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Abstract. The phenomena that occur during the propagation of acoustic waves in 

narrow tubes with variable cross-section are studied. A special law of cross-sectional 

variation has been defined for the tube. The mode of wave tunneling through narrowing 

is investigated. The influence of the attached mass on the boundaries of the narrowing 

area of the tube is taken into account. The frequency dependences of the wave are 

constructed taking into account the attached mass. 
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INTRODUCTION 

Pipes with constant and variable cross-section are an integral part of all sound 

conduits used in practice. For this reason, the study of the laws of sound propagation 

in such a system is of great importance for solving all acoustic questions related to 

experimental studies and processing of their results. 

A great number of works have been devoted to the study of sound wave 

propagation in an infinite acoustic waveguide. A special place among the problems 

under consideration is occupied by problems in which the waveguide has a changing 
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cross-sectional profile. This class of problems is of great interest because in the zone 

of sectional change the wave front is reconstructed, which, in turn, generates a number 

of interesting effects. 

This work is devoted to analyzing the peculiarities of acoustic wave propagation 

in composite tubes of variable cross-section, in which different sections may have 

different acoustic characteristics. At the junction of such sections, the attached mass, 

introduced to describe the transient process of wave transformation, plays a significant 

role. To describe these effects, it is necessary to solve the full problem of wave passage 

and reflection through the constriction region. In addition, a brief review of the basic 

equations for describing acoustic waves, taking into account the nonlinearity and 

dissipation of the medium, is given in the paper. 

 

SOUND PROPAGATION THROUGH A TUBE OF VARIABLE CROSS-

SECTION 

Consider a situation when an acoustic wave propagates in a narrow tube, one of 

the sections of which has a smooth constriction with a variable cross-section (see Fig. 

1). The medium parameters - densityρ1 and sound velocity𝑐𝑐1 - in region II with 

narrowing (0 < 𝑥𝑥 < 𝑑𝑑 ) generally differ from the medium parameters - densityρ0 and 

sound velocity𝑐𝑐0 - in sections I and III with constant cross-section. Consideration of 

identical media in sections I and III simplifies the final expressions, but does not limit 

the generality of the obtained results.  
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In the linear approximation, waves in horns, tubes, concentrators, and other 

waveguide systems with variable cross section𝑆𝑆(𝑥𝑥 ) are described by Webster's 

equation [1-3]: 

1
𝑆𝑆(𝑥𝑥)

𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝑆𝑆(𝑥𝑥)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

−
1
𝑐𝑐2
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2 = 0. (1) 

Here𝑥𝑥 is the coordinate counted along the system axis,𝑝𝑝 is the acoustic pressure,𝑐𝑐 is 

the speed of sound, hereafterρ is the density of the medium.  

Webster's equation (1) is applicable to tubes whose characteristic radius is small 

compared to the wavelength:𝑟𝑟0 ≪ λ . The basic approximation made in deriving this 

equation is that the wave should maintain one-dimensional propagation despite 

changes in the cross-section of the tube. This condition is well satisfied for narrow 

tubes in which only the piston mode is effectively excited and propagates due to the 

presence of dispersion. For tubes with a large characteristic cross-sectional radius, this 

equation will also apply if the radius changes relatively slowly as propagation 

proceeds. If the cross-sectional area changes rapidly enough in some regions of the 

tube, the planar character of the motion in the transition region may be distorted. These 

distortions of the character of motion are usually phenomenologically accounted for by 

the introduction of an attached mass describing the inertial drag [4,5]. The conditions 

of applicability of Webster's equation to the problem solved in this paper will also be 

discussed below. 
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PASSAGE OF AN INTENSE WAVE THROUGH A TUBE SECTION WITH 

CONSTRICTION TAKING INTO ACCOUNT LOW-FREQUENCY DISPERSION 

AND ATTACHED MASS 

Even in the case of the simplest, linear Webster equation (1), the study reveals 

very curious effects. One of them is the tunneling of acoustic waves as they propagate 

through a smoothly narrowing waveguide channel [6-10]. This mode corresponds to 

the passage through the narrowing of an inhomogeneous wave and was considered in 

[6, 7].  

