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Abstract. The phenomena that occur during the propagation of acoustic waves in
narrow tubes with variable cross-section are studied. A special law of cross-sectional
variation has been defined for the tube. The mode of wave tunneling through narrowing
is investigated. The influence of the attached mass on the boundaries of the narrowing
area of the tube is taken into account. The frequency dependences of the wave are
constructed taking into account the attached mass.
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INTRODUCTION
Pipes with constant and variable cross-section are an integral part of all sound
conduits used in practice. For this reason, the study of the laws of sound propagation
in such a system is of great importance for solving all acoustic questions related to
experimental studies and processing of their results.
A great number of works have been devoted to the study of sound wave
propagation in an infinite acoustic waveguide. A special place among the problems

under consideration is occupied by problems in which the waveguide has a changing
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cross-sectional profile. This class of problems is of great interest because in the zone
of sectional change the wave front is reconstructed, which, in turn, generates a number
of interesting effects.

This work is devoted to analyzing the peculiarities of acoustic wave propagation
in composite tubes of variable cross-section, in which different sections may have
different acoustic characteristics. At the junction of such sections, the attached mass,
introduced to describe the transient process of wave transformation, plays a significant
role. To describe these effects, it is necessary to solve the full problem of wave passage
and reflection through the constriction region. In addition, a brief review of the basic
equations for describing acoustic waves, taking into account the nonlinearity and

dissipation of the medium, is given in the paper.

SOUND PROPAGATION THROUGH A TUBE OF VARIABLE CROSS-
SECTION
Consider a situation when an acoustic wave propagates in a narrow tube, one of
the sections of which has a smooth constriction with a variable cross-section (see Fig.
1). The medium parameters - densityp; and sound velocityc; - in region II with
narrowing (0 < x < d ) generally differ from the medium parameters - densityp, and
sound velocityc, - in sections I and III with constant cross-section. Consideration of
identical media in sections I and III simplifies the final expressions, but does not limit

the generality of the obtained results.



In the linear approximation, waves in horns, tubes, concentrators, and other
waveguide systems with variable cross sectionS(x ) are described by Webster's
equation [1-3]:
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Herex is the coordinate counted along the system axis,p is the acoustic pressure,c is
the speed of sound, hereafterp is the density of the medium.

Webster's equation (1) is applicable to tubes whose characteristic radius is small
compared to the wavelength:ry << A . The basic approximation made in deriving this
equation is that the wave should maintain one-dimensional propagation despite
changes in the cross-section of the tube. This condition is well satisfied for narrow
tubes in which only the piston mode is effectively excited and propagates due to the
presence of dispersion. For tubes with a large characteristic cross-sectional radius, this
equation will also apply if the radius changes relatively slowly as propagation
proceeds. If the cross-sectional area changes rapidly enough in some regions of the
tube, the planar character of the motion in the transition region may be distorted. These
distortions of the character of motion are usually phenomenologically accounted for by
the introduction of an attached mass describing the inertial drag [4,5]. The conditions

of applicability of Webster's equation to the problem solved in this paper will also be

discussed below.



PASSAGE OF AN INTENSE WAVE THROUGH A TUBE SECTION WITH
CONSTRICTION TAKING INTO ACCOUNT LOW-FREQUENCY DISPERSION
AND ATTACHED MASS

Even in the case of the simplest, linear Webster equation (1), the study reveals
very curious effects. One of them is the tunneling of acoustic waves as they propagate
through a smoothly narrowing waveguide channel [6-10]. This mode corresponds to
the passage through the narrowing of an inhomogeneous wave and was considered in
[6, 7].

As mentioned above, in the region of relatively abrupt changes in cross-sectional
area, vortex motions may occur, for accounting for which an attached mass is
introduced. Since the cross-sectional profile, presented in Fig. 1, although continuous,
contains a discontinuity of the derivative, the appearance of the attached mass is also
possible here. This factor was not considered in [6, 7]. This work is devoted to the
study of the influence of the attached mass on the tunneling effect at a smooth
narrowing of the tube cross section.

To obtain exact solutions of equation (1), we introduce instead of the pressurep

a new function :F

p(x,t) = : )

For this function, equation (1) will take the form:
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Let us set the cross-sectional area in equation (3) in a special form
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Here, the constantsS,,, d are the geometric characteristics of the variable thickness
section:S,,, is the minimum dimensionless areca of contraction achieved at the

: d : . .
coordinate valuex = 2> andd is the length of this section.

Then at we reduce equation (3) to the form:
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Thus, the original equation was reduced to an equation with constant
coefficients, which allows us to obtain an exact solution. Compared to the wave
equation, equation (5) contains an additional summand, which is responsible for the
low-frequency dispersion. This summand allows choosing different modes of wave
passage depending on the frequency.

