

Supplementary Material to the article “Magnetic, dielectric and magnetoelectric phenomena at low-temperature magnetic transitions in GdFeO_3 “

To analyze the observed phenomena in GdFeO_3 at phase transitions, we used the approach developed in [1, 2] to study low-temperature phenomena in orthoferrites, orthochromites with rare earth ions, and present the nonequilibrium thermodynamic potential as

$$\Phi(\mathbf{F}, \mathbf{G}, \boldsymbol{\sigma}_\alpha) = \Phi_{Fe}(\mathbf{F}, \mathbf{G}) - N\{f_x[\mu(H_x+aF_x)+\lambda_{xz}G_z]+f_y[\mu(H_y+aF_y)+f_z[\mu(H_z+aF_z)+\lambda_{zx}G_x]+c_y\lambda_{yz}G_z+c_z\lambda_{zy}G_y\} + \langle H_{Gd-Gd} \rangle + \frac{1}{4}NT \sum_{\alpha=1}^4 S(\sigma_\alpha) \quad (\text{S1})$$

where \mathbf{F} , \mathbf{G} are the vectors of ferro- and antiferromagnetism of the Fe subsystem, $\boldsymbol{\sigma}_\alpha$ – are the magnetic moments of the Gd^{3+} ion (normalized to its magnetic moment μ) in one of the four nonequivalent positions (sublattices) $\alpha = 1-4$ in the unit cell, which are the order parameters of the rare- earth subsystem, as well as their symmetrized combinations $\mathbf{f} = (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2 + \boldsymbol{\sigma}_3 + \boldsymbol{\sigma}_4)/4$, $\mathbf{g} = (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2 + \boldsymbol{\sigma}_3 - \boldsymbol{\sigma}_4)/4$, $\mathbf{a} = (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2 - \boldsymbol{\sigma}_3 + \boldsymbol{\sigma}_4)/4$, $\mathbf{c} = (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2 - \boldsymbol{\sigma}_3 - \boldsymbol{\sigma}_4)/4$. The first term in (1) represents the thermodynamic potential of the Fe subsystem

$$\Phi_{Fe}(\mathbf{F}, \mathbf{G}) = \frac{1}{2}\Lambda\mathbf{F}^2 - d(F_xG_z - F_zG_x) - M_0\mathbf{FH} + \frac{1}{2}K_{ac}G_z^2 + \frac{1}{2}K_{ab}G_y^2 + \dots \quad (\text{S2})$$

where Λ , d are constants of isotropic and antisymmetric Fe-Fe exchange, respectively, $K_{ac} > 0$, $K_{ab} > 0$ are magnetic anisotropy constants that stabilize the high-temperature phase $\Gamma_4(F_zG_x)$, M_0 – is the magnetic moment of Fe^{3+} ions. The second term describes the interaction of Gd^{3+} ions with an external magnetic field \mathbf{H} and Gd-Fe interaction, which includes isotropic (a) and anisotropic (λ_{ij}) Gd-Fe exchange [3], $\mu = \mu_B g_J S_{Gd} = 7\mu_B$ is the magnetic moment of Gd^{3+} , N is the number of Gd^{3+} ions. The last two terms in (1) are determined, respectively, by the contributions of the Gd-Gd interaction

$$\langle H_{Gd-Gd} \rangle = -N[\frac{1}{2}\lambda_{xx}^{ff}f_x^2 + \frac{1}{2}\lambda_{yy}^{ff}f_y^2 + \frac{1}{2}\lambda_{zz}^{ff}f_z^2 + \frac{1}{2}\lambda_{xx}^{cc}c_x^2 + \frac{1}{2}\lambda_{yy}^{cc}c_y^2 + \frac{1}{2}\lambda_{zz}^{cc}c_z^2 + \lambda_{xy}^{fc}f_xc_y + \lambda_{yy}^{fc}f_yc_x + \frac{1}{2}\lambda_{xx}^{gg}g_x^2 + \frac{1}{2}\lambda_{yy}^{gg}g_y^2 + \frac{1}{2}\lambda_{zz}^{gg}g_z^2 + \frac{1}{2}\lambda_{xx}^{aa}a_x^2 + \frac{1}{2}\lambda_{yy}^{aa}a_y^2 + \frac{1}{2}\lambda_{zz}^{aa}a_z^2 + \lambda_{xy}^{ga}g_xa_y + \lambda_{yx}^{ga}g_ya_x], \quad (\text{S3})$$