As mentioned above, in the region of relatively abrupt changes in cross-sectional 

area, vortex motions may occur, for accounting for which an attached mass is 

introduced. Since the cross-sectional profile, presented in Fig. 1, although continuous, 

contains a discontinuity of the derivative, the appearance of the attached mass is also 

possible here. This factor was not considered in [6, 7]. This work is devoted to the 

study of the influence of the attached mass on the tunneling effect at a smooth 

narrowing of the tube cross section. 

To obtain exact solutions of equation (1), we introduce instead of the pressure𝑝𝑝 

a new function :𝐹𝐹 

𝑝𝑝(𝑥𝑥, 𝑡𝑡) =
𝐹𝐹(𝑥𝑥, 𝑡𝑡)

�𝑆𝑆(𝑥𝑥)
. (2) 

For this function, equation (1) will take the form: 

𝜕𝜕2𝐹𝐹
𝜕𝜕𝑥𝑥2 −

1
𝑐𝑐2
𝜕𝜕2𝐹𝐹
𝜕𝜕𝑡𝑡2 =

1

�𝑆𝑆(𝑥𝑥)
𝜕𝜕2�𝑆𝑆(𝑥𝑥)
𝜕𝜕𝑥𝑥2 𝐹𝐹. (3) 

Let us set the cross-sectional area in equation (3) in a special form  
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𝑆𝑆(𝑥𝑥) = 𝑆𝑆𝑚𝑚sh2 �θ �𝑥𝑥 −
𝑑𝑑
2��

, θ =
2
𝑑𝑑 arch

1

�𝑆𝑆𝑚𝑚
. (4) 

Here, the constants𝑆𝑆𝑚𝑚,𝑑𝑑 are the geometric characteristics of the variable thickness 

section:𝑆𝑆𝑚𝑚 is the minimum dimensionless area of contraction achieved at the 

coordinate value𝑥𝑥 = 𝑑𝑑
2
 , and𝑑𝑑 is the length of this section. 

Then at we reduce equation (3) to the form: 

𝜕𝜕2𝐹𝐹
𝜕𝜕𝑥𝑥2 −

1
𝑐𝑐2
𝜕𝜕2𝐹𝐹
𝜕𝜕𝑡𝑡2 = θ2𝐹𝐹. (5) 

Thus, the original equation was reduced to an equation with constant 

coefficients, which allows us to obtain an exact solution. Compared to the wave 

equation, equation (5) contains an additional summand, which is responsible for the 

low-frequency dispersion. This summand allows choosing different modes of wave 

passage depending on the frequency. 

Particularly interesting is the tunneling mode of the wave. Speaking about 

tunneling, we often mean quantum effects of penetration of particles through potential 

barriers, the height of which is greater than the energy of the particles themselves. In 

this case we are talking about the situation when the inhomogeneous wave mode is 

realized in the constriction region. In this case, the attenuation in the low-frequency 

range is insignificant, and there is no phase shift [6]. As a result, a plateau is formed 

on the frequency dependence of the transmission coefficient, where its value is close 

to unity. The wave passes practically without losses and distortions.  

By substituting a harmonic wave of frequency ,ω𝐹𝐹 = 𝐹𝐹0𝑒𝑒−𝑖𝑖ω𝑡𝑡 , equation (5) can 

be reduced to the form: 
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𝜕𝜕2𝐹𝐹
𝜕𝜕𝑥𝑥2 + (𝑘𝑘12 − θ2)𝐹𝐹 = 0, (6) 

where𝑘𝑘1 = 𝜔𝜔
𝑐𝑐1

 is the wave number in the medium.  

