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Abstract. The possibility of propagation of a plane solitary electromagnetic wave in 

the plane of a square two-dimensional graphene-based superlattice at various angles to 

its axes is investigated. A nonlinear equation describing the vector potential of a 

solitary electromagnetic wave is obtained for the case of weak nonadditivity of the 

energy spectrum of charge carriers in the collisionless approximation. It is shown that 

the propagation of plane solitary waves is possible either along the axes of the 

superlattice or at an angle of 45° to them. 
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INTRODUCTION 

In recent years, numerous studies of the physical properties of graphene-based 

structures have been developed, particularly in the optics of graphene superlattices 

(GSRs). Despite the fact that today there are certain technological difficulties and 
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limitations in the fabrication of graphene superstructures, theoretical and experimental 

studies of both one-dimensional [1-8] and two-dimensional (2D) [9-16] GSRs are 

actively conducted and a large number of interesting results have been obtained. 

Undoubtedly, in the near future, graphene superstructures will have important practical 

significance for the generation and amplification of electromagnetic waves, in 

particular ultra-short solitary electromagnetic waves (SEWs) [17,18]. Recently, 

interest has arisen in 2D SMWs formed by periodically staggered alternating staggered 

rectangular regions of SiO2dioxide and SiC silicon carbide. In contrast to silicon 

carbide, silicon dioxide does not affect the energy spectrum of graphene, while silicon 

carbide causes the appearance in its spectrum of the forbidden zone ("slit") with a width 

of approximately 0.26 eV and due to the alternation of sites of slit and slitless 

modifications of graphene there is a miniband spectrum. The model energy spectrum 

of such 2D GSR is investigated in [5], and in [14-16] the peculiarities of UEB 

propagation are considered. In [16], the interaction of plane UEBs propagating along 

the axes of a square GSR in mutually perpendicular directions is studied. In the present 

work, the possibility of propagation of a plane UEB along arbitrarily chosen directions 

for a square 2D GSR is investigated. 

 

BASIC EQUATIONS 

The spectrum of 2D GSR, consisting of alternating staggered rectangular regions 

of slot and slotless graphene, in the one-minison approximation is [5] 

𝜀𝜀(𝑝𝑝) = ±�𝛥𝛥02 + 𝛥𝛥12(1− 𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑥𝑥𝑑𝑑1)) + 𝛥𝛥22�1− 𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝у𝑑𝑑2)�,  (1) 
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where px, py− projections of the electron quasi-momentum on the SR axes, d1, d2- 

periods of 2D GSR (hereinafterℏ = 1 ). The nonparabolicity of the spectrum of the 2D 

graphene superlattice entails the appearance of nonlinear properties, in particular, the 

possibility of propagation of UEB in it. 

The evolution of the UEB is described by the d'Alambert equation for the vector 

potential 

𝜕𝜕2𝐴⃗𝐴
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝐴⃗𝐴
𝜕𝜕𝑦𝑦2

− 1
𝑉𝑉2

𝜕𝜕2𝐴⃗𝐴
𝜕𝜕𝑡𝑡2

+ 4𝜋𝜋
𝑐𝑐
𝚥𝚥(𝐴𝐴𝑥𝑥,A𝑦𝑦) = 0, (2) 

where V= cχ-1/2− the velocity of the electromagnetic wave in the absence of electrons, 

χ− the effective dielectric constant of the medium. The vector potential is related to the 

electric field strength𝐸𝐸�⃗ = − (1/𝑐𝑐)𝜕𝜕𝐴𝐴 𝜕𝜕𝜕𝜕⁄  . In solving the problem, we choose the 

Coulomb calibration of the vector potential, and neglect collisions. 

The electric current density is defined in the form 

𝚥𝚥 = −𝑒𝑒∑𝑛𝑛(𝑝𝑝)𝜐⃗𝜐 �𝑝𝑝 + 𝑒𝑒
𝑐𝑐
𝐴𝐴(𝑟𝑟, 𝑡𝑡)�,  (3) 

where 𝑛𝑛(𝑝𝑝)− electron distribution function,𝜐𝜐(𝑝⃗𝑝) =(∂ε /∂p(x),∂ε /∂p(y))− electron velocity. 

