Универсальные импульсные распределения и короткодействующие корреляции нуклонов

 $O. A. Рубцова^{1)}, B. H. Померанцев^{1)}$

Научно-исследовательский институт ядерной физики МГУ имени М. В. Ломоносова, 119991 Москва, Россия

Поступила в редакцию 23 августа 2024 г. После переработки 5 сентября 2024 г. Принята к публикации 7 сентября 2024 г.

Исследуется проблема построения универсальных двухнуклонных импульсных распределений для основных NN-конфигураций 1S_0 и 3S_1 - 3D_1 , используемых при описании короткодействующих корреляций нуклонов в ядрах. Предложен новый метод вычисления таких распределений и изучены их свойства. В качестве иллюстраций приводятся расчеты для нескольких современных реалистических NN-потенциалов, включая взаимодействие, учитывающее ненуклонные степени свободы. Предложена новая характеристика, определяющая отношение долей высокимпульсных компонент для спин-синглетных и спин-триплетных NN-распределений при низких энергиях, которая может быть полезна для сравнительной оценки изоспиновой зависимости короткодействующих корреляций при расчетах с различными потенциалами NN-взаимодействия.

DOI: 10.31857/S0370274X24100131, EDN: RGICNJ

1. Введение. В последние годы проблема короткодействующих корреляций (КДК) в ядрах [1, 2] стала очень актуальной благодаря новым эксклюзивным экспериментам по электрорасщеплению ядер (e,e'NN) в квазиупругой кинематике с регистрацией трех частиц на совпадение [3]. Продолжают уточняться и данные по инклюзивным и полуэксклюзивным реакциям [4, 5]. Также проблема КДК исследуется и в экспериментах (p, 2pN), проводящихся на установке NICA [6, 7].

Сравнение экспериментальных данных с теоретическими предсказаниями, полученными в результате точного решения задачи многих тел с различными нуклон-нуклонными (NN) взаимодействиями, позволило бы решить проблему КДК. Однако, ввиду сложности решения задачи рассеяния с участием Aнуклонов, при анализе КДК в ядрах с A > 3 неизбежно используются аппроксимации. Простейшей из них является плоско-волновое импульсное приближение (Plane-Wave Impulse Approximation), при котором сечение квазиупругого выбивания (e, e'NN)пропорционально спектральной функции нуклонов в ядре или, при дальнейшем упрощении, соответствующему двухнуклонному импульсному распределению ρ_{NN} . С точностью до такого приближения новые эксклюзивные эксперименты позволяют восстановить импульсные распределения нуклонов, а также исследовать изоспиновую зависимость КДК.

Двухнуклонное импульсное распределение в ядре ρ_{NN} зависит от относительного импульса нуклонов ${\bf k}$, импульса их центра масс ${\bf Q}$ и угла между этими векторами θ . Важным свойством таких распределений является их факторизация при высоких относительных импульсах k и малых импульсах центра масс Q, а также скейлинг для двухнуклонных (nn,pp и np) импульсных распределений в области высоких относительных импульсов. В серии работ К. Чиофи с соавт. (см., например, [8]) на основе микроскопических расчетов для систем A нуклонов показано, что импульсные распределения для ряда легких ядер (3 H, 3 He, 4 He, 12 C, 16 O, 40 Ca) при Q < 1 - 1.5 фм $^{-1}$ и k > 1.5 - 2 фм $^{-1}$ не зависят от угла θ и факторизуются следующим образом:

$$\rho_{NN}^{A}(\mathbf{k}, \mathbf{Q}) = \rho_{NN}^{A}(k, Q, \theta) \approx C_{A}\rho_{NN}(k)\rho_{CM}^{A}(Q), \quad (1)$$

где C_A — константа, зависящая от ядра A (так называемый ядерный контакт), $\rho_{CM}^A(Q)$ — распределение по импульсу центра масс пары нуклонов, а функция $\rho_{NN}(k)$ не зависит от ядра, т.е. является универсальным NN распределением. В случае триплетных np-пар это универсальное распределение совпадает с распределением нуклонов в дейтроне $\rho_{np}(k) = \rho_d(k)$.