Obviously, the tunneling effect is possible only in some narrow range of relevant 

parameters, which is yet to be found. The wave tunneling mode corresponds to the 

valueθ2 > 𝑘𝑘12 . This mode can be realized for low frequencies𝑘𝑘1 < θ or 

ω <
2𝑐𝑐
𝑑𝑑 arch

1

�𝑆𝑆𝑚𝑚
,𝑘𝑘1𝑑𝑑 < 2 arch

1

�𝑆𝑆𝑚𝑚
. (7) 

As can be seen, the tunneling mode really corresponds to the situation when the 

contraction length d is smaller than the wavelength. Thus, the change of the cross-

sectional area is quite abrupt and the question arises about the legitimacy of using the 

model of Webster's equation (1) in this case. The considered situation with a smooth 

but rather fast change of the cross-sectional area is an intermediate variant between two 

model situations: 1) smooth and slow narrowing, for which Webster's equation is an 

adequate model, and 2) abrupt jumping narrowing, which is modeled by a thin baffle 

and for which full penetration is possible only at zero frequency. The second of these 

models completely omits the effect of the smoothness of the change in cross-sectional 

area. The adequacy of the application of the Webster equation model for this case can 

be justified by the existence of a limiting transition from one model to the other. Indeed, 

by taking the length of the constriction to zero, we see that the constriction will jump 

and the complete passage of sound will only be at zero frequency. The effects arising 

at a finite length of the constriction will be modeled, as usual, by adding an attached 

mass. 
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To find the reflection and transmission coefficients of the wave, let us write down 

the boundary conditions in the region:0 < 𝑥𝑥 < 𝑑𝑑 . We require continuity of the 

pressure𝑝𝑝 and velocity𝑢𝑢 :  

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,𝑢𝑢 = − 𝑖𝑖
𝑘𝑘ρ𝑐𝑐

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 

In the places of contact of tubes of different cross-section, generally speaking, 

the character of the medium motion changes, the wave ceases to be flat. For 

phenomenological description of the transition process, an attached mass is introduced. 

It can be expected that in the case of a smooth change in the cross-section of the tubes 

this mass is smaller than for the case of an abrupt jump in cross-section. Nevertheless, 

it is important to see how significant the influence of the attached mass is.  

After substituting the inhomogeneous wave solution into the boundary 

conditions, we obtain a system of equations: 

⎩
⎪
⎨

⎪
⎧

𝑃𝑃𝑖𝑖 + 𝑃𝑃𝑟𝑟 = 𝑃𝑃+ + 𝑃𝑃− + 𝑖𝑖𝑃𝑃′(0),

𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑟𝑟 = 𝑖𝑖
𝛼𝛼
𝑘𝑘1

[𝑃𝑃+(𝜇𝜇 − 𝑏𝑏) − 𝑃𝑃−(𝜇𝜇 + 𝑏𝑏)],

𝑃𝑃+𝑒𝑒−𝜇𝜇𝜇𝜇 + 𝑃𝑃−𝑒𝑒𝜇𝜇𝜇𝜇 = 𝑃𝑃𝑡𝑡 + 𝑖𝑖𝑃𝑃′(𝑑𝑑),

𝑖𝑖
𝛼𝛼
𝑘𝑘1

[𝑃𝑃+𝑒𝑒−𝜇𝜇𝜇𝜇 �(𝜇𝜇 + 𝑏𝑏) − 𝑃𝑃−𝑒𝑒𝜇𝜇𝜇𝜇(𝜇𝜇 − 𝑏𝑏)� = 𝑃𝑃𝑡𝑡 .

 (8) 

In formula (8)𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑟𝑟 ,𝑃𝑃𝑡𝑡 - amplitudes of incident, reflected, passed waves,𝑃𝑃+,𝑃𝑃− - 

amplitudes of waves propagating inside the tube - in region II, , ,𝑃𝑃′(0) =

𝑀𝑀1ω𝑢𝑢I
𝑆𝑆1

𝑃𝑃′(𝑑𝑑) = 𝑀𝑀2ω𝑢𝑢III
𝑆𝑆2

𝑀𝑀1,𝑀𝑀2  - attached mass at the tube inlet and outlet, respectively, 

𝑢𝑢I,𝑢𝑢III - oscillatory velocity at the boundary ,𝑥𝑥 = 0𝑥𝑥 = 𝑑𝑑 , respectively, , ,𝑏𝑏 ≡

