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Abstract. We studied the magnetoelectric response of a composite material based on 

a rubber-like polymer filled with submicron-sized cobalt ferrite and barium titanate 

particles. Using a computer experiment, the dependence of the magnetoelectric 

response of a representative volume of such a composite on the system parameters is 

studied. Based on the results of the computer experiment, methods for enhancing the 

magnetoelectric response of such composites are proposed. 

Keywords: computer experiment, magnetoelectric effect, multiferroic composite 

INTRODUCTION 

Multiferroics is a class of materials in which there are at least two types of 

ordered states: ferromagnetic and segmentoelectric or ferroelastic [1-3]. When both 

ferromagnetic and segmentoelectric orders are combined in the structure of a material, 

this gives it magnetoelectric (ME) properties. Indeed, the application of an external 

magnetic field changes the electric polarization of such a system, while exposure to an 

electric field causes it to change its magnetization. These two types of response are 

known as the forward and reverse ME effect. 

DOI: 10.31857/S03676765250413e8
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Currently, much attention is paid to the development of new composite 

multiferroics with enhanced ME effect. In terms of the latter, composite systems 

surpass single-phase multiferroics by several orders of magnitude, because of the 

strong mechanical coupling between the segmentoelectric and ferromagnetic phases 

[1, 4-6]. The advent of composite ME materials has made it possible to create high-

quality magnetic and electric field sensors [7-12], including those for biomedical 

applications [13, 14] and for "energy harvesting" [7,15,16]. Thus, the ME effect 

stimulated by an alternating field has found its application in "smart" substrates 

accelerating the differentiation of stem cells [12]. 

Various methods are used in the fabrication of ME composites. One of the most 

common ones is bonding of plane-parallel plates of ferromagnetic and segnetoelectric 

materials [1]. Another method is sintering of a mixture of micro- and nanoparticles 

placed in a polymer matrix [1,2,17]. Each of these methods has its own advantages and 

disadvantages. The first method is easy to implement and allows obtaining high values 

of the ME response; its disadvantages include, in particular, the limited shape of the 

finished samples, since they should be only plane-parallel plates. The second method 

gives lower values of the ME effect, but its advantage is the absence of restrictions on 

the shape of samples [1]. 

Despite the fact that the ME effect in polymer composites is obviously lower 

than in ceramic composites, it is by no means weak. On the other hand, an important 

advantage of polymer composites is their ease of fabrication, flexibility, and ease of 

processing [2,17]. In addition, polymer interfaces are characterized by good 

biocompatibility. Together, these advantages make them a unique tool for a number of 
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biomedical applications where it is required to utilize the ME effect. For example, to 

create surfaces for the cultivation of bacterial strains on which controlled electrical 

charges and mechanical stresses are remotely generated by applying an external 

magnetic field [18,19]). 

In the fabrication of ME composites, it is necessary to take into account a number 

of factors: type, size and concentration of ferromagnetic and segmentoelectric particles, 

mechanical properties of the matrix and others [20]. To predict the properties of such 

complex multicomponent media, computer modeling is probably the best current 

approach [2, 21]. 

Modern computer experiments that are used to study polymer multiferroics 

include, for example, the virtual spring method [2] (which has proven itself for the 

description of magnetically active elastomers) and the finite element method [22]. Full-

scale numerical modeling of polymer multiferroics involves the consideration of large 

ensembles of particles and, consequently, the use of very large computer resources [2, 

3, 6, 15, 21, 22]. However, modeling of systems with a relatively small number of 

particles can - at least on a qualitative level - advance the understanding of how the 

response of a composite DOE to an applied field is formed. In the present work, a 

system with three submicron-sized particles, of which two are ferrimagnetic (cobalt 

ferrite) and one is segmentoelectric (barium titanate), is considered as an example of a 

representative volume of such a composite. 

