Радиобиология. 1984. Т. 24. № 3. С. 344—347.
- 228. *Русинова Г.Г., Турдакова В.А., Мушкачева Г.С.* Структура ДНК вилочковой железы при длительном радиационном воздействии окиси трития и внешнего гамма-облучения // Мед. радиология и радиац. безопасность. 1985. Т. 30. № 7. С. 58–62.
- 229. *Русинова Г.Г., Мушкачева Г.С., Турдакова В.А.* и др. Сравнение биологического действия окиси трития и гамма-облучения по изменению массы вилочковой железы крыс // Радиобиология. 1989. Т. 29. № 6. С. 798–803.
- 230. *Тихонова М.А., Осовец С.В.* Сравнительная оценка на основе Т-модели кривых выживания крыс при длительном воздействии окиси трития и внешнего гамма облучения // XIX Всерос. научно-практ. конференция «Дни науки-2019», посвященная 150-летию открытия периодического закона Д.И. Менделеевым. Озерск: ОТИ НИЯУ МИФИ, 2019. С. 74.