2
𝑑𝑑 �1 − 𝑆𝑆𝑚𝑚arch 1

�𝑆𝑆𝑚𝑚
μ = �θ2 − 𝑘𝑘12α = ρ0с0

ρ1с1
 - ratio of acoustic impedances of the two 

media,𝑆𝑆1, 𝑆𝑆2 - dimensionless cross-sectional areas of the tube at𝑥𝑥 = 0  and𝑥𝑥 = 𝑑𝑑 .  
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Solving the system (8), we find the expressions for𝑃𝑃+ and :𝑃𝑃− 

𝑃𝑃+ =
2𝑃𝑃𝑖𝑖
∆ 𝑒𝑒μ �1 − γ

𝑀𝑀1ω
𝑆𝑆1

1
ρ0𝑐𝑐0

α
𝑘𝑘1
�μ − 𝑏𝑏� − 𝑖𝑖

α
𝑘𝑘1
�μ − 𝑏𝑏��, (9) 

𝑃𝑃− = −
2𝑃𝑃𝑖𝑖
∆ 𝑒𝑒−μ �1 + γ

𝑀𝑀1ω
𝑆𝑆2

1
ρ0𝑐𝑐0

α
𝑘𝑘1
�μ + 𝑏𝑏� − 𝑖𝑖

α
𝑘𝑘1
�μ + 𝑏𝑏��, (10) 

where 

∆= 𝑒𝑒μ �1 − 𝑀𝑀1ω
𝑆𝑆1

1
ρ0𝑐𝑐0

α
𝑘𝑘1
�μ − 𝑏𝑏� + 𝑖𝑖 α

𝑘𝑘1
�μ − 𝑏𝑏�� �1 − γ𝑀𝑀1ω

𝑆𝑆2

1
ρ0𝑐𝑐0

α
𝑘𝑘1
�μ − 𝑏𝑏� +

𝑖𝑖 α
𝑘𝑘1
�μ − 𝑏𝑏�� − 𝑒𝑒−μ �1 + 𝑀𝑀1ω

𝑆𝑆1

1
ρ0𝑐𝑐0

α
𝑘𝑘1
�μ + 𝑏𝑏� − 𝑖𝑖 α

𝑘𝑘1
�μ + 𝑏𝑏�� �1 + γ𝑀𝑀1ω

𝑆𝑆2

1
ρ0𝑐𝑐0

α
𝑘𝑘1
�μ +

𝑏𝑏� − 𝑖𝑖 α
𝑘𝑘1
�μ + 𝑏𝑏��, 

and dimensionless parameters are introduced: 

𝑘𝑘1 = 𝑘𝑘1𝑑𝑑; ; ; .μ = μ𝑑𝑑𝑏𝑏 = 𝑏𝑏𝑏𝑏γ = 𝑀𝑀2
𝑀𝑀1

 

From equations (8) to (10) we find the wave travel coefficient :𝑇𝑇 

𝑇𝑇 =
𝑃𝑃𝑡𝑡
𝑃𝑃𝑖𝑖

= 2𝑖𝑖
α
𝑘𝑘1

1
∆���μ+ 𝑏𝑏���1− γ

𝑀𝑀1ω
𝑆𝑆

1
ρ0𝑐𝑐0

α
𝑘𝑘1
�μ − 𝑏𝑏� + 𝑖𝑖

α
𝑘𝑘1
�μ − 𝑏𝑏���� + 

 + ��μ − 𝑏𝑏���1 + γ𝑀𝑀1ω
𝑆𝑆

1
ρ0𝑐𝑐0

α
𝑘𝑘1
�μ + 𝑏𝑏� − 𝑖𝑖 α

𝑘𝑘1
�μ + 𝑏𝑏����� . (11) 

Here, for simplification of the notation,S1 = S2 = S is used. If we put𝑀𝑀1 = 0 , which 

means the absence of the attached mass, the expression (11) will take the form: 

𝑇𝑇 =

𝑖𝑖4αμ
𝑘𝑘1

𝑒𝑒μ �1 + 𝑖𝑖 α
𝑘𝑘1
�μ − 𝑏𝑏��

2

− 𝑒𝑒−μ �1 − 𝑖𝑖 α
𝑘𝑘1
�μ + 𝑏𝑏��

2 . (12) 
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We plot the frequency dependences of the square of the wave transmission 

coefficient for the ratio of the parametersα = 2 and three values of the minimum tube 

cross-section𝑆𝑆𝑚𝑚 = 0.09, 0.34, 0.71 (curves 1, 2, 3 in Figs. 2, 3, respectively).  

