Magnetic anisotropy of single-ion magnet $(PPh_4)_2[ReF_6] \cdot 2H_2O$

L. S. Taran⁺¹⁾, V. Y. Elfimova*, S. V. Streltsov^{+*}

⁺M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620137 Yekaterinburg, Russia

*Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg, Russia

Submitted 7 March 2023 Resubmitted 18 March 2023 Accepted 18 March 2023

DOI: 10.31857/S1234567823080086, EDN: wfexqu

In the present work we studied the magnetocrystalline anisotropy of two related single-molecule magnets [1] with a single rhenium ion in irregular tilted octahedra $(PPh_4)_2[ReF_6]\cdot 2H_2O$, (1), $(PPh_4)_3$ stands for tetraphenylphosphonium, $(C_6H_5)_4P$, and $[Zn(viz)_4(ReF_6)]$, (2), (viz=1-vinylimidazole) [2].

All density functional theory (DFT) calculations were performed using the VASP code [3–6] with projector-augmented wave method (PAW) [7], employing Perdew–Burke–Ernzerhof (PBE) version of the generalized gradient approximation (GGA) exchange-correlation functional [8] and taking into account strong Coulomb correlations via rotationally invariant DFT + U approach after Dudarev et al. [9].

In order to estimate single-ion anisotropy (SIA) we performed total energy calculations with spin-orbit coupling (GGA + U + SOC) for different spin directions and mapped these results onto the model, where the SIA is described by the following Hamiltonian:

$$\hat{H}_{SIA} = D \cdot \hat{S}_z^2. \tag{1}$$

The obtained results have shown the easy-plane anisotropy for these $5d^3$ systems with large single-ion anisotropy parameters D equal to 11.7 K for (1) and 16.8 K for (2). Magnetic moments for both complexes are less than expected $3\mu_B$. It can be explained by the covalency effects and substantial spin-orbit coupling. Due to irregular tilted $[ReF_6]^{2-}$ octahedra, there is a strong $t_{2g} - e_g$ crystal-field splitting of the order of 3.5 eV. Since symmetry of the crystal-field is lower than cubic, t_{2a} levels get an additional splitting onto nearly degenerate xz and yz orbitals, that are lower in energy than xy orbital (see Fig. 1). The spin-orbit coupling mixes the ground state singlet Γ_2 with orbital triplet Γ_5 , lying on 10Dq higher $(t_{2g} - e_g \text{ crystal field splitting pa-}$ rameter in spectroscopy) [10]. This triplet is split by the non-cubic crystal-field onto a doublet, characterized by

This is an excerpt of the article "Magnetic anisotropy of single-ion magnet $(PPh_4)_2[ReF_6] \cdot 2H_2O$ ". Full text of the paper is published in JETP Letters journal. DOI: 10.1134/S0021364023600623

fictitious orbital moment $\tilde{l}_z = \pm 1$ and having energy Δ_1 , and a singlet with $\tilde{l}_z = 0$ and Δ_0 .

In the second order of the perturbation theory one can take into account the mixing of these Γ_5 states with the ground state (Γ_2) due to the spin-orbit coupling. This admixture splits the ground state into two spin doublets and the value of this splitting is proportional to the spin-orbit coupling constant λ [10]:

$$2D = -\frac{8\lambda^2}{\Delta_0} + \frac{8\lambda^2}{\Delta_1}. (2)$$

Using estimation of $\lambda=320$ meV for Re⁴⁺ [11] and the crystal-field splittings shown in Fig.1 for (PPh₄)₂[ReF₆]·2H₂O, one can see that such a consideration gives a reasonable estimation of $D=14.6\,\mathrm{K}$. This agrees with the obtained single-ion anisotropy parameters D presented above.

Fig. 1. Results of the Wannier function projection of the non-magnetic DFT Hamiltonian for (1). We used the local coordinate system where axes are directed as much as possible to the ligand to calculate on-site energies of different Re 5d orbitals

 $[\]begin{array}{ccc} \text{ling.} & & \\ \text{is a} & & \\ \text{er of} & & \\ \text{than} & & \\ \text{c} & & \\ \end{array}$

¹⁾e-mail: taran@imp.uran.ru

- V. V. Novikov and Yu. V. Nelyubina, Russ. Chem. Rev. 90, 1330 (2021); 10.1070/RCR5002.
- K. S. Pedersen, M. Sigrist, M. A. Sørensen, A.-L. Barra, T. Weyhermüller, S. Piligkos, C. Aa. Thuesen, M. G. Vinum, H. Mutka, H. Weihe, R. Clérac, and J. Bendix, Angewandte Chemie International Edition 53, 1351 (2014); 10.1002/anie.201309981.
- G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); 10.1103/PhysRevB.47.558.
- G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); 10.1016/0927-0256(96)00008-0.
- G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996); 10.1103/PhysRevB.54.11169.
- 6. K. Lejaeghere, G. Bihlmayer, T. Björkman et al.

- (Collaboration), Science **351**, aad3000 (2016); 10.1126/science.aad3000.
- G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999); 10.1103/PhysRevB.59.1758.
- 8. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **78**, 1396 (1997); 10.1103/PhysRevLett.78.1396.
- S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998); 10.1103/PhysRevB.57.1505.
- A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon press, Oxford (1970).
- 11. M. Vijayakumar and M.S. Gopinathan, Journal of Molecular Structure (Theochem) **361**, 15 (1996).