Очевидно, что свойство факторизации двухнуклонного импульсного распределения предполагает существование аналогичного универсального распределения для спин-синглетных пар, т.е. pp- и nn-пар, а также спин-синглетных np-пар. Поскольку пара нуклонов не образует связанного синглетного состо-

¹⁾e-mail: rubtsova@nucl-th.sinp.msu.ru; pomeran@nucl-th.sinp.msu.ru

яния, то возникает проблема получения такого универсального распределения для синглета в двухчастичном случае. Одно из возможных решений состоит в использовании волновой функции виртуального синглетного состояния, аппроксимацию которой можно построить в случае сепарабельного взаимодействия нуклонов [9]. Другой вариант, предлагаемый в рамках обобщенного контактного формализма (ОКФ) [10, 11], состоит в использовании функций рассеяния при нулевой энергии, нормированных интегралом по высокоимпульсной части, причем как в синглетном, так и в триплетном каналах. При этом в рамках ОКФ используются проинтегрированные по импульсу центра масс пары Q импульсные распределения (1) для ядер, которые также оказываются пропорциональными в высокимпульсной части построенным двухчастичным универсальным распределениям как для триплетного канала, так и для синглетного. Отметим, что ОКФ широко используется в настоящее время для вычисления различных характеристик КДК в ядрах, а также для параметризации сечений электрорасщепления [12].

Данная работа посвящена детальному исследованию свойств распределений по относительному импульсу в связанных и несвязанных парах нуклонов, взаимодействующих в вакууме, а также разработке альтернативного метода их расчета. В соответствии с терминологией, используемой в работах по ОКФ [10, 11], такие распределения в области больших импульсов мы будем называть универсальными импульсными распределениями (УИР). Ниже мы покажем, что для построения таких распределений нет необходимости в решении задачи рассеяния строго при нулевой энергии, и можно рассматривать функции рассеяния при небольших энергиях, что расширяет диапазон методов, которые можно использовать для их вычисления. Кроме того, мы рассматриваем влияние ядерной среды на импульсные распределения в модели бесконечной ядерной материи. Также в этой работе вводится величина, позволяющая количественно сравнить вклады от высокоимпульсных частей функций в дискретном и непрерывном спектре, которая будет полезна для оценок соотношений между *pp*- и *np*-кореляциями в ядрах для различных NN-взаимодействий.

В качестве техники для расчета универсальных функций мы используем метод пакетной дискретизации континуума (МПДК) [13, 14], подходящий для расчетов функций непрерывного спектра в свободном пространстве и в ядерной материи.

2. Метод построения универсальных импульсных распределений. Рассмотрим уравнение

Липпмана—Швингера для волновой функции двухнуклонной системы в импульсном представлении для определенного спина пары σ (мы используем единицы, в которых $\hbar=1$):

$$\psi_{\mathbf{p}}^{(+)\sigma}(\mathbf{k}) = \psi_{\mathbf{p}}^{0\sigma}(\mathbf{k}) + \int d\mathbf{k}' \frac{V^{\sigma}(\mathbf{k}, \mathbf{k}')\psi_{\mathbf{p}}^{(+)\sigma}(\mathbf{k}')}{\frac{p^2}{m} + i0 - \frac{k^2}{m}}, \quad (2)$$

где ψ^0 – функция свободного движения (плоская волна), V^{σ} – потенциал NN-взаимодействия, m – масса нуклона, и $p=\sqrt{mE}$ – относительный on-shell импульс, соответствующий энергии E. Ниже для удобства мы будем использовать индексы s и t для обозначения функций для синглетного 1S_0 и связанных триплетных каналов 3S_1 - 3D_1 соответственно, а также опустим верхний индекс (+) у волновой функции.

После разложения по парциальным волнам получим уравнения для парциальных компонент волновой функции. Для канала 1S_0 (l=0 и $\sigma=0$) такое уравнение имеет вид:

$$\psi_p^s(k) = \frac{\delta(k-p)}{k^2} + \int_0^\infty \frac{dk'(k')^2}{2\pi^2} \frac{V^s(k,k')\psi_p^s(k')}{\frac{p^2}{m} + i0 - \frac{k^2}{m}}.$$
 (3)

Эти функции нормированы согласно условию: $\int_0^\infty dk k^2 \psi_p^{*s}(k) \psi_{p'}^s(k) = \frac{\delta(p-p')}{p^2}$, и имеют размерность, отличную от размерности функций дискретного спектра.