The main subject of the study is the dependence of the direct ME effect in a 

representative volume of a multiferroic composite on the mutual arrangement of phases 

and the orientation of their light axes: magnetization for ferromagnetics and 
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polarization for segmentoelectric. The elastomeric matrix is considered to be a linear-

elastic incompressible continuum with Young's modulus = 1 MPa). 

 

THEORETICAL MODEL 

Since the particle sizes are much larger than the sizes of individual molecules, a 

mesoscopic approach is used to describe the composite material, i.e., the composite is 

represented by a system of particles immersed in a continuous medium, the matrix. 

The particles are assumed to be ideal incompressible spheres (circles, since the 

problem formulation is two-dimensional) with a high modulus of elasticity (of the order 

of units GPa). The size of ferromagnetic particles is taken to be 5-10 times smaller than 

the size of a segmentoelectric particle. Since the Young's moduli of the matrix and 

particles differ by several orders of magnitude, it is quite acceptable to use the linear 

theory of elasticity for calculations [22]. 

In the two-dimensional formulation, as already mentioned, the matrix is defined 

in the form of a rectangle, the size of which is much larger than any total size of all 

three particles; the particles themselves are located as far as possible from the 

boundaries of the matrix. One (conventionally, the bottom) side of the matrix is rigidly 

fixed, the other boundaries are free. 

The formulation of the problem implies that the ferrimagnetic and 

segmentoelectric particles, as well as the matrix, consist of incompressible matrices; 

the adhesion of particles of both genera to the matrix is assumed to be absolute. It is 

assumed that both ferrimagnetic and segmentoelectric particles are in a single-domain 

state. In this case, ferrite particles are considered to be magnetically rigid, i.e., the 
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change in the orientation of their magnetic moments occurs only together with the 

change in the orientation of the particle itself. Neither magnetostriction of ferrite 

particles nor spontaneous polarization of segmentoelectric particles is taken into 

account. The quasi-static formulation of the problem is applied, i.e., it is considered 

that the establishment of equilibrium values of stationary thermodynamic parameters 

occurs much faster compared to the characteristic time of change of the external 

magnetic field. This field is homogeneous and quasi-stationary, the external electric 

field is absent. 

Let us consider the relation relating the induced electric polarization to the 

applied mechanical stress, the form of this relation is given in [23]: 

𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑖𝑖0 + 𝜀𝜀𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝐸𝐸𝑘𝑘 + 4𝜋𝜋𝛾𝛾𝑖𝑖𝑖𝑖,𝑙𝑙𝜎𝜎𝑘𝑘𝑘𝑘 , (1) 

here𝐷𝐷��⃗  is the electric induction vector,𝐸𝐸�⃗  is the electric field vector inside the sample,𝜀𝜀𝑖𝑖𝑖𝑖 

is the dielectric constant tensor of the sample,𝛾𝛾𝑖𝑖𝑖𝑖,𝑙𝑙 is the piezomodule tensor.  

Since the direct ME effect in the composite arises due to the mechanical effect 

of the ferromagnetic phase on the segmentoelectric phase [6], it is sufficient to limit 

the modeling of the direct ME effect by considering only the third summand in equation 

(1): 

𝐷𝐷𝑖𝑖
(stress) = 4𝜋𝜋𝛾𝛾𝑖𝑖𝑖𝑖,𝑙𝑙𝜎𝜎𝑘𝑘𝑘𝑘 . (2) 

Relationship (2) can be written in the vector form adopted in piezoelectric 

physics: 

𝐷𝐷𝑖𝑖
(stress) = 4𝜋𝜋𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡𝑘𝑘 , (3) 
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where𝑑𝑑𝑖𝑖𝑖𝑖 is a component of the rectangular matrix 3× 6, which (matrix) is a 

representation of the piezomodule tensor,𝑡𝑡𝑘𝑘 is a component of the 6-dimensional vector 

𝑡𝑡 = (𝜎𝜎11,  𝜎𝜎22,  𝜎𝜎33,  𝜎𝜎23 = 𝜎𝜎32,  𝜎𝜎13 = 𝜎𝜎31,  𝜎𝜎12 = 𝜎𝜎21), (4) 

which can be replaced by the mechanical stress tensor due to the symmetry of the latter. 

