Patterns of effect of spark plasma sintering temperature on microstructure of thermoelectric composites based on Bi2Te2.1Se0.9Bi2 matrix with cobalt inclusions

封面

如何引用文章

全文:

详细

Effect of spark plasma sintering temperature on the formation of Co filler particles in the Bi2Te2.1Se0.9 matrix has been examined. Owing to high-temperature diffusion redistribution of atoms in the matrix and filler materials and chemical interaction between these materials, in the Bi2Te2.1Se0.9 + 0.33 wt % Co, core–shell filler particles (Co@CoTe2) are formed. With increasing the sintering temperature, fraction of the “CoTe2 shell” in the particles increases, while fraction of the “Co core” decreases. This behavior is due to an increasing in the diffusion coefficient of Co in the Bi2Te2.1Se0.9 matrix with increasing in the sintering temperature. The concentration profiles of the Co distribution of in the Bi2Te2.1Se0.9 matrix, governed by diffusion, are well described using Fick’s second law for diffusion from a limited source of a diffusing substance. The diffusion coefficient of Co increases with increasing un the sintering temperature in accordance with the Arrhenius law and with an activation energy of ~0.61 eV.

作者简介

M. Zhezhu

Федеральное государственное бюджетное образовательное учреждение высшего образования
“Белгородский государственный технологический университет имени В.Г. Шухова”

编辑信件的主要联系方式.
Email: marina_jeju@mail.ru
Россия, Белгород

A. Vasil’ev

Belgorod State University

Email: marina_jeju@mail.ru
Russia, 308015, Belgorod

O. Ivanov

Belgorod State Technological University; Belgorod State University

Email: marina_jeju@mail.ru
Russia, 308012, Belgorod; Russia, 308015, Belgorod

参考

  1. Fortulan R., Yamini S.A. // Materials. 2021. V. 14. No. 20. Art. No. 6059.
  2. Zhao W. Liu Z., Wei P. et al. // Nature Nanotechnol. 2017. V. 12. No. 1. P. 55.
  3. Xing L., Cui W., Sang X. et al. // J. Materiomics. 2021. V. 7. No. 5. P. 998.
  4. Ma S., Li C., Wei P. et al. // J. Mater. Chem. A. 2020. V. 8. No. 9. P. 4816.
  5. Li D., Zhang J., Song C.J. et al. // RSC Advances. 2015. V. 5. No. 54. Art. No. 43717.
  6. Ivanov O., Yaprintsev M., Vasil’ev A. et al. // Chin. J. Phys. 2022. V. 77. P. 24.
  7. Иванов О.Н., Япрынцев М.Н., Васильев А.Е. и др. // Стекло и керамика. 2021. № 11. С. 23; Ivanov O., Yaprintsev M., Vasil’ev A. et al. // Glass Ceram+. 2022. V. 78. No. 11. P. 442.
  8. Mehrer H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer Science & Business Media, 2007. P. 295.
  9. Павлов П.В., Хохлов А.Ф. Физика твердого тела. М.: ЛЕНАНД, 2015. С. 496.
  10. Lan Y.C., Wang D.Z., Chen G. et al. // Appl. Phys. Lett. 2008. V. 92. Art No. 101910.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (149KB)
4.

下载 (301KB)

版权所有 © М. Жежу, А.Е. Васильев, О.Н. Иванов, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).