Определим высокоимпульсную часть интеграла от квадрата модуля такой волновой функции следующим образом:

$$a_2^s(p) = \int_{p_0}^{\infty} dk k^2 |\psi_p^s(k)|^2,$$
 (4)

где p_0 определяет границу высокоимпульсной области. Отметим, что $a_2^s(p)$ – размерная величина и имеет размерность фм³.

В рамках ОКФ [11] УИР для nn- и pp-пар определяется через квадрат модуля волновой функции, полученной из решения уравнения (3) при p=0 и нормированной на 1 в высокоимпульсной области. Рассмотрим такие распределения и при ненулевых p. Их можно получить из функций непрерывного спектра путем перенормировки:

$$\rho_p^s(k) \equiv \frac{|\psi_p^s(k)|^2}{a_2^s(p)}. (5)$$

Заметим, что поскольку импульсное распределение определяется как квадрат модуля волновой функции, то не имеет значения, какому граничному условию удовлетворяет волновая функция.

Для вычисления волновых функций удобно использовать метод пакетной дискретизации континуума [13]. Суть этого метода состоит в разбиении импульсного пространства (в каждой парциальной волне) на непересекающиеся интервалы $\{\mathfrak{d}_i = [k_{i-1},k_i]\}_{i=1}^N$ и введении базисных функций (свободных волновых пакетов), радиальные части которых имеют следующий вид:

$$x_i(k) = \frac{\theta(k \in \mathfrak{d}_i)}{k\sqrt{d_i}}, \quad d_i = k_i - k_{i-1}, \quad i = 1, \dots, N.$$
 (6)

где θ -функция отлична от нуля и равна 1, если k принадлежит интервалу \mathfrak{d}_i .

В пакетном базисе волновая функция представляется в виде разложения $\psi_p^s(k) \approx \sum_{i=1}^N C_i x_i(k)$, а уравнение (3) сводится к системе алгебраических уравнений:

$$\sum_{i'=1}^{N} (\delta_{ii'} - g_{0i}(p)V_{ii'})C_{i'} = \delta_{ii_0}, \quad i = 1, \dots, N, \quad (7)$$

где $g_{0i}(p)$ — диагональные матричные элементы резольвенты свободного гамильтониана, $V_{ii'}$ — матричные элементы потенциала взаимодействия, а индекс i_0 определяет on-shell интервал, которому принадлежит p (см. детали в работе [13]). Таким образом, при проектировании в пакетный базис дельта-функция, входящая в неоднородный член уравнения (3), усредняется, а уравнение (7) в пакетном базисе не содержит сингулярностей.

3. Примеры импульсных NN-распределений для разных взаимодействий и их свойства. Рассмотрим импульсные NN-распределения (5), которые получаются из решения уравнения (7) при низких энергиях. В качестве границы высокоимпульсной области везде в этой работе будем использовать значение $p_0 = 1.4 \, \mathrm{фm}^{-1}$.

Такие распределения для канала 1S_0 , найденные для наймегенского NN-потенциала (тип II) [15], показаны на рис. 1. Как видно из этого рисунка, все распределения отличаются только при малых импульсах, причем функции имеют характерные всплески вблизи on-shell импульса p, отвечающие усредненной дельта-функции, входящей в решение. Однако в высокоимпульсной части, при $k>p_0$, все распределения совпадают.

Это свойство волновых функций становится очевидным, если рассмотреть уравнение Шредингера в импульсном представлении:

$$\frac{k^2 - p^2}{m} \psi_p^s(k) + \int_0^\infty \frac{dk'(k')^2}{2\pi^2} V^s(k, k') \psi_p^s(k') = 0. \quad (8)$$

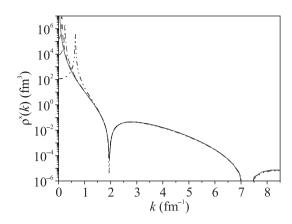


Рис. 1. (Цветной онлайн) Импульсные распределения в канале 1S_0 для наймегенского потенциала, построенные из функций континуума при разных энергиях: $0.0004 \,\mathrm{MəB}$ (сплошная кривая), $0.62 \,\mathrm{MəB}$ (штриховая кривая), $2.5 \,\mathrm{MəB}$ (штрих-пунктирная кривая), $17.15 \,\mathrm{MəB}$ (штрих-пунктирная кривая)

Легко видеть, что решение этого уравнения в области $k\gg p$ практически не зависит от p. Поэтому при условии нормировки "на хвост" согласно (5), все функции с $p\ll p_0$ фактически совпадают друг с другом в высокоимпульсной области $k>p_0$. Это свойство можно записать в следующем виде:

$$|\psi_p^s(k)|^2 \approx a_2^s(p)\rho^s(k), \quad k \ge p_0, \quad p \ll p_0,$$
 (9)

где высокоимпульсная часть распределения $\rho^s(k)$ не зависит от on-shell импульса p. Согласно свойству факторизации, двухнуклонные импульсные распределения в ядрах при больших импульсах k пропорциональны $\rho^s(k)$ [10].

