Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications
- Autores: Pietkun R.
- Edição: Volume 212, Nº 7 (2021)
- Páginas: 122-162
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133391
- DOI: https://doi.org/10.4213/sm9331
- ID: 133391
Citar
Resumo
Bibliografia
- W. Arendt, “Vector valued Laplace transforms and Cauchy problems”, Israel J. Math., 59:3 (1987), 327–352
- J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984, xiii+342 pp.
- J.-P. Aubin, H. Frankowska, Set-valued analysis, Systems Control Found. Appl., 2, Birkhäuser Boston, Inc., Boston, MA, 1990, xx+461 pp.
- I. Benedetti, M. Väth, “Semilinear inclusions with nonlocal conditions without compactness in non-reflexive spaces”, Topol. Methods Nonlinear Anal., 48:2 (2016), 613–636
- G. Da Prato, E. Sinestrari, “Differential operators with non dense domain”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14:2 (1987), 285–344
- F. S. De Blasi, “On a property of the unit sphere in a Banach space”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 21(69):3-4 (1977), 259–262
- M. Fabian, P. Habala, P. Hajek, V. Montesinos, V. Zizler, Banach space theory. The basis for linear and nonlinear analysis, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011, xiv+820 pp.
- G. Fournier, L. Gorniewicz, “The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces”, Fund. Math., 92:3 (1976), 213–222
- L. Gasinski, N. S. Papageorgiou, Nonlinear analysis, Ser. Math. Anal. Appl., 9, Chapman & Hall/CRC, Boca Raton, FL, 2006, xii+971 pp.
- L. Gorniewicz, Topological fixed point theory of multivalued mappings, Topol. Fixed Point Theory Appl., 4, 2nd ed., Springer, Dordrecht, 2006, xiv+539 pp.
- C. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
- Shouchuan Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. I, Math. Appl., 419, Theory, Kluwer Acad. Publ., Dordrecht, 1997, xvi+964 pp.
- M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter Ser. Nonlinear Anal. Appl., 7, Walter de Gruyter & Co., Berlin, 2001, xii+231 pp.
- H. Kellerman, M. Hieber, “Integrated semigroups”, J. Funct. Anal., 84:1 (1989), 160–180
- I. Kubiaczyk, S. Szufla, “Kneser's theorem for weak solutions of ordinary differential equations in Banach spaces”, Publ. Inst. Math. (Beograd) (N.S.), 32(46) (1982), 99–103
- M. Kunze, G. Schlüchtermann, “Strongly generated Banach spaces and measures of noncompactness”, Math. Nachr., 191 (1998), 197–214
- F. M. Neubrander, “Integrated semigroups and their applications to the abstract Cauchy problem”, Pacific J. Math., 135:1 (1988), 111–155
- V. Obukhovskii, P. Zecca, “On semilinear differential inclusions in Banach spaces with nondensely defined operators”, J. Fixed Point Theory Appl., 9:1 (2011), 85–100
- D. O'Regan, R. Precup, “Fixed point theorems for set-valued maps and existence principles for integral inclusions”, J. Math. Anal. Appl., 245:2 (2000), 594–612
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983, viii+279 pp.
- R. Pietkun, “Structure of the solution set to Volterra integral inclusions and applications”, J. Math. Anal. Appl., 403:2 (2013), 643–666
- Э. Спеньер, Алгебраическая топология, Мир, М., 1971, 680 с.
- H. R. Thieme, ““Integrated semigroups” and integrated solutions to abstract Cauchy problems”, J. Math. Anal. Appl., 152:2 (1990), 416–447
- A. Ülger, “Weak compactness in $L^1(mu,X)$”, Proc. Amer. Math. Soc., 113:1 (1991), 143–149
- I. I. Vrabie, $C_0$-semigroups and applications, North-Holland Math. Stud., 191, North-Holland Publishing Co., Amsterdam, 2003, xii+373 pp.
- J. Weidmann, Linear operators in Hilbert spaces, Grad. Texts in Math., 68, Springer-Verlag, New York–Berlin, 1980, xiii+402 pp.
Arquivos suplementares
