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Abstract. The spectral properties of a one-dimensional phonon crystal bounded by a 

reflector in the form of an air layer are studied. The presence of a defect in a phonon 

crystal with a reflector at the edge leads to a connection between the detective mode 

and the acoustic Tamm state. This connection of modes of different nature manifests 

itself in the form of hybridization of modes, and the pushing apart of dips in the 

reflection spectrum is explained by avoided crossing of modes. 
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INTRODUCTION 

Wave propagation in layered media began to be considered more than fifty years 

ago [1], applying various mathematical methods to describe elastic and 

electromagnetic waves. At present, a new field of science has been formed to study the 

properties of photonic crystals (PCs) and devices based on them [2,3]. From the general 
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point of view, a PC is a superlattice in which an additional period with a characteristic 

scale of periodicity of dielectric permittivity of the order of the light wavelength has 

been artificially created. A few years later, the concept of FC was transferred to the 

case of elastic waves [4,5] for various studies and the concept of phonon crystal (PhnC) 

appeared. The aim of these studies was to investigate the acoustic properties of two-

dimensional and three-dimensional periodic medium, in order to find the so-called full 

forbidden zones. Like any periodic structure, the propagation of acoustic waves in a 

phonon crystal is described by Bloch's theorem, which can be used to calculate the 

zone structure. The periodic structures defining the Brillouin zone can be in one (1D), 

two (2D) or three dimensions (3D). Dispersion curves show forbidden zones (ZZs), at 

frequencies at which wave propagation is forbidden in a periodic structure. Such gaps 

can occur for certain wave vector directions, but they can also cover the entire 2D [6] 

or 3D [7] Brillouin zone, where elastic wave propagation becomes forbidden for any 

polarization and any angle of incidence. Such a structure behaves like a perfect mirror 

at any angle of incidence, thus prohibiting the transmission of sound waves.  

The application of FnC, as well as FC [8], is not limited to its use as an ideal 

mirror. By analogy with the localization of an electronic state near the surface of a 

solid, it is possible to localize a light wave at the boundary of a PC and a metal or other 

PC [9-11]. Such localization is referred to as an optical Tamms state (OTS). By analogy 

with the OTS, elastic wave localization is also possible in FnC with a defect or in FnC 

with a violation of the periodicity of the structure [12-14]. 
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We should also note recent work on acousto-optical effects in composite 

materials, the simplest example of which is layered media. These results have 

applications in the radio-frequency range [15]. 

This paper studies the propagation of longitudinal acoustic waves in a phonon 

crystal consisting of alternating layers of ED-10 epoxy-diane resin and water. The 

effect due to the peculiarities of the structure is discussed: FnC with an air reflector 

and a defect in the structure in the form of a water layer with a thickness different from 

the thickness of the water layer in the FnC volume.  

 

MODEL DESCRIPTION AND CALCULATION METHOD 

A periodic structure consisting of resin layers and water layers between them, 

the number of periods is 5 (Fig. 1a) served as FnC. The thickness of the water layer 

between the neighboring resin layers dwateris 1 cm, the thickness of the resin depoxyis 0.3 

cm.  

The acoustic impedance (acoustic impedance, wave impedance) of a material 

normalized to the speed of sound and density of water is calculated using the following 

formula: 

                                            𝑍𝑍 =  𝜌𝜌𝜌𝜌
𝑐𝑐0𝜌𝜌0

, (1) 

where , 𝑐𝑐0 – скорость звука в воде 1500 м
с
с –  is the sound speed of the material, 𝜌𝜌0 

is the density of water 1000 ,кг 
м3 
𝜌𝜌 is the density of the material
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The refractive index of sound was calculated by analogy with the refractive index 

in optics, normalized by the speed of sound in water: 

                                      𝑛𝑛 =  𝑐𝑐
𝑐𝑐0

        (2) 

To break the periodicity of the structure, a reflector in the form of a layer of air 

is added on the right side. This layer reflects radiation in a wide wavelength range, so 

the manifestation of resonances in the transmission spectrum is not noticeable. To 

manifest resonances in the reflection spectrum, a layer of sound absorber (aqueous 

glycerol solution) with refractive indexn𝑎𝑎𝑎𝑎𝑎𝑎 = 1.27 + 0.057𝑖𝑖 , and thickness 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 =

0.4 см is added between the FnC and the reflector (Fig. 1b). N1is the number of periods 

between the boundary and the defect, i.e. the distance between them. 