Таким образом, для построения высокоим-пульсных частей универсальных импульсных pp-распределений нет необходимости решать уравнение Липпмана–Швингера (или уравнение Шредингера) строго при нулевой энергии, достаточно выполнения условия $p \ll p_0$.

Вычислим УИР для четырех типов потенциалов: наймегенского (Nijm II) [15], боннского (CD Bonn) [16], а также двух вариантов дибарионной модели: Dib I [17] и Dib II [18]. В дибарионной модели предполагается возможность образования промежуточного шестикваркового состояния (дибариона) при сближении нуклонов. Это приводит к эффективному NN-взаимодействию, зависящему от энергии. Тем не менее, волновые функции для такой модели можно найти по той же схеме, что и для не зависящих от энергии потенциалов. Оба варианта модели, рассматриваемые в этой работе, позволяют воспроизвести амплитуды рассеяния для двух основных

NN-конфигураций, однако соответствующие волновые функции отличаются в области высоких импульсов.

На рисунке 2 приводятся импульсные распределения для NN-канала 1S_0 , полученные в пакет-

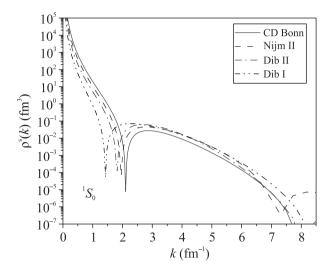


Рис. 2. (Цветной онлайн) Импульсные распределения в канале 1S_0 для разных NN-потенциалов

ном базисе для четырех рассмотренных потенциалов. Как видно из этого рисунка, различия рассматриваемых распределений в основном определяются положениями минимумов (т.е. нулей волновой функции). Первый минимум будет определять область минимума pp-корреляций в ядрах, т.е. область наблюдаемого доминирования np-корреляций над pp-корреляциями. Для самого "мягкого" боннского потенциала этот минимум смещен вправо, в то время как для дибарионной модели I он заметно смещен влево, в область более низких импульсов.

4. Импульсные распределения для спинтриплетного канала 3S_1 - 3D_1 . Следует отметить, что аналогичным свойством — совпадением высокоимпульсных частей при одинаковой нормировке функций — обладают и импульсные np-распределения для связанных каналов 3S_1 - 3D_1 . Здесь, однако, есть функция связанного состояния, для которой импульсное распределение вычисляется через квадрат модуля импульсной зависимости волновой функции дейтрона, $|\phi_d(k)|^2 \equiv |\phi_d^S(k)|^2 + |\phi_d^D(k)|^2$, следующим образом:

$$\rho^t(k) \equiv |\phi_d(k)|^2 / a_2^d, \quad a_2^d = \int_{p_0}^{\infty} dk k^2 |\phi_d(k)|^2, \quad (10)$$

где a_2^d — безразмерная величина, определяющая вклад от высокоимпульсных компонент в импульсное распределение для дейтрона [19].

Построим также и УИР по функциям непрерывного спектра аналогично (5) с учетом вкладов S- и D-волновых компонент волновой функции. При этом функции a_2 будут определяться согласно:

$$a_2^{t,l}(p) \equiv \int_{p_0}^{\infty} dk k^2 |\psi_p^{t,l}(k)|^2, \quad l = 0, 2,$$
 (11)

где квадрат модуля функции континуума состоит из суммы S- и D-компонент, а индекс l определяет канал с палающей волной²).

Соответствующие функции для наймегенского потенциала приводятся на рис. 3 в сравнении с импульсным распределением для дейтрона, нормированным согласно (10). Поскольку в высокоимпульсной части все функции одинаковые, в качестве универсального np-распределения удобно использовать именно дейтронное.

