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Abstract. The possibility of propagation of a plane solitary electromagnetic wave in
the plane of a square two-dimensional graphene-based superlattice at various angles to
its axes is investigated. A nonlinear equation describing the vector potential of a
solitary electromagnetic wave is obtained for the case of weak nonadditivity of the
energy spectrum of charge carriers in the collisionless approximation. It is shown that
the propagation of plane solitary waves is possible either along the axes of the
superlattice or at an angle of 45° to them.
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INTRODUCTION
In recent years, numerous studies of the physical properties of graphene-based
structures have been developed, particularly in the optics of graphene superlattices

(GSRs). Despite the fact that today there are certain technological difficulties and
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limitations in the fabrication of graphene superstructures, theoretical and experimental
studies of both one-dimensional [1-8] and two-dimensional (2D) [9-16] GSRs are
actively conducted and a large number of interesting results have been obtained.
Undoubtedly, in the near future, graphene superstructures will have important practical
significance for the generation and amplification of electromagnetic waves, in
particular ultra-short solitary electromagnetic waves (SEWs) [17,18]. Recently,
interest has arisen in 2D SMWs formed by periodically staggered alternating staggered
rectangular regions of SiO»dioxide and SiC silicon carbide. In contrast to silicon
carbide, silicon dioxide does not affect the energy spectrum of graphene, while silicon
carbide causes the appearance in its spectrum of the forbidden zone ("slit") with a width
of approximately 0.26 eV and due to the alternation of sites of slit and slitless
modifications of graphene there is a miniband spectrum. The model energy spectrum
of such 2D GSR is investigated in [5], and in [14-16] the peculiarities of UEB
propagation are considered. In [16], the interaction of plane UEBs propagating along
the axes of a square GSR in mutually perpendicular directions is studied. In the present
work, the possibility of propagation of a plane UEB along arbitrarily chosen directions

for a square 2D GSR is investigated.

BASIC EQUATIONS
The spectrum of 2D GSR, consisting of alternating staggered rectangular regions

of slot and slotless graphene, in the one-minison approximation is [5]

e(F) = £ 8+ 81 - cos(pd)) + (1 - cos(pd), (D)



where p,, p,— projections of the electron quasi-momentum on the SR axes, d;, d»-
periods of 2D GSR (hereinafters = 1 ). The nonparabolicity of the spectrum of the 2D
graphene superlattice entails the appearance of nonlinear properties, in particular, the
possibility of propagation of UEB in it.

The evolution of the UEB is described by the d'Alambert equation for the vector

potential
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where V= ¢y 1>~ the velocity of the electromagnetic wave in the absence of electrons,
x— the effective dielectric constant of the medium. The vector potential is related to the
electric field strengtht_?) =—(1/c) 0A /0t . In solving the problem, we choose the

Coulomb calibration of the vector potential, and neglect collisions.

The electric current density is defined in the form
> >\ [ - e 2. -
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where n(p)— electron distribution function,v(p) =(0& /0,06 /0p4))— electron velocity.

Decomposing the electron velocity into a two-dimensional Fourier series and

assuming the electron gas to be nondegenerate, we have an expression for the current

density
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where no— is the concentration of 2D electrons, and— is the thickness of graphene,

gg =§(Axd1,Ayd2)— dimensionless vector potential, Bu,= auwmum/loo, Jum =
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. Caumis calculated similarly
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to Bum) by Fourier series expansion of the projection of electron velocity on the y-axis.
In what follows, we restrict ourselves to the special case of a square lattice ,d; = d, =
dA=A>=A . In this case, B,,= Cn.

In general, the solution of equation (2) with the current density in the form (4) is
only possible numerically. The components of the current density along the x and y
axes are generally different from zero and the resulting current density vector depends
on coordinates and time in a complex way. However, it can be shown that in our
considered case of a square symmetric superlattice there are such values of the angle &
between the x-axis and the direction of wave propagation at which the direction of the
current density vector will not change relative to the direction of the vector potential
and, moreover, will coincide with it. In this case, it is possible to introduce a new
coordinate system in which one of the coordinate axes coincides with the direction of
the current density vector, which automatically means that the perpendicular
component of the current density in this new coordinate system is equal to zero. Thus,
it is possible to reduce the (2+1)-dimensional problem to a one-dimensional (1+1) one.