Such representation of formulas (3) and (4) is used, for example, in [4, 15, 16]. 

According to [24], in barium titanate single crystals, the matrix𝑑𝑑𝑖𝑖𝑖𝑖 has the 

following form: 

𝑑𝑑𝑖𝑖𝑖𝑖 = �
0 0 0
0 0 0
𝑑𝑑31 𝑑𝑑31 𝑑𝑑33

    
0 𝑑𝑑15 0
𝑑𝑑15 0 0
0 0 0

� . (5) 

When passing to the two-dimensional formulation, let us direct the light polarization 

axis along𝑂𝑂𝑦𝑦 and take into account relation (5). This gives 

𝑃𝑃1 = 𝑑𝑑15𝜎𝜎12, 𝑃𝑃2 = 𝑑𝑑31𝜎𝜎11 + 𝑑𝑑33𝜎𝜎22. (6) 

Thereby, the relationship between mechanical stress and polarization vector has been 

established through the piezomoduli of barium titanate. 

Let us specify the relations to which the variables of the problem obey. In the 

approximation of point dipoles, the magnetic interparticle interaction is described by 

the potential 

𝑈𝑈𝑖𝑖𝑖𝑖
(𝑑𝑑𝑑𝑑) =

�𝑚𝑚��⃗ 𝑖𝑖𝑚𝑚��⃗ 𝑗𝑗�
𝑟𝑟𝑖𝑖𝑖𝑖3

−
3�𝑚𝑚��⃗ 𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖��𝑚𝑚��⃗ 𝑗𝑗𝑟𝑟𝑖𝑖𝑖𝑖�

𝑟𝑟𝑖𝑖𝑖𝑖5
, (7) 

where𝑚𝑚��⃗  is the magnetic moment of the particle,𝑟𝑟𝚤𝚤𝚤𝚤���⃗  is the radius-vector of the distance 

between their centers. 

In the adopted formulation of the DOE problem, the composite is a continuous 

medium with different regions, each of which is characterized by its own set of material 
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parameters. Therefore, to describe the mechanical properties of such a medium, we will 

use the fact that the stress tensor obeys the equilibrium equation at all points of the 

specimen and at all interfaces: 

Div 𝜎𝜎𝑖𝑖𝑖𝑖 ≡
𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

= 0. (8) 

Since the elastic modulus of the matrix is sufficiently large, its relative 

deformations in the considered range of fields are small, so that it is acceptable to use 

the isotropic Hooke's law [25] to describe the mechanical behavior: 

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝑙𝑙𝑙𝑙 , 𝑢𝑢𝑖𝑖𝑖𝑖 =
1

2𝐺𝐺 �𝜎𝜎𝑖𝑖𝑖𝑖 −
1
3𝜎𝜎𝑙𝑙𝑙𝑙𝛿𝛿𝑖𝑖𝑖𝑖� +

1
9𝐾𝐾𝜎𝜎𝑙𝑙𝑙𝑙𝛿𝛿𝑖𝑖𝑖𝑖, (9) 

where𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the general form of the linear ductility coefficient tensor,𝐺𝐺 is the shear 

modulus,𝐾𝐾 is the modulus of all-round compression. Let us derive the components of 

the stress tensor from (9): 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑙𝑙𝑙𝑙, 𝜎𝜎𝑖𝑖𝑖𝑖 = 2𝐺𝐺𝑢𝑢𝑖𝑖𝑖𝑖 + �𝐾𝐾 −
2
3𝐺𝐺�𝑢𝑢𝑙𝑙𝑙𝑙𝛿𝛿𝑖𝑖𝑖𝑖; (10) 

here𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the elasticity modulus tensor. 