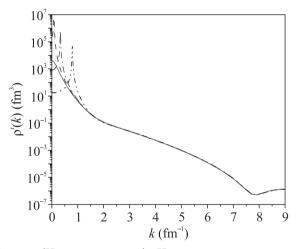


Рис. 3. (Цветной онлайн) Импульсные распределения в каналах 3SD_1 для наймегенского потенциала, построенные из функций при разных энергиях: $-2.22\,\mathrm{MəB}$ (сплошная кривая), $0.275\,\mathrm{MəB}$ (штриховая кривая), $4.52\,\mathrm{MəB}$ (штрих-пунктирная кривая), $25.96\,\mathrm{MəB}$ (штрих-пунктирная кривая)

На рисунке 4 приведены УИР для триплетных np-пар, т.е. для связанных каналов 3S_1 - 3D_1 , полученные из дейтронного импульсного распределения $|\phi_d(k)|^2$ для различных NN-потенциалов с условием нормировки (10).

Следует отметить, что в работах [20, 21] была доказана пропорциональность на малых расстояниях функций рассеяния (при низких энергиях) и функции связанного состояния в координатном пространстве для триплетного *S*-волнового взаимодействия на основе аналитического продолжения волновых

 $^{^{2)}}$ Напомним, что при каждом p здесь есть два линейно независимых решения.

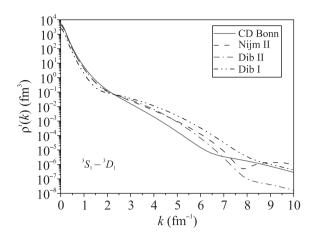


Рис. 4. (Цветной онлайн) Импульсные распределения в каналах 3SD_1 для разных NN-потенциалов

функций рассеяния в дейтронный полюс. По сути, это то же самое свойство, которое мы продемонстрировали в этой работе для высокоимпульсных частей импульсных распределений для триплетного канала, включающих S- и D-волновые компоненты для реалистических потенциалов NN-взаимодействия.

5. Сравнительные оценки высокоимпульсных вкладов. Величина a_2^d определяет долю высокоимпульсной части в полном импульсном распределении дейтрона. Значения этой величины заметно отличаются для разных моделей NN-взаимодействия [19]. Они равны: 0.032 — для боннского потенциала, 0.041 — для наймегенского потенциала, 0.039 — для дибарионного потенциала II, 0.068 для дибарионного потенциала I.

Возникает вопрос, как оценить доли высокоимпульсных компонент для функций рассеяния, и, в частности, для синглетного канала. Как было указано выше, величины $a_2(p)$, которые мы ввели для функций непрерывного спектра, являются размерными и их нельзя сопоставить напрямую с величинами a_2^d для связанного состояния. Однако можно рассмотреть суммарный (интегральный) вклад от высокоимпульсных компонент в каждом канале от состояний с on-shell импульсом, меньшим или равным некоторого значения q ($q \ll p_0$), через интегралы:

$$A_2^s(q) = \int_0^q dp p^2 a_2^s(p), \ A_2^t(q) = \sum_{l=0,2} \int_0^q dp p^2 a_2^{t,l}(p).$$
(12)

Отношение таких интегральных величин в разных каналах (с учетом вклада от связанного состояния):

$$\eta(q) \equiv A_2^s(q) / \left(a_2^d + A_2^t(q) \right),$$
(13)

позволяет оценить соотношение высокоимпульсных компонент волновых функций для синглетного и

триплетного каналов при низких энергиях для рассматриваемого потенциала NN-взаимодействия.

Отношение $\eta(q)$ приводится на рис. 5 для рассмотренных четырех моделей NN-взаимодействия. Как видно из этого рисунка, это отношение между долями высокоимпульсных компонент для синглетного и триплетного каналов оказывается различным для разных потенциалов, т.е. является моделезависимым. При этом вклады от высокоимпульсных компонент для синглетного канала при малых энергиях существенно меньше, чем для триплетного $(\eta(q) \ll 1)$ для всех рассмотренных взаимодействий. Также видно, что для потенциалов дибарионной модели относительные высокоимпульсные компоненты для функций синглетного канала больше, чем для традиционных мезон-обменных потенциалов. При этом, хотя универсальные функции для дибарионного потенциала II и для наймегенского потенциала для синглетного и триплетного каналов достаточно близки друг к другу (см. рис. 2 и 4) вплоть до импульсов порядка $7 \, \text{фм}^{-1}$, отношение $\eta(q)$ для дибарионного потенциала оказывается заметно большим, что, скорее всего, приведет к более сильным рр-корреляциям в ядрах.