The transfer matrix method was used to calculate the acoustic wave passage 

[16,17]. The acoustic field in a homogeneous plane-parallel layer is defined by two 

complex amplitudes of displacement and pressure vectors in the form of plane waves: 

𝑈𝑈(𝑧𝑧) = 𝑈𝑈𝑟𝑟 ∙ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑈𝑈𝑙𝑙 ∙ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖;     (3) 

𝑝𝑝(𝑧𝑧) = 𝐶𝐶
𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

;      (4) 

Substituting (3) into (4), we obtain: 

                                𝑝𝑝(𝑧𝑧) = 𝐶𝐶 ∙ 𝑈𝑈𝑟𝑟 ∙ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶 ∙ 𝑈𝑈𝑙𝑙 ∙ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖,    (5) 

where𝑈𝑈(𝑧𝑧) is displacement,𝑝𝑝(𝑧𝑧) is acoustic pressure,𝐶𝐶 has dimension .Па/м 

The change of the acoustic field when passing through each layer of the structure 

is determined by the second-order transfer matrix (dimensionality2 ×  2 ). The transfer 

matrix of the whole structure relates the complex amplitudes at the right and left 
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boundaries of the structure. It is defined by the product of the matrices of adjacent 

layers: 

             𝑀𝑀� = 𝐷𝐷�outN · 𝑃𝑃�N · 𝐷𝐷�N(N−1) · 𝑃𝑃� (N−1) ... 𝑃𝑃�1 · 𝐷𝐷�1in                                         (6) 

Here 𝐷𝐷� ji −  is a matrix that shows the change in amplitudes when the wave 

crosses the boundary of the ii and ji layers, :𝑗𝑗 = 𝑖𝑖 + 1 

                                          𝐷𝐷�𝑖𝑖𝑖𝑖 =  1
𝑡𝑡𝑖𝑖𝑖𝑖
�

1 𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖 1 �,                                             (7) 

where rjiand tjiare the amplitude reflection and transmission coefficients at the 

boundary between the jth and i-th layers: 

                                       𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑍𝑍𝑖𝑖−𝑍𝑍𝑗𝑗
𝑍𝑍𝑖𝑖+𝑍𝑍𝑗𝑗

; 𝑡𝑡𝑗𝑗𝑗𝑗 = 2𝑍𝑍𝑖𝑖
𝑍𝑍𝑖𝑖+𝑍𝑍𝑗𝑗

                                                 (8) 

where𝑍𝑍𝑖𝑖 and𝑍𝑍𝑗𝑗 are the acoustic impedance of the i-th and j-th layers, respectively. 

The matrix𝑃𝑃� iis called the propagation matrix, it shows the change in amplitudes 

as the wave propagates in layer i: 

                           𝑃𝑃�𝑖𝑖 =  �𝑒𝑒
𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 0

0 𝑒𝑒−𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖
�                                                         (9) 

where𝑑𝑑𝑖𝑖 and𝑘𝑘𝑖𝑖𝑖𝑖 are the thickness and wave vector of the i-th layer. 

The energy coefficients of reflection, transmission and absorption of the whole 

structure are determined by expressions, respectively: 

𝑅𝑅 = �𝑀𝑀
�21
𝑀𝑀�11

�
2

, 𝑇𝑇 = � 1
𝑀𝑀�11

�
2

, 𝐴𝐴 = 1 − 𝑅𝑅 − 𝑇𝑇, (10) 

where𝑀𝑀�21,𝑀𝑀�11 are the elements of the matrix .𝑀𝑀�  
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RESULTS AND DISCUSSION 

Localization at the FnC defect was previously considered in [17]. In this 

paragraph, hybridization of the defect mode and ATC is investigated.  

The parameters of the system are chosen in such a way that both modes (states 

corresponding to the eigenstate solutions of the wave equation) appear at frequencies 

in the first forbidden zone. Let us construct the spectrum of reflection of this system to 

determine the frequencies of localized states (Fig. 2). As can be seen from the reflection 

spectrum, there are two resonance frequencies in the forbidden zone, which appear as 

reflection dips. 

From Fig. 3 shows that the resonance frequencies correspond to two localized 

modes. At the same time, localization can occur both at the boundary between the FnC 

and the reflector and at the defect. The localization of the field more at the FnC-

reflector boundary corresponds to Fig. 3b, whereas the field localization in the defect 

corresponds more to Fig. 3а. Mode hybridization is the coupling and spatial 

superposition of two modes of different nature. The hybridization is manifested in the 

spatial distribution of the field in the two kinds of localization, which is found in Figs. 

3a and 3b. Since the partial modes, i.e., the normal modes of the subsystems [19], are 

of different nature, their superposition is of hybrid nature and the coupling is called 

hybridization. 
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Let us study the hybridization of modes depending on the distance between the 

defect and the reflector (Fig. 4). We construct the reflection spectrum by varying N1in 

the frequency range from 35 kHz to 60 kHz, i.e., considering the first ZZ.  

Figure 4 shows that with increasing N1, i.e., increasing the distance between the 

defect and the reflector, the two resonance frequencies converge. In this case, the mode 

with a lower frequency, corresponding to a greater degree of localization on the defect 

FnC, starting from the distance N1 =  4, ceases to appear in the reflection spectrum. At 

the same time, the mode with a higher frequency, corresponding to a greater degree to 

ATC, is preserved. 

Let us fix the position of the defect at the middle of the FnC (N1 =  2) and change 

the thickness of the sound absorber layer adjacent to the reflector. Let us plot the 

reflection spectrum for this case (Fig. 5). 