Decomposing the electron velocity into a two-dimensional Fourier series and 

assuming the electron gas to be nondegenerate, we have an expression for the current 

density 

𝚥𝚥 = −𝑒𝑒𝑛𝑛0
𝑎𝑎
�

𝛥𝛥12𝑑𝑑1
𝛥𝛥0

∑ ∑ В𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝜙𝜙𝑥𝑥) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝜙𝜙𝑦𝑦∞
𝑚𝑚=−∞

∞
𝑛𝑛=1 ),

𝛥𝛥22𝑑𝑑2
𝛥𝛥0

∑ ∑ 𝐶𝐶𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝜙𝜙𝑦𝑦) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝜙𝜙𝑥𝑥∞
𝑚𝑚=−∞

∞
𝑛𝑛=1 )

�, (4) 

where n0− is the concentration of 2D electrons, and− is the thickness of graphene,  

𝜙𝜙�⃗ = 𝑒𝑒
𝑐𝑐

(𝐴𝐴𝑥𝑥𝑑𝑑1,𝐴𝐴𝑦𝑦𝑑𝑑2)−  dimensionless vector potential, Bnm= anmI(nm)/I00, ,𝐼𝐼𝑛𝑛𝑛𝑛 =
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∫ ∫ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝑚𝑚) 𝑒𝑒𝑒𝑒𝑒𝑒[ −�𝛥𝛥02 + 𝛥𝛥12(1 − 𝑐𝑐𝑐𝑐𝑐𝑐( 𝑥𝑥)) + 𝛥𝛥22(1 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦))/𝜋𝜋
−𝜋𝜋

𝜋𝜋
−𝜋𝜋

𝑘𝑘𝑘𝑘]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑛𝑛𝑛𝑛 = 1
2𝜋𝜋2 ∫ ∫ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝑚𝑚)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�1+𝛥𝛥1
2

𝛥𝛥0
2(1−𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥))+𝛥𝛥2

2

𝛥𝛥0
2(1−𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦))

𝜋𝜋
−𝜋𝜋

𝜋𝜋
−𝜋𝜋  . C(nm)is calculated similarly 

to B(nm) by Fourier series expansion of the projection of electron velocity on the y-axis. 

In what follows, we restrict ourselves to the special case of a square lattice ,𝑑𝑑1 = 𝑑𝑑2 =

𝑑𝑑∆1=∆2=∆ . In this case, Bnm=  Cnm. 

In general, the solution of equation (2) with the current density in the form (4) is 

only possible numerically. The components of the current density along the x and y 

axes are generally different from zero and the resulting current density vector depends 

on coordinates and time in a complex way. However, it can be shown that in our 

considered case of a square symmetric superlattice there are such values of the angleθ 

between the x-axis and the direction of wave propagation at which the direction of the 

current density vector will not change relative to the direction of the vector potential 

and, moreover, will coincide with it. In this case, it is possible to introduce a new 

coordinate system in which one of the coordinate axes coincides with the direction of 

the current density vector, which automatically means that the perpendicular 

component of the current density in this new coordinate system is equal to zero. Thus, 

it is possible to reduce the (2+1)-dimensional problem to a one-dimensional (1+1) one. 

Let us choose the direction of propagation of the plane UEB at an angleθ to the 

x-axis and denote it by x′ . Due to the symmetry of the system, we will consider the 

anglesθ , which are in the first quarter of the quadrant. The geometry of the problem is 

shown in Fig. 1. Let us pass to the one-dimensional case by projecting (2) onto the y-
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axis′ and taking into account , ,ϕ = ϕ𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑒𝑒/𝑐𝑐ϕ𝑥𝑥′ = 0ω0
2 = 2𝜋𝜋𝑒𝑒2𝑛𝑛0Δ2𝑑𝑑2/𝑐𝑐2Δ0 , 

we obtain 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑡𝑡2

− 𝑉𝑉2 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥′2

+ 𝜔𝜔0
2(−𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 ∑ ∑ 𝐵𝐵𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝜙𝜙𝑥𝑥) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝜙𝜙𝑦𝑦∞

𝑚𝑚=−∞
∞
𝑛𝑛=1 ) +

 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 ∑ ∑ 𝐵𝐵𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝜙𝜙𝑦𝑦) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝜙𝜙𝑥𝑥∞
𝑚𝑚=−∞

∞
𝑛𝑛=1 )) = 0.  (5) 

Here the projection of the current density on the y-axis′ is obtained using the 

projections of the current density on the x- and y-axes  

𝑗𝑗𝑦𝑦′ = −𝑗𝑗𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝑗𝑗𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃.  (6) 

The relationship between the components of the vector potential in the unshaded 

and shaded coordinate systems is given as follows: 𝜙𝜙𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 = −𝜙𝜙𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃, , .𝜙𝜙𝑥𝑥 =

−𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝜙𝜙𝑦𝑦 = 𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 

The projection of equation (2) to the direction of propagation of the plane UEW, 

to the x-axis′ , leads to the condition jx′ =0. In our case, the vector potential and current 

density are co-directional and perpendicular to the direction of propagation of the plane 

wave. It is also convenient to express the projection of the current density on the x-

axis′ through the projections of the current density on the x and y axes 

𝑗𝑗𝑥𝑥′ = 𝑗𝑗𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑗𝑗𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃.  (7) 

From the condition jx′ =0, we have 

−𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 ∑ ∑ 𝐵𝐵𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)∞
𝑚𝑚=−∞

∞
𝑛𝑛=1 ) +

 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 ∑ ∑ 𝐵𝐵𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)∞
𝑚𝑚=−∞

∞
𝑛𝑛=1 ) = 0.  (8) 

Equality (8) is satisfied at arbitraryϕ at certain values of the angleθ , 

corresponding to the direction of wave propagation at angles 0°  and 45°  to the GSR 

axes. Thus, equation (5) describes the vector potential of a plane UEB propagating in 
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a square GSR at angles 0°  and 45° to its axes. 

