$A$ -потоки с базисными множествами коразмерности один
- Авторы: Жужома Е.В.1, Медведев В.С.1
-
Учреждения:
- Национальный исследовательский университет "Высшая школа экономики", г. Нижний Новгород
- Выпуск: Том 216, № 11 (2025)
- Страницы: 108-134
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0368-8666/article/view/351337
- DOI: https://doi.org/10.4213/sm10177
- ID: 351337
Цитировать
Аннотация
Библиография: 57 названий.
Ключевые слова
Об авторах
Евгений Викторович Жужома
Национальный исследовательский университет "Высшая школа экономики", г. Нижний Новгород
Email: zhuzhoma@mail.ru
ORCID iD: 0000-0001-8682-7591
доктор физико-математических наук, профессор
Владислав Сергеевич Медведев
Национальный исследовательский университет "Высшая школа экономики", г. Нижний Новгород
Email: medvedev-1942@mail.ru
ORCID iD: 0000-0001-6369-0000
кандидат физико-математических наук
Список литературы
- S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817
- S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49
- C. Robinson, “Structural stability of $C^1$ diffeomorphisms”, J. Differential Equations, 22:1 (1976), 28–73
- R. Mañe, “On the creation of homoclinic points”, Inst. Hautes Etudes Sci. Publ. Math., 66 (1988), 139–159
- S. Hayashi, “Connecting invariant manifolds and the solution of the $C^1$ stability and $Omega$-stability conjectures for flows”, Ann. of Math. (2), 145:1 (1997), 81–137
- S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Transl. from the Russian manuscript, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996, xiv+325 pp.
- V. Grines, E. Zhuzhoma, Surface laminations and chaotic dynamical systems, Izhevsk Inst. Comput. Sci., Moscow–Izhevsk, 2021, 502 pp.
- C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp.
- I. Garashchuk, A. Kazakov, D. Sinelshchikov, “Scenarios for the appearance of strange attractors in a model of three interacting microbubble contrast agents”, Chaos Solitons Fractals, 182 (2024), 114785, 11 pp.
- I. R. Garashchuk, D. I. Sinelshchikov, A. O. Kazakov, N. A. Kudryashov, “Hyperchaos and multistability in the model of two interacting microbubble contrast agents”, Chaos, 29:6 (2019), 063131, 16 pp.
- S. Gonchenko, A. Kazakov, D. Turaev, “Wild pseudohyperbolic attractor in a four-dimensional Lorenz system”, Nonlinearity, 34:4 (2021), 2018–2047
- A. Kazakov, “On bifurcations of Lorenz attractors in the Lyubimov–Zaks model”, Chaos, 31:9 (2021), 093118, 19 pp.
- A. Kazakov, A. Murillo, A. Viero, K. Zaichikov, “Numerical study of discrete Lorenz-like attractors”, Regul. Chaotic Dyn., 29:1 (2024), 78–99
- R. F. Williams, “Expanding attractors”, Inst. Hautes Etudes Sci. Publ. Math., 43 (1974), 169–203
- V. Grines, E. Zhuzhoma, “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667
- V. Medvedev, E. Zhuzhoma, “On the existence of codimension-one nonorientable expanding attractors”, J. Dyn. Control Syst., 11:3 (2005), 405–411
- S. E. Newhouse, “On codimension one Anosov diffeomorphisms”, Amer. J. Math., 92:3 (1970), 761–770
- A. Verjovsky, “Codimension one Anosov flows”, Bol. Soc. Mat. Mexicana (2), 19:2 (1974), 49–77
- C. Pugh, M. Shub, “The $Omega$-stability theorem for flows”, Invent. Math., 11 (1970), 150–158
- R. Bowen, “Periodic orbits for hyperbolic flows”, Amer. J. Math., 94 (1972), 1–30
- J. Franks, B. Williams, “Anomalous Anosov flows”, Global theory of dynamical systems (Northwestern Univ., Evanston, IL, 1979), Lecture Notes in Math., 819, Springer, Berlin, 1980, 158–174
- J. Christy, “Branched surfaces and attractors. I. Dynamic branched surfaces”, Trans. Amer. Math. Soc., 336:2 (1993), 759–784
- V. Z. Grines, E. V. Zhuzhoma, “Expanding attractors”, Regul. Chaotic Dyn., 11:2 (2006), 225–246
- C. Robinson, R. Williams, “Classification of expanding attractors: an example”, Topology, 15:4 (1976), 321–323
- C. Morales, “Axiom A flows with a transverse torus”, Trans. Amer. Math. Soc., 355:2 (2003), 735–745
- F. Beguin, C. Bonatti, Bin Yu, “Building Anosov flows on 3-manifolds”, Geom. Topol., 21:3 (2017), 1837–1930
- M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977, ii+149 pp.
- M. Hirsch, J. Palis, C. Pugh, M. Shub, “Neighborhoods of hyperbolic sets”, Invent. Math., 9:2 (1970), 121–134
- R. Bowen, “Mixing Anosov flows”, Topology, 15:1 (1976), 77–79
- J. F. Plante, “Anosov flows”, Amer. J. Math., 94:3 (1972), 729–754
- V. Medvedev, E. Zhuzhoma, “Two-dimensional attractors of A-flows and fibred links on three-manifolds”, Nonlinearity, 35:5 (2022), 2192–2205
- S. Kh. Aranson, R. V. Plykin, A. Yu. Zhirov, E. V. Zhuzhoma, “Exact upper bounds for the number of one-dimensional basic sets of surface $A$-diffeomorphisms”, J. Dyn. Control Syst., 3:1 (1997), 1–18
- M. Brunella, “Separating the basic sets of a nontransitive Anosov flow”, Bull. London Math. Soc., 25:5 (1993), 487–490
Дополнительные файлы