Analyzing the resulting spectrum, it can be seen that the frequencies of the two 

modes change as the thickness of the defect layer changes. Two curves with hyperbolic 

shape in the region of their convergence can be compared to the areas of reflection 

dips, blue color. This picture is similar to the quasi-crossing (avoided crossing) of the 

defect and Tamm modes in a photonic crystal [18]. The quasi-crossing phenomenon is 

explained in the language of normal and partial modes introduced in the discussion of 

Fig. 3. In Fig. 5, the two reflection dips correspond to the normal modes depicted in 

Fig. 3. Each of these modes is a superposition of two partial modes: the ATC on the 

right and the defective mode on the left. Since the partial modes, i.e., the normal modes 

of the subsystems [19], are of different nature, their superposition is of hybrid nature 

and the relation is called hybridization. The frequency dependencies of the normal 
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modes on the thickness of the sound absorber layer𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 overlap, but this is not seen in 

the reflection spectrum of the whole structure. Instead, two characteristic curves of the 

normal modes are seen, whose common asymptotes are the dashed lines of the partial 

modes. The more strongly coupled the partial modes are, the greater the 

disentanglement, i.e., the frequency distance between the normal mode curves. It can 

also be seen that in the frequency region of 30-35 kHz the mode goodness drops. This 

is due to the fact that the mode frequency has gone beyond the ZZ boundaries and the 

FnC-ATS coupling is broken. 

Thus, it is possible to control the spectral position of the modes by varying the 

thickness of the water layer adjacent to the reflector and by varying the distance 

between the two layers under consideration.  

 

CONCLUSION 

The spectral properties of a one-dimensional FnC with a defect bounded on one 

side by a reflector have been investigated. The results are obtained using the transfer 

matrix method. 

The phenomenon of mode coupling is common for various vibrational systems, 

starting from coupled pendulums. At the same time, the peculiarities of the 

manifestation of this coupling in the defect and at the phonon crystal boundary are of 

interest. As far as we know from the literature, such a manifestation of mode coupling 

in phonon crystals has not been considered by anyone so far. We have found a 

characteristic for pendulums mismatch of normal frequencies, which is explained by 
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their quasi-crossing. The change in the spatial profile of hybrid modes is described 

(Fig. 3). In addition, the dependences of the mastalking on the distance between the 

defect and the reflector (Fig. 4), as well as on the thickness of the sound absorber layer 

(Fig. 5), are revealed. This effect suggests the principle of operation of a new acoustic 

filter with tunable frequency. 
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FIGURE CAPTIONS 

Fig. 1. Structure of FnC (a) and FnC with defect and reflector (b). The green line is the 

dependence of the real part of the refractive index of the material on the depth of the 

FnC. System parameters:  d𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  1 см, n𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  1; d𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  0.3 см, n𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

 1.75; d𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤1 =  1.4 см, n𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤1 =  1; d𝑎𝑎𝑎𝑎𝑎𝑎 =  2.5 см, n𝑎𝑎𝑎𝑎𝑎𝑎 =  0.2; d𝑎𝑎𝑎𝑎𝑎𝑎 =  0.4 см, 

n𝑎𝑎𝑎𝑎𝑎𝑎 =  1.27 + 0.057𝑖𝑖. 

 

Fig. 2. Reflection spectra of FnC with a defect in the middle of the structure and a 

reflector on the boundary (blue line) and inoculum FnC (crimson line). The forbidden 

zone of the inoculum FnC corresponds to the frequency region where the reflection 

coefficient is close to unity. Reflection failures - frequencies on the spectrum of FnC 

with defect and reflector, where reflection coefficients are minimal in the ZZ. 

Reflection failures correspond to resonance frequencies at 36.78 and 43.32 kHz. 

Fig. 3. Hybridization of the defect and Tamma modes in the spatial field distribution 

for the smaller (a) and larger (b) of the two resonance frequencies. The black line is the 

dependence of the square of the acoustic pressure modulus p on the FnC depth. Green 

line - dependence of the real part of the refractive index of the material on the FnK 

depth. Fg - frequency of the incident acoustic wave. The maximum of the defect mode 

appears near𝑧𝑧 = 5 см, the maximum of the ATS - near .𝑧𝑧 = 8.7 см 

Fig. 4. Removal of mode degeneracy in the reflection spectrum of FnC with a defect 

and a reflector under variation of the distance between them. The x-axis is the 

frequency of the incident wave. The y-axis is the distance between the defect and the 

reflector, expressed in the number of periods N1. The z-axis is the reflection coefficient. 

Fig. 5. Quasi-crossing of dips in the reflection spectrum of FnC with defect and 

reflector at variation of the thickness of the sound absorber layerd𝑎𝑎𝑎𝑎𝑎𝑎 . The x-axis is 

the frequency of the incident wave. The y-axis is the thickness of the water sound 

absorber layerd𝑎𝑎𝑎𝑎𝑎𝑎 . The z-axis is the reflection coefficient. 
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