Particularly interesting is the tunneling mode of the wave. Speaking about
tunneling, we often mean quantum effects of penetration of particles through potential
barriers, the height of which is greater than the energy of the particles themselves. In
this case we are talking about the situation when the inhomogeneous wave mode is
realized in the constriction region. In this case, the attenuation in the low-frequency
range is insignificant, and there is no phase shift [6]. As a result, a plateau is formed
on the frequency dependence of the transmission coefficient, where its value is close
to unity. The wave passes practically without losses and distortions.
iw

By substituting a harmonic wave of frequency ,wF = Fye ™! | equation (5) can

be reduced to the form:
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wherek; = — s the wave number in the medium.
1

Obviously, the tunneling effect is possible only in some narrow range of relevant

parameters, which is yet to be found. The wave tunneling mode corresponds to the

value®? > k? . This mode can be realized for low frequenciesk; < 8 or

2c 1 1
w < —arch——, k;d < 2arch——. (7)

d JSm VSm

As can be seen, the tunneling mode really corresponds to the situation when the
contraction length d is smaller than the wavelength. Thus, the change of the cross-
sectional area is quite abrupt and the question arises about the legitimacy of using the
model of Webster's equation (1) in this case. The considered situation with a smooth
but rather fast change of the cross-sectional area is an intermediate variant between two
model situations: 1) smooth and slow narrowing, for which Webster's equation is an
adequate model, and 2) abrupt jumping narrowing, which is modeled by a thin baffle
and for which full penetration is possible only at zero frequency. The second of these
models completely omits the effect of the smoothness of the change in cross-sectional
area. The adequacy of the application of the Webster equation model for this case can
be justified by the existence of a limiting transition from one model to the other. Indeed,
by taking the length of the constriction to zero, we see that the constriction will jump
and the complete passage of sound will only be at zero frequency. The effects arising
at a finite length of the constriction will be modeled, as usual, by adding an attached

mass.



To find the reflection and transmission coefficients of the wave, let us write down
the boundary conditions in the region:0 < x < d . We require continuity of the

pressurep and velocityu :
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ot 0% T Thpcax

In the places of contact of tubes of different cross-section, generally speaking,
the character of the medium motion changes, the wave ceases to be flat. For
phenomenological description of the transition process, an attached mass is introduced.
It can be expected that in the case of a smooth change in the cross-section of the tubes
this mass is smaller than for the case of an abrupt jump in cross-section. Nevertheless,
it is important to see how significant the influence of the attached mass is.

After substituting the inhomogeneous wave solution into the boundary

conditions, we obtain a system of equations:

e P,+P. =P, +P_+iP'(0),
. a
P,— P = lk—[P+(u —b) — P_(u+b)],
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In formula (8)P;, B, P; - amplitudes of incident, reflected, passed waves,P,, P_ -
amplitudes of waves propagating inside the tube - in region II, , ,P'(0) =

_Mls“)“l P'(d) = Xz&uu ‘S‘)u”l M;, M, - attached mass at the tube inlet and outlet, respectively,
1 2

up, Uy - oscillatory velocity at the boundary ,x = Ox = d , respectively, , ,b =

2 1 : .
=J1—Sparch—p =./0% — k?a = Po% _ ratio of acoustic impedances of the two
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media,S;, S, - dimensionless cross-sectional areas of the tube atx = 0 andx = d .



Solving the system (8), we find the expressions forP, and :P_
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and dimensionless parameters are introduced:

From equations (8) to (10) we find the wave travel coefficient :T

P 1 _
T=Ft=2ii— (mE+b)|[1-v
i

Mw 1 « o, =
klA S p_Ck=1 I.J.— )+lk=1(|.l—b) +

] (R D RIETCID) || S

Here, for simplification of the notation,S; = S, = S is used. If we putM; = 0, which

means the absence of the attached mass, the expression (11) will take the form:

(12)



We plot the frequency dependences of the square of the wave transmission
coefficient for the ratio of the parametersa = 2 and three values of the minimum tube
cross-sectionS,,, = 0.09,0.34,0.71 (curves 1, 2, 3 in Figs. 2, 3, respectively).

In order to emphasize the influence of the attached mass, we first plot the
frequency dependence of the wave travel coefficient in its absence atM; = 0 . The

corresponding plot is shown in Fig. 2. It can be seen that the maximum frequency range
0< k_1 < 1.75 ), where the tunneling effect is manifested, is reached atS,, = 0.34 .

At higher values of the frequencyE , formula (12) transforms into a solution describing
the transmission coefficient oscillations corresponding to the usual traveling wave
mode.

If we take into account the attached mass and puty = Z—j = 0.24, the dependence
of the wave transmission coefficient will take the form shown in Fig. 3. 3. As can be
seen from Fig. 3, the effect of full tunneling in the frequency range in which it was
observed in the absence of the attached mass is destroyed. The tunneling coefficient
reaches unity only at selected frequencies. Nevertheless, the region where the
transmission coefficient is sufficiently close to unity remains. In addition, for small
values of the dimensionless minimum cross-sectional area, the transmittance increases
compared to the case with no attached mass.