Let us choose the direction of propagation of the plane UEB at an angle&to the
x-axis and denote it by x”. Due to the symmetry of the system, we will consider the
angles@, which are in the first quarter of the quadrant. The geometry of the problem is

shown in Fig. 1. Let us pass to the one-dimensional case by projecting (2) onto the y-



axisand taking into account , ,¢ = ¢ = edA/cd,r = 00} = 2me?nyA®d? /c?A, ,

we obtain
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Here the projection of the current density on the y-axis’is obtained using the
projections of the current density on the x- and y-axes
Jy = —Jjxsinb +j,cos6. (6)
The relationship between the components of the vector potential in the unshaded
and shaded coordinate systems is given as follows: ¢, cos 0 = —¢,, sin @, , .p, =
—¢psint ¢, = pcos
The projection of equation (2) to the direction of propagation of the plane UEW,
to the x-axis’, leads to the condition j,-=0. In our case, the vector potential and current
density are co-directional and perpendicular to the direction of propagation of the plane
wave. It is also convenient to express the projection of the current density on the x-
axis “through the projections of the current density on the x and y axes
Jx' = Jjxcos @ + j,sin6. (7)
From the condition j,- =0, we have
— oS0 ) 1Y m=—o Bum Sin(ng sin(0)) cos(me cos(60)) +
+5in0Yr_1 Y=o Buym sin(neg cos(0)) cos(me sin(6)) = 0. (8)
Equality (8) is satisfied at arbitraryp at certain values of the angled ,
corresponding to the direction of wave propagation at angles 0° and 45° to the GSR

axes. Thus, equation (5) describes the vector potential of a plane UEB propagating in
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a square GSR at angles 0° and 45° to its axes.
Let us consider the case of weak non-additivity of the energy spectrum, in which

we can restrict ourselves to the first summands in (5)
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Let's switch to dimensionless variablesn = x'w,/V,T = tw, and introduce the

notationf§ = 2B,,/B;, . We finally obtain:

’p 9*¢p —— 0
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+ cos 6 sin(¢ cos 8) (1 + B cos(¢p sinf)) = 0. (10)

In the case when8= 0 or@= r /2, equation (10) corresponds to the sine-Gordon
equation, and when the conditiond = r /4 is satisfied, equation (10) takes the form of
the double sine-Gordon equation [14]. Thus, equation (10) describes all possible cases
of propagation of plane solitary waves in a 2D symmetric square GSR (generalized
sine-Gordon equation).

We will search for the solution of equation (10) in the form of a traveling wave

u

by introducing the variableé = (n — %‘L’) / |1— Vz , where u is the kink velocity. After

transformations we have
bge = sin 0 sin(¢psin0) (1 + B cos(d cos 6)) + + cos 6 sin(¢ cos ) (1 +

B cos(¢p sinB)). (11)

Multiplying both parts of the equation by the derivativeg 5 and further integrating



once, we obtain

% = \/Z(C— cos(¢p sinB) — cos(¢p cos ) (1 + B cos(¢ sin 9))). (12)
The constant C is determined from the considerations of equality to zero of the
derivative of the potential atgp = 0.

The phase portraits of the system at different values of the angled are shown in
Figs. 2 and 3. The bold lines correspond to the separatrices. We see that for the anglesd
= 0 and@= 7 /4, the phase trajectories of the system corresponding to the separatrices
separating the regions of the finite (oscillatory, if we refer to the analogy of a
pendulum) and infinite (rotational) motions, correspond to the existence of solitary
waves [19]. In the case of angles@, different from 0,7 /4 andx /2, the corresponding
phase trajectories do not have a periodic appearance, as shown in Fig. 3. The bold lines
in Fig. 3 show the phase curves corresponding to equation (9) under the initial
condition¢ é=0 = 0 . The analysis of the phase portrait shows that these phase curves
do not separate the regions of finite and infinite motions and, therefore, are not
separatrices and, therefore, as one would expect, cannot set the conditions for the
existence of plane solitary waves along the corresponding directions relative to the
GSR axes. Thus, plane UEWs in a square 2D GSR can propagate only in the directions

of the principal axes or diagonal of the square GSR.

CONCLUSION
The problem of the possibility of propagation of plane UEBs in the plane of a

2D GSR at different angles to its axes is investigated. A generalized sine-Gordon



equation describing the propagation of a solitary electromagnetic pulse along certain
directions in the plane of a square 2D GSR with weak nonadditivity of the energy
spectrum in the column-free approximation is obtained. The phase portraits
corresponding to its solution are investigated and the conditions for the existence of
the UEB in the considered GSR are analyzed. On the basis of the obtained results, it is
concluded that the planar UEB is able to propagate only at angles 0° and 45° to the
axes of the square GSR.
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FIGURE CAPTIONS

Figure 1. Geometry of the problem.

Figure 2. Phase portrait of the system atd= 0 (solid lines) and@= 7 /4 (dashed lines).

Bold lines correspond to separatrices.

Figure 3. Phase portrait of the system atd= /8 (solid lines) and 8= /6 (dashed lines).
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Fig. 3.
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