and the entropy of the Gd subsystem

$$S(\sigma_\alpha) = \ln(2S+1) - \int_0^{\sigma_\alpha} B_S^{-1}(\sigma) d\sigma, \quad (\text{S4})$$

The values λ_{xx}^{ff} , λ_{yy}^{ff} ... are the constants of the Gd-Gd interaction, and $B_S^{-1}(\sigma)$ is the inverse Brillouin function of the Gd spins which is described in the molecular field approximation.

Minimizing the thermodynamic potential (S1) with respect to \mathbf{F} , taking into account $\mathbf{F}\mathbf{G}=0$ due to saturation of the Fe sublattices and $\mathbf{F} \ll \mathbf{G} \approx 1$, we find

$$\mathbf{F} = [\mathbf{H}_t - \mathbf{G}(\mathbf{H}_t\mathbf{G})]/\Lambda, \quad (\text{S5})$$

and exclude it from the thermodynamic potential, where $\mathbf{H}_t = (M_0H_x + dG_z + N\mu_af_x, M_0H_y + N\mu_af_y, M_0H_z - dG_x + N\mu_af_z)$. Further, by minimizing (S1) with respect to the Gd order parameters $\boldsymbol{\sigma}_\alpha$ (or their basis vectors \mathbf{f} , \mathbf{g} , \mathbf{a} , \mathbf{c}) we get for them a system of molecular field equations

$$\boldsymbol{\sigma}_\alpha = (\mathbf{h}_\alpha/h_\alpha)B_s(h_\alpha/k_B T), \quad (\text{S6})$$

where the effective fields at the four positions α of Gd ions are equal

$$\mathbf{h}_\alpha = n_\alpha^f \mathbf{h}_f + n_\alpha^c \mathbf{h}_c + n_\alpha^g \mathbf{h}_g + n_\alpha^a \mathbf{h}_a, \quad (\text{S7})$$

in which

$$\mathbf{h}_f = \begin{pmatrix} \tilde{\mu}H_x + \tilde{\lambda}_{xz}G_z - \delta(\mu\tilde{H}\tilde{G})G_x + \lambda_{xx}^{ff}f_x + \lambda_{xy}^{fc}c_y + \Delta\lambda[f_x - (\tilde{f}\tilde{G})G_x] \\ \tilde{\mu}H_y - \delta(\mu\tilde{H}\tilde{G})G_y + \lambda_{yy}^{ff}f_y + \lambda_{yx}^{fc}c_x + \Delta\lambda[f_y - (\tilde{f}\tilde{G})G_y] \\ \tilde{\mu}H_z + \tilde{\lambda}_{zx}G_x - \delta(\mu\tilde{H}\tilde{G})G_z + \lambda_{zz}^{ff}f_z + \lambda_{xy}^{fc}c_y + \Delta\lambda[f_z - (\tilde{f}\tilde{G})G_z] \end{pmatrix}, \quad (\text{S8})$$

