Об ортогональности в несепарабельных перестановочно-инвариантных пространствах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Пусть $E$ – несепарабельное перестановочно-инвариантное пространство и $E_0$ – замыкание множества ограниченных функций в $E$. Работа посвящена изучению элементов пространства $E$, ортогональных подпространству $E_0$, т.е. таких $x\in E$, $x\ne 0$, что $\|x\|_{E} \le\|x+y\|_{E}$ для любого $y\in E_0$. Получена характеризация множества ортогональных элементов $\mathcal{O}(E)$, если $E$ – пространство Марцинкевича или Орлича. Если пространство Орлича $L_M$ рассматривается с нормой Люксембурга, то множество $L_M\setminus (L_M)_0$ является алгебраической суммой множества $\mathcal{O}(L_M)$ и пространства $(L_M)_0$.Доказано, что всякое несепарабельное перестановочно-инвариантное пространство $E$ такое, что $\mathcal{O}(E)\ne\varnothing$, содержит асимптотически изометрическую копию пространства $l_\infty$.Библиография: 17 названий.

Об авторах

Сергей Владимирович Асташкин

Самарский национальный исследовательский университет имени академика С. П. Королева

Email: astash@ssau.ru
доктор физико-математических наук, профессор

Евгений Михайлович Семёнов

Воронежский государственный университет

Email: nadezhka_ssm@geophys.vsu.ru
доктор физико-математических наук, профессор

Список литературы

  1. G. Birkhoff, “Orthogonality in linear metric spaces”, Duke Math. J., 1:2 (1935), 169–172
  2. B. D. Roberts, “On the geometry of abstract vector spaces”, Tôhoku Math. J., 39 (1934), 42–59
  3. R. C. James, “Orthogonality in normed linear spaces”, Duke Math. J., 12:2 (1945), 291–302
  4. E. W. Cheney, D. E. Wulbert, “The existence and unicity of best approximations”, Math. Scand., 24:1 (1969), 113–140
  5. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren Math. Wiss., 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York–Berlin, 1970, 415 pp.
  6. П. А. Бородин, “Квазиортогональные множества и условия гильбертовости банахова пространства”, Матем. сб., 188:8 (1997), 63–74
  7. F. B. Saidi, “Characterisations of orthogonality in certain Banach spaces”, Bull. Austral. Math. Soc., 65:1 (2002), 93–104
  8. F. B. Saidi, “An extension of the notion of orthogonality to Banach spaces”, J. Math. Anal. Appl., 267:1 (2002), 29–47
  9. С. В. Асташкин, Е. М. Семeнов, “Об одном свойстве симметричных пространств, второе ассоциированное пространство к которым несепарабельно”, Матем. заметки, 107:1 (2020), 11–22
  10. С. В. Асташкин, Е. М. Семeнов, “Ортогональные элементы несепарабельных перестановочно-инвариантных пространств”, Докл. РАН. Мат. информ. проц. упр., 495:1 (2020), 5–7
  11. J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergeb. Math. Grenzgeb., II, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
  12. С. Г. Крейн, Ю. И. Петунин, Е. М. Семенов, Интерполяция линейных операторов, Наука, М., 1978, 400 с.
  13. C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp.
  14. М. А. Красносельский, Я. Б. Рутицкий, Выпуклые функции и пространства Орлича, Физматгиз, М., 1958, 271 с.
  15. M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, Inc., New York, 1991, xii+449 pp.
  16. Е. В. Токарев, “О подпространствах некоторых симметричных пространств”, Теория функций, функциональный анализ и их приложения, 24, Вища школа, Харьков, 1975, 156–161
  17. P. N. Dowling, N. Randrianantoanina, “Asymptotically isometric copies of $ell^infty$ in Banach spaces and a theorem of Bessaga and Pelczynski”, Proc. Amer. Math. Soc., 128:11 (2000), 3391–3397

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Асташкин С.В., Семёнов Е.М., 2021

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».