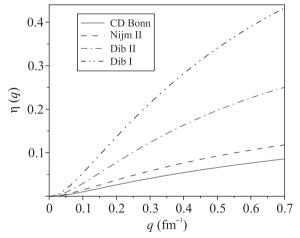


Рис. 5. (Цветной онлайн) Отношения $\eta(p)$ для синглетного и триплетного каналов для разных NN-потенциалов

Таким образом, предложенная величина $\eta(q)$ дополняет используемый в литературе параметр a_2^d для связанного состояния и позволяет сделать предварительную сравнительную оценку изоспиновой зависимости КДК для разных потенциалов NN-взаимодействия.

6. Импульсные распределения нуклонов в **ядерной среде.** В качестве еще одной иллюстрации рассмотрим высокоимпульсное поведение импульсных распределений в ядерной среде. Ранее бы-

ло показано [14], что можно определить эффективный гамильтониан для пары нуклонов, находящихся над поверхностью Ферми. В определенном диапазоне плотностей у такого гамильтониана возникают связанные состояния (состояния с энергиями ниже двойной энергии Ферми $2e_F$), причем как для триплетного, так и для синглетного каналов³).

Исследуем далее высокимпульсные компоненты волновых функций таких связанных состояний. В импульсном представлении волновая функция такого состояния в канале 1S_0 при нулевом импульсе центра масс удовлетворяет уравнению:

$$\frac{k^2 - k_{\rm B}^2}{m} \psi_B^s(k) + \int_{k_{\rm B}}^{\infty} \frac{dk'k'^2}{2\pi^2} V^s(k, k') \psi_{\rm B}^s(k') = 0, (14)$$

где k_F – импульс Ферми для рассматриваемой среды, а уравнение решается в подпространстве $k,k'\geq k_F$ (так называемом Паули-разрешенном подпространстве). При этом энергия связанного состояния отрицательна и определяется из соотношения $E_{\rm B}=\frac{k_{\rm B}^2}{m}-2e_F$, где $e_F=\frac{k_F^2}{2m}$. В работе [14] описан метод расчета таких состоя-

ний в том же пакетном базисе, который мы использовали выше. Эти функции нормированы на единицу, поэтому для их нормировки на высокоимпульсную часть можно ввести безразмерные множители $a_2^{s,t}$. На рисунке 6 представлены импульсные распределения для связанных состояний двух нуклонов в ядерной среде в синглетном и триплетном каналах при импульсе Ферми $k_F = 0.6\,\mathrm{фm^{-1}}$ для боннского потенциала в сравнении с УИР для того же взаимодействия, полученными выше. В высокоимпульсных частях сравниваемые функции практически неотличимы, что подтверждает универсальность двухнуклонных КДК. Полученные доли высокоимпульсных компонент для синглетной и триплетной функций составляют $a_2^s = 0.0018$ и $a_2^t = 0.041$ соответственно. Несмотря на то, что синглетные нуклоны здесь связаны, снова наблюдается значительное превышение вклада высокоимпульсной компоненты для триплетного канала по сравнению с синглетным.

Мы нашли также доли высокоимпульсых компоненент для двух других взаимодействий, рассматриваемых в этой работе. Отношения a_2^s/a_2^t при $k_F=0.6\,\mathrm{dm}^{-1}$ для разных NN-потенциалов получаются следующие: 0.044 (CD Bonn), 0.058 (Nijm II), 0.142 (Dib II). Как мы видим, эти отношения располагаются в той же последовательности, что и кривые $\eta(q)$,

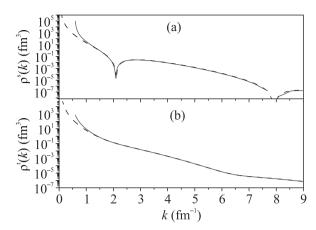


Рис. 6. (Цветной онлайн) Импульсные распределения в каналах 1S_0 (a) и 3S_1 - 3D_1 (b), найденные при расчетах в ядерной среде на основе уравнения (14) для боннского потенциала (сплошные кривые) в сравнении с УИР для того же потенциала (штриховые кривые)

приведенные на рис. 5 для NN-взаимодействий в вакууме.