$$\mathbf{h}_c = \begin{pmatrix} \lambda_{xx}^{cc} c_x + \lambda_{yx}^{fc} f_y \\ \lambda_{yz} G_z + \lambda_{yy}^{cc} c_y + \lambda_{xy}^{fc} f_x \\ \lambda_{zy} G_y + \lambda_{zz}^{ff} c_z \end{pmatrix}, \quad \mathbf{h}_g = \begin{pmatrix} \lambda_{xx}^{gg} g_x + \lambda_{xy}^{ga} a_y \\ \lambda_{yy}^{gg} g_y + \lambda_{yx}^{ga} a_x \\ \lambda_{zz}^{gg} g_z \end{pmatrix}, \quad \mathbf{h}_a = \begin{pmatrix} \lambda_{xx}^{aa} a_x + \lambda_{yx}^{ga} g_y \\ \lambda_{yy}^{aa} a_y + \lambda_{xy}^{ga} g_x \\ \lambda_{zz}^{gg} a_z \end{pmatrix}$$

represent the symmetrized components defining the corresponding basis vectors of Gd subsystem, and $n_a^f=(1,1,1,1)$, $n_a^c=(1,1,-1,-1)$, $n_a^g=(1,-1,1,-1)$, $n_a^a=(1,1,-1,-1)$, $n_a^a=(1,-1,-1,1)$ specify combinations of these components in specific positions. In the above expressions $\tilde{\lambda}_{xz} = \lambda_{xz} + \mu ad / \Lambda$, $\tilde{\lambda}_{zx} = \lambda_{zx} - \mu ad / \Lambda$, $\tilde{\mu} = \mu(1+\delta)$, where $\delta = M_0 a / \Lambda$ determines a small renormalization of the Gd³⁺ magnetic moment (also depending on \mathbf{G}) due to the isotropic Gd-Fe exchange, $\Delta\lambda = N\mu^2 a^2 / \Lambda$ gives a similar correction to the parameters of the Gd-Gd interaction.

Taking into account that in the magnetic configuration $\Gamma_5(g_x a_y)$, Gd spins lie practically along the a -axis according to [4, 5] and our data in Fig.1a, meaning that the main Gd order parameter is the basic vector \mathbf{g} , i.e. its g_x component, while a_y does not manifest itself in any way, we will further neglect the vector \mathbf{a} , which is determined by the non-diagonal components of the Gd-Gd interaction λ_{xy}^{ga} .

For $H \parallel c$ the system has a $\Gamma_4(G_x F_z)$ magnetic configuration for Fe and $\Gamma_{45}(f_z g_x a_y)$ for Gd subsystems, respectively. At Gd antiferromagnetic ordering the f_z и g_x order parameters according to Eq.(S6), are determined by the equations:

$$f_z = (\tilde{\mu}H_z + \tilde{\lambda}_{zx}G_x) / (\lambda_{xx}^{gg} - \tilde{\lambda}_{zz}^{ff}), \quad g_x^2 = \sigma_0^2 - f_z^2, \quad a_y \approx 0 \quad (S9)$$

Where σ_0 satisfies the equation $\sigma_0 = B_s(\sigma_0 \lambda_{xx}^{gg} / k_B T)$. In this phase the Gd f_z ferromagnetic component linearly depends on the external and exchange $\tilde{\lambda}_{zx}G_x$ fields with a constant, i.e. temperature-independent, slope, like transverse susceptibility in antiferromagnets. The region of existence of this phase is limited by the magnitude of the Gd spin-flip transition field $H_z^{s\text{-}flip}(T)$, at which g_x vanishes in (S9) $\tilde{\mu}H_z^{s\text{-}flip}(T) = (\lambda_{xx}^{gg} - \tilde{\lambda}_{zz}^{ff})\sigma_0(T) - \tilde{\lambda}_{zx}G_x$ and which becomes zero at the Neel point (a small shift due to a small exchange field is omitted here). At low temperatures for $T \rightarrow 0$, the field $H_z^{s\text{-}flip}(0)$ can be estimated from the magnetization curve along the c -axis (Fig. 2a) as the intersection point of the linear part of the magnetization curve and its saturation value, which gives a field ~ 3.4 T, being noticeably higher than that we observed at 1.85 K.