To solve the problem of the quasi-static ME effect, we used the method of 

minimizing the free energy functional of the system. Let us obtain an expression for 

this functional with respect to the system under consideration. According to [18], the 

incremental free energy of a piezoelectric can be represented as 

𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑑𝑑𝑢𝑢𝑖𝑖𝑖𝑖 −
1

4𝜋𝜋𝐷𝐷
��⃗ 𝑑𝑑𝐸𝐸�⃗ , (11) 

where𝑆𝑆 is entropy and𝑇𝑇 is temperature. Since in the problem formulation there is no 

external electric field, the expression (11) transforms to 

𝑑𝑑𝐹𝐹� = −𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑑𝑑𝑢𝑢𝑖𝑖𝑖𝑖. (12) 
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Substituting equation (10) into equation (12) and integrating, we obtain the 

following expression for the free energy functional of the system without taking into 

account the energy of dipole-dipole interaction of ferromagnetic particles: 

𝐹𝐹� = 𝐹𝐹0 + 𝐺𝐺(𝑢𝑢𝑖𝑖𝑖𝑖)2 +
1
2 �𝐾𝐾 −

2
3𝐺𝐺�𝑢𝑢𝑙𝑙𝑙𝑙

2 . (13) 

Since an isothermal situation is considered, the summand𝐹𝐹0 in equation (13) is a 

constant value that does not need to be taken into account in minimizing the functional. 

In this case, adding the magnetic energy to (13), we have 

𝐹𝐹� = 𝐺𝐺(𝑢𝑢𝑖𝑖𝑖𝑖)2 +
1
2 �𝐾𝐾 −

2
3𝐺𝐺�𝑢𝑢𝑙𝑙𝑙𝑙

2 + 𝑈𝑈𝑖𝑖𝑖𝑖
(𝑑𝑑𝑑𝑑). (14) 

For convenience of modeling, the functional (14) should be disproportioned. It 

is convenient to choose the value𝐺𝐺 , i.e., the shear modulus of the matrix, as the scale 

of the energy density (modulus of elasticity). After such dismeasurement, the 

functional (14) is minimized and the electric polarization of the composite is calculated 

from the obtained solution using expression (6). 

Let us describe the input parameters, which served as input data of the performed 

calculation. The geometrical scheme of the system under consideration is shown in 

Figure 1. As indicated above, dense rubber with a shear modulus of𝐺𝐺 = 1 MPa is taken 

as a matrix. The ferrimagnetic phase has the characteristics of cobalt ferrite, and the 

segmentoelectric phase corresponds to barium titanate in its properties. Both of these 

ceramics have Young's modulus on the order of 100 GPa. The spontaneous 

magnetization of cobalt ferrite particles is assumed to be 2500 A/m [19]. The diameters 

of the ferrimagnetic and segnetoelectric particles are 0.5 μm and 3 μm, respectively; 

the gap between the ferromagnetic and segnetoelectric particles is 0.5 μm; and the 
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matrix dimensions are 12 by 24 μm. Such dimensions of the matrix are necessary to 

minimize the influence of the matrix-vacuum boundary. 

The Python programming language was chosen to implement the program code. 

The solution of differential equations by the finite element method was performed 

using the dolfin package. The mshr package was used for geometry construction and 

mesh generation. 

 

COMPUTER EXPERIMENT RESULTS 

The calculation was carried out for a magnetic field in the range of 0 to 1 Tesla, 

which covers almost all real scenarios of the use of ME composites. Material 

parameters of phases (they are partially specified above) were chosen according to 

literature data. 