In order to emphasize the influence of the attached mass, we first plot the 

frequency dependence of the wave travel coefficient in its absence at𝑀𝑀1 = 0 . The 

corresponding plot is shown in Fig. 2. It can be seen that the maximum frequency range 

(0 < 𝑘𝑘1 ≲ 1.75 ), where the tunneling effect is manifested, is reached at𝑆𝑆𝑚𝑚 = 0.34 . 

At higher values of the frequency𝑘𝑘 , formula (12) transforms into a solution describing 

the transmission coefficient oscillations corresponding to the usual traveling wave 

mode.  

If we take into account the attached mass and putγ = 𝑀𝑀2
𝑀𝑀1

= 0.24 , the dependence 

of the wave transmission coefficient will take the form shown in Fig. 3. 3. As can be 

seen from Fig. 3, the effect of full tunneling in the frequency range in which it was 

observed in the absence of the attached mass is destroyed. The tunneling coefficient 

reaches unity only at selected frequencies. Nevertheless, the region where the 

transmission coefficient is sufficiently close to unity remains. In addition, for small 

values of the dimensionless minimum cross-sectional area, the transmittance increases 

compared to the case with no attached mass.  

We plot the dependence of the square of the transmission coefficient on the 

dimensionless wave number as a function of the attached mass𝑀𝑀1 = 0.14; 0.43; 0.88 

(curves 1, 2, 3 in Fig. 4, respectively) with the same dimensionless minimum cross-
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sectional area𝑆𝑆𝑚𝑚 = 0.34 , in order to analyze how the field changes as the attached 

mass increases.  

Thus, from Fig. 4, we can conclude that with the increase of the parameter𝑀𝑀1 the 

transmission coefficient decreases, i.e., the increase of the attached mass leads to the 

fact that the field is distorted more strongly.  

The results obtained by      show that, indeed, when taking into account the 

of the attached mass, the conditions of full transmission deteriorate, and frequency-

dependent effects appear in the low-frequency region, where the tunneling plateau is 

located. Nevertheless, it is hoped that less signal distortion can be achieved in the 

propagation of low-frequency signals. This task requires further research. 

 

 

ACCOUNTING FOR DISSIPATION AND NONLINEARITY 

Speaking of frequency-dependent effects, one cannot fail to mention such an 

important factor as the viscosity of the medium. Undoubtedly, it will introduce 

distortions, including in the propagation of low-frequency signals. Keeping in mind the 

problem of high intensity wave propagation, we will note the following peculiarities 

within the framework of this work. 

In problems related to the propagation of acoustic waves of high intensity, a 

generalized Webster-type equation arises. It differs from equation (1) by the presence 

of two additional terms that describe nonlinear and dissipative effects. Usually, this 

equation is written in the form:  



11 
 

1
𝑆𝑆(𝑥𝑥)

𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝑆𝑆(𝑥𝑥)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

−
1
𝑐𝑐2
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2 +

ε
𝑐𝑐4ρ

𝜕𝜕2𝑝𝑝2

𝜕𝜕𝑡𝑡2 +
𝑏𝑏

ρ𝑐𝑐2
𝜕𝜕3𝑝𝑝
𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥2 = 0. (13) 