In fields above the spin-flip transition, the remaining f_z component is determined by the equation $f_z = B_s((\tilde{\mu}H_z + \tilde{\lambda}_{zx}G_x + \tilde{\lambda}_{zz}^{ff}f_z) / k_B T)$, in which H_z makes the main contribution to the effective field and the magnetic moment of gadolinium is saturated. The direction of the Gd-Fe exchange field below the compensation point coincides with the external field, i.e. $\tilde{\lambda}_{zx}G_x > 0$. In this case, the spontaneous weakly ferromagnetic Fe moment due to the Dzyaloshinsky-Moriya interaction, is $m_0^{Fe}G_x \equiv -M_0(d/4)G_x < 0$, i.e. it lies against the external field and its Zeeman contribution $m_0^{Fe}G_x H_z$ to the thermodynamic potential increases linearly with increasing H_z . Since an energy of the Gd moment in the exchange Gd-Fe field is saturated in large fields, this leads to the change sign of G_x dependent part of the thermodynamic potential

$$\Delta\Phi(G_x) = G_x(m_0^{Fe}H_z - N\tilde{\lambda}_{zx}f_z) \quad (S10)$$

at some field $H_z \equiv H_{rev} = N\tilde{\lambda}_{zx}f_z(H_z, T) / m_0^{Fe}$, where $f_z \rightarrow 1$, when $T \rightarrow 0$. This causes a reorientation (sign change) of $G_x \rightarrow -G_x$, accompanied by a change in the spontaneous canting of the Fe sublattices from the direction against field to the direction along one and an increase in the magnetic moment at low temperatures by $\sim 2|m_0^{Fe}|$. In this case, the Gd-Fe exchange coupling, determined by the term $-N\tilde{\lambda}_{zx}G_x f_z$ in (S10), increases, i.e. the energetically preferable mutual orientation (coupling) of the Gd and Fe moments are violated. The temperature dependence of the transition field between these states can be represented as (for a small exchange Gd-Fe interaction $\tilde{\lambda}_{zx}$, true in our case)

$$k_B T = \frac{(\tilde{\mu} H_z^0 + \tilde{\lambda}_{zz}^{ff}) H_z / H_z^0}{B_S^{-1}(H_z / H_z^0)} \quad (S11)$$

where $H_z^0 = N\tilde{\lambda}_{zx}/m_0^{Fe}$ is the transition field at $T=0$. As the temperature increases, the magnitude of the transition field decreases and vanishes at the compensation point $k_B T_{comp} = (N\tilde{\mu}\tilde{\lambda}_{zx}/m_0^{Fe} + \tilde{\lambda}_{zz}^{ff})(S_{Gd}+1)/3S_{Gd} \equiv (\tilde{\mu} H_z^0 + \tilde{\lambda}_{zz}^{ff})(S_{Gd}+1)/3S_{Gd}$. It can be seen that T_{comp} is related to H_z^0 and the paramagnetic Curie temperature of the Gd subsystem $k_B \Theta_c = -\tilde{\lambda}_{zz}^{ff}(S_{Gd}+1)/3S_{Gd}$. According to our data (Fig.2a), the value of $H_z^0 = 3.5\text{-}3.8$ T and gives a value of T_{comp} close to the observed one. Thus, at the $H||c$ axis, the phase H - T diagram includes the spin-flip transition line in the Gd subsystem $H_z^{s\text{-}flip}(T)$ and the $H_{rev}(T)$ line corresponding to reversal of spontaneous Fe weak ferromagnetic moment.