In the course of the computer experiment, the linear character of the dependence 

of the polarization of the segmentoelectric particle over the entire range of the magnetic 

field was established. To save computational resources, small values of the magnetic 

field - 50 mTl - were used in the study of the dependence of the ME response on various 

parameters of the system, since it requires multiples fewer iterations to achieve it than 

to achieve fields of units of Tl with equal field increment. In numerical experiments 

where the dependence on the particle magnetization was not studied, its value was 2500 

A/m (the direction is always along the axis ).𝑂𝑂𝑂𝑂 

As can be seen from Fig. 2a, the dependence of the polarization of the 

segmentoelectric particle depends weakly on the gap between the segmentoelectric and 

ferromagnetic particles in the selected range of gap values. Thus, when the gap is 
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increased by 20 times, the drop of the polarization component of the segmentoelectric 

particle is only about 10%, and the dependence of𝑦𝑦 -component of polarization is 

practically absent. The predominance of the x-component of polarization is also 

observed, which is explained by the predominance of shear stresses, as can be seen 

from expression (6). Consequently, our results show that the main mechanism of 

ferromagnetic particles impact on the matrix in this case is rotation. 

As can be seen from Fig. 2b, the dependence of the x-component of the 

polarization of a segmentoelectric particle on the magnetization of ferromagnetic 

particles is linear, and the changes in𝑦𝑦 -component are small. The predominant 

magnitude and linearity of the field dependence of the x-component is explained, of 

course, by the fact that Zeeman energy is linear in the magnitude of the field. Indeed, 

the x-component of polarization arises due to shear stresses that create ferromagnetic 

particles on which act magnetic moments�𝑚𝑚��⃗ × 𝐵𝐵�⃗ � linear in the field. 

As Fig. 2c shows, the x-component of the polarization of a segmentoelectric 

particle depends nonlinearly on the radius of ferromagnetic particles. It is reasonable 

to assume that this nonlinearity, resembling a parabola, is due to the quadratic (in two-

dimensional formulation) growth of the magnetic moment as the particle radius 

changes.  

The influence of the collective effect (dependence on the configuration of the 

ferroparticle pair) is illustrated in Fig. 2g. The maximum of the ME response is reached 

at the value𝛼𝛼 = 180∘ (see Fig. 1), i.e., in the case when the pair of ferroparticles is 

located along the direction of the applied field on different sides of the segmentoelectric 

particle. 
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CONCLUSION 

It can be seen from the obtained dependences that the magnitude of the direct 

ME effect at given material parameters of the composite phases and composite 

configuration is determined by the rotation of ferromagnetic particles, i.e., by shear 

stresses. Shear stresses induce in the segmentoelectric particles the x-component of 

polarization, whereas the light axis of polarization, and hence the spontaneous part of 

polarization, is directed along the axis𝑂𝑂𝑂𝑂 . It follows that such a contribution not only 

increases the polarization of the particle, but also changes the direction of polarization, 

which should be taken into account when using such a material. It is also worth noting 

the weak dependence of the magnitude of the ME effect on the distance between the 

particles, which can, at first glance, be interpreted as a weak dependence of the 

magnitude of the ME response on the concentration of segmentoelectric and 

ferromagnetic fillers. However, this conclusion cannot be fully proved, taking into 

account the small number of particles in the considered system. Indeed, it is possible 

to judge the dependence of the ME response on such a characteristic as concentration 

only in a computer experiment, i.e., by studying a large ensemble of particles. 

Therefore, the obtained result can only be an indication of the possibility of such a 

hypothesis, which has yet to be verified by computer modeling and field experiments. 
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FIGURE CAPTIONS 

 

Fig. 1. Schematic representation of a representative volume. Hereinafter: 1 - 

segmentoelectric particle, 2 - ferromagnetic particles, 3 - electroneutral matrix,𝑀𝑀��⃗  - 

magnetization of ferromagnetic particles,𝑅𝑅𝑝𝑝 - radius of segmentoelectric particles,𝑅𝑅𝑚𝑚 

- radius of ferromagnetic particles,𝑃𝑃�⃗  - light polarization axis of segmentoelectric 

particle, r - gap between ferromagnetic particle and segmentoelectric particle. 

 

Fig. 2. Dependence of the x and y components of the polarization𝑃𝑃�⃗  on: the gap between 

ferromagnetic and segmentoelectric particles (a); the particle magnetization (b); the 

radius of ferromagnetic particles (c); the angle α (see Fig. 1) (d). 

 

 

Fig. 1. 
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