Лагранжевы циклы Миронова в алгебраических многообразиях

Обложка
  • Авторы: Тюрин Н.А.1,2
  • Учреждения:
    1. Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н. Н. Боголюбова
    2. Международная лаборатория зеркальной симметрии и автоморфных форм, Национальный исследовательский университет «Высшая школа экономики»
  • Выпуск: Том 212, № 3 (2021)
  • Страницы: 128-138
  • Раздел: Статьи
  • URL: https://journal-vniispk.ru/0368-8666/article/view/142367
  • DOI: https://doi.org/10.4213/sm9407
  • ID: 142367

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обобщается конструкция А. Е. Миронова, представившего в свое время новые примеры минимальных и гамильтоново минимальных лагранжевых подмногообразий в $\mathbb{C}^n$ и $\mathbb{C} \mathbb{P}^n$. В основе его конструкции лежало рассмотрение неполного торического действия $T^k$, где $k < n$, на подпространства, инвариантные относительно естественных антиголоморфных инволюций. Такая ситуация имеет место для достаточно широкого класса алгебраических многообразий: комплексных квадрик, грассманианов, многообразий флагов и т.п., что позволяет построить большое количество новых примеров лагранжевых подмногообразий в этих алгебраических многообразиях.Библиография: 4 названия.

Об авторах

Николай Андреевич Тюрин

Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н. Н. Боголюбова; Международная лаборатория зеркальной симметрии и автоморфных форм, Национальный исследовательский университет «Высшая школа экономики»

Email: ntyurin@theor.jinr.ru
доктор физико-математических наук, профессор

Список литературы

  1. А. Е. Миронов, “О новых примерах гамильтоново-минимальных и минимальных лагранжевых подмногообразий в $mathbb{C}^n$ и $mathbb{C}mathrm{P}^n$”, Матем. сб., 195:1 (2004), 89–102
  2. Н. А. Тюрин, “Псевдоторические структуры: лагранжевы подмногообразия и лагранжевы слоения”, УМН, 72:3(435) (2017), 131–169
  3. M. Audin, Torus actions on symplectic manifolds, Progr. Math., 93, 2nd rev. ed., Birkhäuser Verlag, Basel, 2004, viii+325 pp.
  4. Ф. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, Мир, М., 1982, 864 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Тюрин Н.А., 2021

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».