Let us now turn to electrical polarization and dielectric constant. Polarization $P_z = -\partial\Phi/\partial E_z = [\lambda_1 G_x + \lambda_1' f_z + \lambda_1'' H_z] g_x$ exists only below antiferromagnetic Gd ordering and is determined mainly by the temperature and field dependence of the main order parameter $g_x(T, H_z)$. The electrical susceptibility χ_z^E (or dielectric constant $\varepsilon_z = 1 + 4\pi\chi_z^E$) is determined, in addition to the usual lattice contribution $(\chi_z^E)_{lat}$, also by magnetoelectric contributions from the Gd order parameters dg_x/dE_z and df_z/dE_z , depending on E_z ,

$$\chi_z^E = dP_z/dE_z = -\Phi_{E_z E_z} - \Phi_{E_z g_x} dg_x/dE_z - \Phi_{E_z f_z} df_z/dE_z \quad (S12)$$

where $\Phi_{E_z E_z} = \partial^2\Phi/\partial E_z^2$, $\Phi_{E_z g_x} = \partial^2\Phi/\partial E_z \partial g_x$ etc. are partial derivatives of the total nonequilibrium potential Φ , where the magnetoelectric part (1) and the lattice part are added. The values dg_x/dE_z and df_z/dE_z are determined by differentiating by E_z the equations $\partial\Phi/\partial g_x = 0$ and $\partial\Phi/\partial f_z = 0$ for the equilibrium values of the order parameters g_x and f_z corresponding to the minimum Φ . As a result, one gets for χ_z^E

$$\chi_z^E = (\chi_z^E)_{lat} + (\Phi_{E_z g_x}^2 \Phi_{g_x g_x} + \Phi_{E_z f_z}^2 \Phi_{f_z f_z} - 2\Phi_{E_z g_x} \Phi_{E_z f_z} \Phi_{g_x f_z})/\Delta \quad (S13)$$

where value $\Delta = \Phi_{g_x g_x} \Phi_{f_z f_z} - \Phi_{g_x f_z}^2 \geq 0$ determines the stability of the Gd magnetic configurations, respectively, $\Gamma_{45}(f_z g_x a_y)$ at $T < T_N(H_z)$ and $\Gamma_4(f_z)$ at $T > T_N(H_z)$. At the phase transition, when $\Delta \rightarrow 0$, the electrical susceptibility increases. In the $\Gamma_4(f_z)$ phase, where $g_x = 0$, the susceptibility is

$$\chi_z^E = (\chi_z^E)_{lat} + \frac{(\lambda_1 G_x + \lambda_1' f_z + \lambda_1'' H_z)^2}{N[(\tilde{\mu} H_z + \tilde{\lambda}_{zx} G_x + \tilde{\lambda}_{zz}^{ff} f_z)/f_z - \lambda_{xx}^{gg}]}, \quad (S14)$$

where the displacement of the Neel point in the field is taken into account, and $f_z = B_S((\tilde{\mu} H_z + \tilde{\lambda}_{zx} G_x + \tilde{\lambda}_{zz}^{ff} f_z)/k_B T)$ is determined by the molecular field equation obtained from (S6). For small fields, it is reduced to the expression

$$\chi_z^E = (\chi_z^E)_{lat} + (\lambda_1 G_x + \lambda_1' f_z + \lambda_1'' H_z)^2 (S_{Gd}+1)/3S_{Gd}(T-T_N)k_B N, \quad (S15)$$

clearly demonstrating the divergence of electrical susceptibility at the Neel point. In Fig. 4a, b are the calculated temperature and field dependences of the dielectric constant and polarization, which are generally consistent with the experiment.

In the $H||b$ field, which, like $H||c$, suppresses the antiferromagnetic ordering of Gd and does not change the orientation of the vector \mathbf{G} , electric polarization and permittivity behave similarly to the case of $H||c$. This indicates that the magnetoelectric contributions $\lambda_1' g_x f_z$ and $\lambda_1'' g_x H_z$ in Eq.(1) associated with the magnetization of Gd along the c axis are apparently small.