We plot the dependence of the square of the transmission coefficient on the

dimensionless wave number as a function of the attached massM; = 0.14; 0.43; 0.88

(curves 1, 2, 3 in Fig. 4, respectively) with the same dimensionless minimum cross-



sectional areaS,,, = 0.34 , in order to analyze how the field changes as the attached
mass increases.

Thus, from Fig. 4, we can conclude that with the increase of the parameterM; the
transmission coefficient decreases, i.e., the increase of the attached mass leads to the
fact that the field is distorted more strongly.

The results obtained by  show that, indeed, when taking into account the
of the attached mass, the conditions of full transmission deteriorate, and frequency-
dependent effects appear in the low-frequency region, where the tunneling plateau is
located. Nevertheless, it is hoped that less signal distortion can be achieved in the

propagation of low-frequency signals. This task requires further research.

ACCOUNTING FOR DISSIPATION AND NONLINEARITY

Speaking of frequency-dependent effects, one cannot fail to mention such an
important factor as the viscosity of the medium. Undoubtedly, it will introduce
distortions, including in the propagation of low-frequency signals. Keeping in mind the
problem of high intensity wave propagation, we will note the following peculiarities
within the framework of this work.

In problems related to the propagation of acoustic waves of high intensity, a
generalized Webster-type equation arises. It differs from equation (1) by the presence
of two additional terms that describe nonlinear and dissipative effects. Usually, this

equation is written in the form:
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Hereg, b 1s a nonlinear parameter and dissipation coefficient. Webster's equation of the
type (13), especially when solving nonlinear problems, can be simplified by using the
slowly changing profile method [11,12]. This method is applicable when changes in
cross-sectional area occur slowly. As a result, the order of the nonlinear equation (13)
is reduced. Following the standard procedure, we pass from the variablesx,t in

equation (13) to new independent variables: the "slow" coordinatex; = 8x (whered is

X
a small parameter of the problem) and the "fast" time 7 =7 — - in a coordinate system

running at the speed of sound. Restricting ourselves to the standard model (13) and
neglecting small terms of the order ,6 " n>2 , we arrive at the evolution equation

9 dp b 92
o p+£—{ms@ﬂ—o (14)
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It 1s usually noted that equations of the form (13) - (14) have a wider area of
applicability and describe also, for example, the fields of intense confined acoustic
beams in inhomogeneous media in the approximation of nonlinear geometric acoustics
(NGA), and the function S(x) in this case has the meaning of the cross-sectional area
of the beam tube [12].

However, while for beams in the NGA approximation the notation of the
dissipative term in equations (13) - (14) 1s exact, for waves in a tube it is, generally
speaking, not so. A rigorous derivation of the generalized linearized Webster equation
for a tube of variable cross section with viscosity taken into account leads to an exact
closed equation for the oscillatory velocity:
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in which the viscous term has the usual structure as in equation (13), but the variable
cross-sectional area term has a different structure compared to equation (1) for
pressure. The transition to the closed equation for pressure is possible only
approximately, taking into account those or other terms of different order of smallness.
In the simplest variant we obtain the following approximate closed equation for
pressure:
=i+ ) (55 (16)
Here, the variable cross-sectional area term coincides with the analogous term in
equation (1), but the viscous term has a different structure than in equation (13). Thus,
the generalized Webster's equation with viscosity for sound in tubes is, generally
speaking, different from the form (13), and the dissipative effects in tubes and in
confined beams are also different. In addition, the difference in equations (13)-(16)
may affect the shape of wave profiles formed in a tube of variable cross section and the

possibility of finding accurate analytical solutions.

CONCLUSION
Thus, we have studied wave propagation in the tunneling mode in narrow tubes
with a variable cross section of a special kind. The influence of the attached mass at
the boundaries of the region of smooth narrowing of the tube has been taken into
account. It was found out that taking into account the attached mass worsens the

conditions of wave tunneling: this is manifested in the decrease of the wave passage
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coefficient in the frequency range, where the tunneling mode was observed without
taking into account the attached mass, as well as in the reduction of the frequency range
itself. However, when the attached mass is taken into account, the interval of minimum
values of the cross-sectional area increases, at which almost complete wave passage is
possible (the passage coefficient is close to unity). It is shown that an increase in the
attached mass leads to a decrease in the wave transmission coefficient, thereby
distorting the field even more.
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FIGURE CAPTIONS

Fig. 1. The tube contains a constriction region II (0 x< < d) filled with a medium with

densityp, and speedc; of sound.

Fig. 2. Frequency dependences of the square of the wave travel coefficient without

taking into account the attached mass.

Fig. 3. Frequency dependences of the square of the wave travel coefficient taking into

account the attached mass.

Fig. 4. Frequency dependences of the square of the wave-passing coefficient taking

into account the attached mass at different .M,
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