7. Заключение. Показано, что при выбранном условии нормировки на высокоимпульсную часть в качестве универсальных импульсных распределений можно использовать двухчастичные волновые функции рассеяния при любой достаточно малой энергии. Это свойство открывает широкие возможности для вычисления таких распределений. В этой работе был использован МПДК, однако здесь можно использовать и любые другие подходы, которые традиционно применяются для вычисления функций непрерывного спектра. В частности, для построения универсальных распределений можно использовать и псевдосостояния гамильтониана, полученные в L^2 базисе, если базис позволяет описать область высоких импульсов. Такое исследование мы планируем в будущем.

Также в работе предложена функция $\eta(q)$, позволяющая сравнить вклады высокоимпульсных компонент для спин-синглетного и спин-триплетного каналов при низких энергиях. Такая функция зависит от используемой модели NN-взаимодействия и может служить дополнительной характеристикой изоспиновой зависимости КДК.

Кроме того, мы исследовали импульсные распределения, отвечающие связанным состояниям коррелированных пар нуклонов выше поверхности Ферми в ядерной среде. Показано, что импульсные распределения для таких состояний в области больших импульсов пропорциональны универсальным NN-распределениям.

Финансирование работы. Работа выполнена за счет средств гранта Российского научного фонда #23-22-00072, https://rscf.ru/project/23-22-00072/.

 $^{^{3)}}$ Такие состояния отвечают собственным функциям ядра уравнения Бете–Голдстоуна с единичными собственными значениями.

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

- 1. C. Ciofi degli Atti, Phys. Rep. 590, 1 (2015).
- 2. J. Arrington, N. Fomin, and A. Schmidt, Annu. Rev. Nucl. Part. Sci. **72**, 307 (2022).
- 3. M. Duer, O. Hen, E. Piasetzky et al. (CLAS Collaboration), Nature **560**, 617 (2018).
- 4. S. Li, R. Cruz-Torres, N. Santiesteban et al. (Collaboration), Nature **609**, 41 (2022).
- 5. R. Cruz-Torres, D. Nguyen, F. Hauenstein et al. (Jlab Hall A Tritium Collaboration), Phys. Rev. Lett. **124**, 212501 (2020).
- M. Patsyuk, J. Kahlbow, G. Laskaris et al. (The BM@N Collaboration), Nat. Phys. 17, 693 (2021).
- A.B. Larionov and Yu.N. Uzikov, Phys. Rev. C 109, 064601 (2024).
- M. Alvioli, C. Ciofi degli Atti, and H. Morita, Phys. Rev. C 94, 044309 (2016).
- Yu. N. Uzikov and A. Uvarov, Phys. Part. Nucl. 53, 426 (2022).
- R. Cruz-Torres, D. Londaroni, R. Weiss, M. Piarulli,
 N. Barnea, D. W. Higinbotham, E. Piasetzky,

- A. Schmidt, L.B. Weinstein, R.B. Wiringa, and O. Hen, Nat. Phys. 17, 306 (2021).
- R. Weiss, R. Cruz-Torres, N. Barnea, E. Piasetzky, and O. Hen, Phys. Lett. B 780, 211 (2018).
- R. Weiss, A.W. Denniston, J.R. Pybus, O. Hen,
 E. Piasetzky, A. Schmidt, L.B. Weinstein, and
 N. Barnea, Phys. Rev. C 103, L031301 (2021).
- 13. O. A. Rubtsova, V. I. Kukulin, and V. N. Pomerantsev, Ann. Phys. **360**, 613 (2015).
- H. Müther, O. A. Rubtsova, V. I. Kukulin, and V. N. Pomerantsev, Phys. Rev. C 94, 024328 (2016).
- V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Phys. Rev. C 49, 2950 (1994).
- 16. R. Machleidt, Phys. Rev. C 63, 024001 (2001).
- 17. V. I. Kukulin, I. T. Obukhovsky, V. N. Pomerantsev, and A. Faessler, Int. J. Mod. Phys. E **11**, 1 (2002).
- V. I. Kukulin, V. N. Pomerantsev, O. A. Rubtsova, M. N. Platonova, and I. T. Obukhovsky, Chin. Phys. C 46, 114106 (2022).
- 19. F. Sammarruca, Phys. Rev. C 92, 044003 (2015).
- 20. G. Fäldt and C. Wilkin, Phys. Lett. B 382, 209 (1996).
- 21. G. Fäldt and C. Wilkin, Am. J. Phys. 66, 876 (1998).