Let us now consider the case of the $H||a$ axis, when the magnetic field induces a spin-flop transition in the Gd subsystem $\Gamma_{45}(g_x f_z) \rightarrow \Gamma_{27}(g_x f_x c_y)$ at low temperatures accompanied by a spin reorientation in the Fe subsystem. To analyze the behavior of the magnetic structure, we specify the thermodynamic potential. In fields small compared to the spin-flip transition field in the Gd subsystem, when the ferromagnetic, f and antiferromagnetic, c order parameters are small compared to g , the nonequilibrium thermodynamic potential can be minimized with respect to f and c and represented as a function only of g and \mathbf{G} orientation in the xz plane (ac):

$$\Phi(\vec{G}, \vec{g}) \approx -\gamma_2 \chi_{\perp}^{Gd} \vec{H}_f^2 + \gamma_2 \Delta \chi^{Gd} (\vec{H}_f \vec{g})^2 / g^2 - \gamma_2 \chi_{\perp}^{Gd} \vec{H}_c^2 + \gamma_2 K_{ac}^{Gd} g_z^2 + \gamma_2 (K_{ac} - \chi_{\perp}^{Fe} H_x^2) G_z^2 - m_0^{Fe} H_x G_z \quad (S16)$$

where $\vec{H}_f = (H_x + H_x^{eff} G_z, 0, H_z^{eff} G_x)$, $\vec{H}_c = (0, H_y^{eff} G_z, 0)$ are the effective fields on Gd ions magnetizing them by *f* or *c* type, $H_{xz}^{eff} = \tilde{\lambda}_{xz,zx} / \tilde{\mu}$, $H_y^{eff} = \lambda_{yz} / \tilde{\mu}$; $K_{ac}^{Gd} = N(\chi_{xx}^{gg} - \chi_{zz}^{gg}) > 0$ is the anisotropy energy of the Gd subsystem; $\chi_{\perp}^{Gd} = N\mu^2 / (\chi^{gg} - \chi^{ff})$ and $\chi_{\parallel}^{Gd} = \chi_{\perp}^{Gd} (\chi^{gg} - \chi^{ff}) B_s' / [(\chi^{gg} - \chi^{ff}) B_s' + g^2 k_B T]$ are Gd transverse and longitudinal susceptibility, respectively, while $\Delta \chi^{Gd} = \chi_{\perp}^{Gd} - \chi_{\parallel}^{Gd}$ is their difference, and $\chi_{\perp}^{Fe} = M_0^2 / \Lambda$ is the transverse susceptibility of the Fe subsystem. The Eq.(S16), where the terms dependent on g^2 were omitted, describes two exchange coupled antiferromagnetic subsystems in the magnetic field H_x . As the analysis shows, the stable state is $G_x \approx g_x \approx \pm 1$ for small fields, while with H_x increasing (but remaining $H_x \ll H_{s,flip}$) a spin-flop phase $g_z \approx 1$ for Gd ions and an angular structure $0 < G_z < 1$ (Γ_{24}) in the Fe subsystem become stable. With further H_x growth the \mathbf{G} vector turns to the c-axis until it completely switches to the $\Gamma_2(G_z F_x)$ state. The first order phase transition occurs between the phases at the field satisfying of equality of their free energy

$$H_{x1} \approx \sqrt{(K_{ac}^{Gd} + \chi_{\perp}^{Gd} H_z^{eff 2}) / (\Delta \chi^{Gd} + \chi_{rot}^{Fe})} \quad (S17)$$

where $\chi_{rot}^{Fe} \approx (m_0^{Fe} + m_x^{Gd})^2 / \tilde{K}_{ac}^{Fe}$ is the susceptibility of Fe spin rotation, $\tilde{K}_{ac}^{Fe} = K_{ac}^{Fe} - \chi_{\perp}^{Gd} (H_x^{eff 2} + H_y^{eff 2} - \chi_{\perp}^{Fe} H_x^2)$ is Fe effective anisotropy energy in the *ac* plane, and $m_x^{Gd} = \chi_{\perp}^{Gd} H_x^{eff}$ is the Gd contribution to the weak ferromagnetic moment. The orientation of the Fe spins in the angular Γ_{24} phase is characterized approximately the projection $G_z = \cos \theta \approx (m_0^{Fe} + m_x^{Gd}) H_x / (\tilde{K}_{ac}^{Fe} - \chi_{\perp}^{Fe} H_x^2)$, which increases with the H_x growth and approaches unity at the end of the reorientation. Another scenario of field-induced spin reorientation suggests a spin-flop transition simultaneously in Gd ($g_z f_x \rightarrow f_x$) and Fe ($G_x \rightarrow G_z$) subsystems at threshold field

