Characteristics of temporal dynamics of liquid crystal spatial modulators as a limitation of the performance of tunable diffractive neural networks
- Autores: Volkov A.A.1, Minikhanov T.Z.1, Zlokazov E.Y.2, Shifrina A.V.1, Petrova E.K.1, Starikov R.S.1
-
Afiliações:
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- E. Yu. Zlokazov
- Edição: Volume 74, Nº 1 (2025)
- Páginas: 83-89
- Seção: OPTOPHYSICAL MEASUREMENTS
- URL: https://journal-vniispk.ru/0368-1025/article/view/328002
- ID: 328002
Citar
Resumo
Sobre autores
A. Volkov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: mr.a.a.volkov@gmail.com
ORCID ID: 0009-0008-4213-9373
T. Minikhanov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: minikhanovtz@yandex.ru
ORCID ID: 0000-0002-2246-9729
E. Zlokazov
E. Yu. Zlokazov
Email: ezlokazov@gmail.com
ORCID ID: 0000-0003-1340-7734
A. Shifrina
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: avshifrina@gmail.com
ORCID ID: 0000-0001-7816-5989
E. Petrova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: EKPetrova@mephi.ru
ORCID ID: 0000-0002-6764-7664
R. Starikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: rstarikov@mail.ru
ORCID ID: 0000-0002-7369-1565
Bibliografia
LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791 Malik P., Pathania M., Rathaur V. K. et al. Overview of artificial intelligence in medicine. Medknow, 8, 2328–2331 (2019). https://doi.org/10.4103/jfmpc.jfmpc_440_19 Jiang C., Zhang H., Ren Y. et al. Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications, 24(2), 98–105 (2017). https://doi.org/10.1109/MWC.2016.1500356WC Wei H., Laszewski M., Kehtarnavaz N. Deep learning-based person detection and classification for far field video surveillance. 2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS), 1–4 (2018). https://doi.org/10.1109/DCAS.2018.8620111 Collobert R., Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. Proceedings of the 25th international conference on Machine learning, 160–167 (2008). https://doi.org/10.1145/1390156.1390177 Rymov D., Svistunov A., Starikov R. et al. 3D-CGH-Net: customizable 3D-hologram generation via deep learning. Optics and Lasers in Engineering, 184, 108645 (2025). https://doi.org/10.1016/j.optlaseng.2024.108645 Kim N. S., Austin T., Baauw D. et al. Leakage current: Moore’s law meets static power. Computer, 36(12), 68–75 (2003). https://doi.org/10.1109/MC.2003.1250885 Dennard R. H., Gaensslen F. H., Yu H.-N. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of solid-state circuits, 9(5), 256–268 (1974). https://doi.org/10.1109/N-SSC.2007.4785543 Hamerly R., Bernstein L., Sludds A. et al. Large-scale optical neural networks based on photoelectric multiplication. Physical Review X, 9(2), 021032 (2019). https://doi.org/10.1103/PhysRevX.9.021032 Mengu D., Luo Y., Rivenson Y., Ozcan A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE Journal of Selected Topics in Quantum Electronics, 26(1), 1–14 (2019). https://doi.org/10.1109/JSTQE.2019.2921376 Xu R., Lu P., Xu F., Shi Y. A survey of approaches for implementing optical neural networks. Optics & Laser Technology, 136, 106787 (2021). https://doi.org/10.1016/j.optlastec.2020.106787 Миниханов Т., Злоказов Е., Стариков Р., Черёмхин П. Временная динамика модуляции фазы жидкокристаллического пространственно-временного модулятора света. Измерительная техника, 73(12), 35–39 (2024). https://doi.org/10.32446/0368-1025it.2023-12-35-39 Goodman J. W., Dias A., Woody L. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Optics Letters, 2(1), 1–3 (1978). https://doi.org/10.1364/OL.2.000001 Dong J., Gigan S., Krzakala F., Wainrib G. Scaling up echo-state networks with multiple light scattering. 2018 IEEE Statistical Signal Processing Workshop (SSP), 448–452 (2018). https://doi.org/10.1109/SSP.2018.8450698 Feldmann J., Youngblood N., Wright C.D., Bhaskaran H., Pernice W.H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569(7755), 208–214 (2019). https://doi.org/10.1038/s41586-019-1157-8 Shen Y., Harris N. C., Skirlo S. et al. Deep learning with coherent nanophotonic circuits. Nature photonics, 11(7), 441– 446 (2017). https://doi.org/10.1038/nphoton.2017.93 Lin X., Rivenson Y., Yardimci N. T. et al. All-optical machine learning using diffractive deep neural networks. Science, 361(6406), 1004–1008 (2018). https://doi.org/10.1126/science.aat8084 Chen H., Feng J., Jiang M. et al. Diffractive deep neural networks at visible wavelengths. Engineering, 7(10), 1483–1491 (2021). https://doi.org/10.1016/j.eng.2020.07.032 Zhou T., Lin X., Wu J. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nature Photonics, 15(5), 367–373 (2021). https://doi.org/10.1038/s41566-021-00796-w Bernstein L., Sludds A., Panuski C. et al. Single-shot optical neural network. Science Advances, 9(25), 7904 (2023). https://doi.org/10.1126/sciadv.adg7904 Deng Z., Qing D.-K., Hemmer P. R., Zubairy M. S. Implementation of optical associative memory by a computer-generated hologram with a novel thresholding scheme. Optics letters, 30(15), 1944–1946 (2005). https://doi.org/10.1364/ol.30.001944 Zuo Y., Li B., Zhao Y. et al. All-optical neural network with nonlinear activation functions. Optica, 6(9), 1132–1137 (2019). https://doi.org/10.1364/OPTICA.6.001132 Евтихиев Н. Н., Краснов В. В., Рябцев И. П. и др. Измерение модуляции фазового жидкокристаллического модулятора света Santec SLM-200 и анализ его применимости для реконструкции изображений с дифракционных элементов. Измерительная техника, (5), 4–8 (2021). https://doi.org/10.32446/0368-1025it.2021-5-4-8 Yang G.-z., Dong B.-z., Gu B.-y., Zhuang J.-y., Ersoy O. K. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Applied optics, 33(2), 209–218 (1994). https://doi.org/10.1364/AO.33.000209 Ovchinnikov A., Krasnov V., Cheremkhin P. et al. What binarization method is the best for amplitude inline Fresnel holograms synthesized for divergent beams using the direct search with random trajectory technique? Journal of Imaging, 9(2), 28 (2023). https://doi.org/10.3390/jimaging9020028 Миниханов Т., Злоказов Е., Краснов В., Деревеницкая Д. Исследование динамических характеристик фазовых ЖК ПВМС HoloEye Pluto-2 VIS-016 и HoloEye GAEA-2 VIS-036. Сборник научных трудов XXXII Международной школы-симпозиума по голографии, когерентной оптике и фотонике, Санкт-Петербург, с. 195–197 (2022).
Arquivos suplementares