Let us consider the case of weak non-additivity of the energy spectrum, in which 

we can restrict ourselves to the first summands in (5) 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑡𝑡2 − 𝑉𝑉2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥 ′2 + 𝜔𝜔0

2 �𝐵𝐵10 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙 𝑠𝑠𝑖𝑖𝑖𝑖 𝜃𝜃) �1 +
2𝐵𝐵11
𝐵𝐵10

𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)� 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 +
 

 +𝐵𝐵10 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃) �1 + 2𝐵𝐵11
𝐵𝐵10

𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃)� 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃� = 0. (9) 

Let's switch to dimensionless variables𝜂𝜂 = 𝑥𝑥′𝜔𝜔0/𝑉𝑉, 𝜏𝜏 = 𝑡𝑡𝜔𝜔0 and introduce the 

notation𝛽𝛽 = 2𝐵𝐵11/𝐵𝐵10 . We finally obtain: 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝜏𝜏2 −

𝜕𝜕2𝜙𝜙
𝜕𝜕𝜂𝜂2 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃) (1 + 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)) + 

  + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃) (1 + 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃)) = 0. (10) 

In the case whenθ = 0 orθ = π /2, equation (10) corresponds to the sine-Gordon 

equation, and when the conditionθ = π /4 is satisfied, equation (10) takes the form of 

the double sine-Gordon equation [14]. Thus, equation (10) describes all possible cases 

of propagation of plane solitary waves in a 2D symmetric square GSR (generalized 

sine-Gordon equation). 

We will search for the solution of equation (10) in the form of a traveling wave 

by introducing the variable𝜉𝜉 = (𝜂𝜂 − 𝑢𝑢
𝑉𝑉
𝜏𝜏)/�1 − 𝑢𝑢2

𝑉𝑉2
 , where u is the kink velocity. After 

transformations we have 

𝜙𝜙𝜉𝜉𝜉𝜉″ = 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃) (1 + 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)) + + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃) (1 +

𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃)).                                                                                                      (11) 

Multiplying both parts of the equation by the derivative𝜙𝜙𝜉𝜉′  and further integrating 
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once, we obtain 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �2�С− 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃) (1 + 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃))�. (12) 

The constant C is determined from the considerations of equality to zero of the 

derivative of the potential atϕ = 0. 

The phase portraits of the system at different values of the angleθ are shown in 

Figs. 2 and 3. The bold lines correspond to the separatrices. We see that for the anglesθ 

= 0 andθ = π /4, the phase trajectories of the system corresponding to the separatrices 

separating the regions of the finite (oscillatory, if we refer to the analogy of a 

pendulum) and infinite (rotational) motions, correspond to the existence of solitary 

waves [19]. In the case of anglesθ , different from 0,π /4 andπ /2, the corresponding 

phase trajectories do not have a periodic appearance, as shown in Fig. 3. The bold lines 

in Fig. 3 show the phase curves corresponding to equation (9) under the initial 

condition𝜙𝜙𝜉𝜉=0′ = 0 . The analysis of the phase portrait shows that these phase curves 

do not separate the regions of finite and infinite motions and, therefore, are not 

separatrices and, therefore, as one would expect, cannot set the conditions for the 

existence of plane solitary waves along the corresponding directions relative to the 

GSR axes. Thus, plane UEWs in a square 2D GSR can propagate only in the directions 

of the principal axes or diagonal of the square GSR. 

 

CONCLUSION 

The problem of the possibility of propagation of plane UEBs in the plane of a 

2D GSR at different angles to its axes is investigated. A generalized sine-Gordon 
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equation describing the propagation of a solitary electromagnetic pulse along certain 

directions in the plane of a square 2D GSR with weak nonadditivity of the energy 

spectrum in the column-free approximation is obtained. The phase portraits 

corresponding to its solution are investigated and the conditions for the existence of 

the UEB in the considered GSR are analyzed. On the basis of the obtained results, it is 

concluded that the planar UEB is able to propagate only at angles 0°  and 45° to the 

axes of the square GSR.  
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FIGURE CAPTIONS 

Figure 1. Geometry of the problem. 

 

Figure 2. Phase portrait of the system atθ = 0 (solid lines) andθ = π /4 (dashed lines). 

Bold lines correspond to separatrices. 

 

Figure 3. Phase portrait of the system atθ = π /8 (solid lines) andθ = π /6 (dashed lines). 
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