$$H_{x2} \approx \frac{m_0^{Fe} + m_x^{Gd}}{\chi_{\perp}^{Fe} + \chi_{\perp}^{Gd} - \chi_{\parallel}^{Gd}} \left[\sqrt{1 + \frac{K_{ac}^{eff} (\chi_{\perp}^{Fe} + \chi_{\perp}^{Gd} - \chi_{\parallel}^{Gd})}{(m_0^{Fe} + m_x^{Gd})^2}} - 1 \right], \quad (S18)$$

where $K_{ac}^{eff} = K_{ac}^{Fe} + K_{ac}^{Gd} - \chi_{\perp}^{Gd} (H_x^{eff 2} + H_y^{eff 2} - H_z^{eff 2})$ is the effective anisotropy energy in the *ac* plane. Using the known data for the parameters of the Gd-Fe interaction [3], as well as our magnetization data to determine χ_{\perp}^{Gd} , K_{ac}^{Gd} , we simulated the temperature dependences of the threshold fields of spin-reorientation and spin-flip transitions (Fig.6) for $\chi_{\perp}^{Gd} = 4.6 \cdot 10^{-3} \text{ cm}^3/\text{g}$, $\chi_{\perp}^{Fe} = 0.9 \cdot 10^{-4} \text{ cm}^3/\text{g}$, $K_{ac}^{Gd} = 0.8 \cdot 10^5 \text{ erg/g}$, $K_{ac}^{Fe} = 1.3 \cdot 10^5 \text{ erg/g}$, $m_0^{Fe} = 1.2 \text{ emu/g}$, $H_x^{eff} = 1 \text{ kOe}$, $H_y^{eff} = 4 \text{ kOe}$, $H_z^{eff} = -0.5 \text{ kOe}$, $a = -180 \text{ kOe}$, $\lambda_f = -12.5 \text{ K}$. The calculated threshold fields are consistent with the experiment above and below the Neel point (Fig.6), including data from [3], and indicate that the spin reorientation can occur either through an angular phase in the Fe subsystem or directly to the $\Gamma_2(G_z F_x)$ phase. The both scenario are discussed in the main text of the paper.

In the fields above the spin-flop, there is a small break in the magnetization curves (and its derivative) during the spin-flip transition to Gd ($g_z f_x \rightarrow f_x$), and a peak is observed in the field dependence of the dielectric constant $\epsilon_z(H_x)$ when g_z is suppressed of approximately the same magnitude as in the field along a- and b-axes which suppress g_x -component. This indicates that the magnetoelectric constants λ_1 and λ_2 in (1) are approximately the same magnitude. This is also confirmed by the small dielectric anomaly during the spin-flop transition on the lower branch 1 of the curve $\epsilon_z(H_x)$ (Fig.5a).

1. A. K. Zvezdin, V. M. Matveev, A. A. Mukhin and A. I. Popov, Rare earth ions in magnetically ordering crystals, Nauka, Moscow, 1985 (in Russian)/
2. V. Yu. Ivanov, A. M. Kuzmenko, A. Yu. Tikhanovskii, A .A. Mukhin, Eur. Phys. J. Plus 138:818 (2023).
3. D. V. Belov, A. K. Zvezdin, A. M. Kadomtseva, I. B. Krynetskii, A. S. Moskvin and A. A. Mukhin, Sov. Phys. Solid State **23**, 1654 (1981) AIP 1982.
4. Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima and Y. Tokura, Nature Materials. **8**, 558 (2009).
5. J. D. Cashion, A. H. Cooke, D. M. Martin, M. R. Wells, J. Phys. C **3**, 1612 (1970).