Hereε, 𝑏𝑏 is a nonlinear parameter and dissipation coefficient. Webster's equation of the 

type (13), especially when solving nonlinear problems, can be simplified by using the 

slowly changing profile method [11,12]. This method is applicable when changes in 

cross-sectional area occur slowly. As a result, the order of the nonlinear equation (13) 

is reduced. Following the standard procedure, we pass from the variables𝑥𝑥, 𝑡𝑡 in 

equation (13) to new independent variables: the "slow" coordinate𝑥𝑥1 = δ𝑥𝑥 (whereδ is 

a small parameter of the problem) and the "fast" time
xt
c

τ = −  in a coordinate system 

running at the speed of sound. Restricting ourselves to the standard model (13) and 

neglecting small terms of the order ,δ 𝑛𝑛 2n ≥  , we arrive at the evolution equation  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

ε
𝑐𝑐3ρ

𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝑏𝑏
2𝑐𝑐3ρ

𝜕𝜕2𝑝𝑝
𝜕𝜕τ2

+
𝑝𝑝
2
𝜕𝜕
𝜕𝜕𝜕𝜕 �

ln 𝑆𝑆 (𝑥𝑥)� = 0. (14) 

It is usually noted that equations of the form (13) - (14) have a wider area of 

applicability and describe also, for example, the fields of intense confined acoustic 

beams in inhomogeneous media in the approximation of nonlinear geometric acoustics 

(NGA), and the function S(x) in this case has the meaning of the cross-sectional area 

of the beam tube [12].  

However, while for beams in the NGA approximation the notation of the 

dissipative term in equations (13) - (14) is exact, for waves in a tube it is, generally 

speaking, not so. A rigorous derivation of the generalized linearized Webster equation 

for a tube of variable cross section with viscosity taken into account leads to an exact 

closed equation for the oscillatory velocity: 
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𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑐𝑐02
𝜕𝜕
𝜕𝜕𝜕𝜕
�1
𝑆𝑆
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑆𝑆𝑆𝑆)� + 𝑏𝑏
ρ0

𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥2

,    (15) 

in which the viscous term has the usual structure as in equation (13), but the variable 

cross-sectional area term has a different structure compared to equation (1) for 

pressure. The transition to the closed equation for pressure is possible only 

approximately, taking into account those or other terms of different order of smallness. 

In the simplest variant we obtain the following approximate closed equation for 

pressure: 

 𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2

= 1
𝑆𝑆
�𝑐𝑐02 + 𝑏𝑏

ρ0

𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑆𝑆 𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
�.  (16) 

Here, the variable cross-sectional area term coincides with the analogous term in 

equation (1), but the viscous term has a different structure than in equation (13). Thus, 

the generalized Webster's equation with viscosity for sound in tubes is, generally 

speaking, different from the form (13), and the dissipative effects in tubes and in 

confined beams are also different. In addition, the difference in equations (13)-(16) 

may affect the shape of wave profiles formed in a tube of variable cross section and the 

possibility of finding accurate analytical solutions. 

 

CONCLUSION 

Thus, we have studied wave propagation in the tunneling mode in narrow tubes 

with a variable cross section of a special kind. The influence of the attached mass at 

the boundaries of the region of smooth narrowing of the tube has been taken into 

account. It was found out that taking into account the attached mass worsens the 

conditions of wave tunneling: this is manifested in the decrease of the wave passage 
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coefficient in the frequency range, where the tunneling mode was observed without 

taking into account the attached mass, as well as in the reduction of the frequency range 

itself. However, when the attached mass is taken into account, the interval of minimum 

values of the cross-sectional area increases, at which almost complete wave passage is 

possible (the passage coefficient is close to unity). It is shown that an increase in the 

attached mass leads to a decrease in the wave transmission coefficient, thereby 

distorting the field even more. 
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FIGURE CAPTIONS 

 

Fig. 1. The tube contains a constriction region II (0 x<  <  d ) filled with a medium with 

density𝜌𝜌1 and speed𝑐𝑐1 of sound. 

 

Fig. 2. Frequency dependences of the square of the wave travel coefficient without 

taking into account the attached mass. 

 

Fig. 3. Frequency dependences of the square of the wave travel coefficient taking into 

account the attached mass. 

 

Fig. 4. Frequency dependences of the square of the wave-passing coefficient taking 

into account the attached mass at different .𝑀𝑀1 
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