The first moment of symmetric square $L$-functions associated with modular forms
- Autores: Balkanova O.G.1
-
Afiliações:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Edição: Volume 216, Nº 9 (2025)
- Páginas: 3-20
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/309461
- DOI: https://doi.org/10.4213/sm10195
- ID: 309461
Citar
Resumo
We prove an asymptotic formula for the first twisted moment of symmetric square $L$-functions associated with holomorphic parabolic forms of fixed weight and level equal to a prime power $p^{\nu}$. It turns out that the case of small $\nu$ is considerably different from the case $\nu\to\infty$.
Palavras-chave
Sobre autores
Olga Balkanova
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Autor responsável pela correspondência
Email: balkanova@mi-ras.ru
PhD, no status
Bibliografia
- J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, N. C. Snaith, “Integral moments of $L$-functions”, Proc. Lond. Math. Soc. (3), 91:1 (2005), 33–104
- A. Diaconu, D. Goldfeld, J. Hoffstein, “Multiple Dirichlet series and moments of zeta- and $L$-functions”, Compos. Math., 139:3 (2003), 297–360
- H. Iwaniec, P. Michel, “The second moment of the symmetric square $L$-functions”, Ann. Acad. Sci. Fenn. Math., 26:2 (2001), 465–482
- V. Blomer, “On the central value of symmetric square $L$-functions”, Math. Z., 260:4 (2008), 755–777
- Qingfeng Sun, “The symmetric-square $L$-function on the critical line”, J. Number Theory, 140 (2014), 196–214
- O. Balkanova, D. Frolenkov, “The mean value of symmetric square $L$-functions”, Algebra Number Theory, 12:1 (2018), 35–59
- J. B. Conrey, H. Iwaniec, “The cubic moment of central values of automorphic $L$-functions”, Ann. of Math. (2), 151:3 (2000), 1175–1216
- О. Г. Балканова, Д. А. Фроленков, “Равномерная асимптотическая формула для второго момента примитивных $L$-функций на критической прямой”, Современные проблемы математики, механики и математической физики. II, Сборник статей, Труды МИАН, 294, МАИК “Наука/Интерпериодика”, М., 2016, 20–53
- D. Rouymi, “Formules de trace et non-annulation de fonctions $L$ automorphes au niveau $p^nu$”, Acta Arith., 147:1 (2011), 1–32
- E. Royer, Sur les fonctions L de formes modulaires, PhD thesis, Univ. Paris Sud, 2001, xxiii+123 pp.
- K. Soundararajan, M. P. Young, “The prime geodesic theorem”, J. Reine Angew. Math., 2013:676 (2013), 105–120
- D. Zagier, “Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields”, Modular functions of one variable, VI (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 627, Springer-Verlag, Berlin-New York, 1977, 105–169
- NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, U.S. Department of commerce, National institute of standards and technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp.
Arquivos suplementares
