
Supplementary Material to the article “Magnetic, dielectric and magnetoelectric 
phenomena at low-temperature magnetic transitions in GdFeO3 “ 

To analyze the observed phenomena in GdFeO3 at phase transitions, we used the approach 
developed in [1, 2] to study low-temperature phenomena in orthoferrites, orthochromites with 
rare earth ions, and present the nonequilibrium thermodynamic potential as 
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where F, G are the vectors of ferro- and antiferromagnetism of the Fe subsystem, σα – are the 
magnetic moments of the Gd3+ ion (normalized to its magnetic moment µ) in one of the four 
nonequivalent positions (sublattices) α =1-4 in the unit cell, which are the order parameters of 
the rare- earth subsystem, as well as their symmetrized combinations f=(σ1+ σ2+ σ3+ σ4)/4, g= 
(σ1- σ2+ σ3- σ4)/4, a= (σ1- σ2- σ3+ σ4)/4, c= (σ1+ σ2- σ3- σ4)/4. The first term in (1) represents 
the thermodynamic potential of the Fe subsystem  

ΦFe(F, G) = ½ΛF2–d(FxGz-FzGx) - M0FH+½KacGz
2+½KabGy

2 +…   (S2) 
where Λ, d are constants of isotropic and antisymmetric Fe-Fe exchange, respectively, Kac >0, 
Kab>0 are magnetic anisotropy constants that stabilize the high-temperature phase Γ4(FzGx), M0 – 
is the magnetic moment of Fe3+ ions. The second term describes the interaction of Gd3+ ions with 
an external magnetic field H and Gd-Fe interaction, which includes isotropic (a) and anisotropic 
(λij) Gd-Fe exchange [3], µ = µBgJSGd =7µB  is the magnetic moment of Gd3+ , N is the number 
of Gd3+ ions. The last two terms in (1) are determined, respectively, by the contributions of the 
Gd-Gd interaction  
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and the entropy of the Gd subsystem 
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The values ff
xx , ff

yy ... are the constants of the Gd-Gd interaction, and )(1 
SB is the inverse 

Brillouin function of the Gd spins which is described in the molecular field approximation.  
Minimizing the thermodynamic potential (S1) with respect to F, taking into account FG=0 

due to saturation of the Fe sublattices and F<<G≈1, we find  
F = [Ht – G(HtG)]/Λ,        (S5) 

and exclude it from the thermodynamic potential, where Ht = (M0Hx + dGz +Nμafx, M0Hy + Nμa 
fy, M0Hz - dGx +Nμafz). Further, by minimizing (S1) with respect to the Gd order parameters σα 
(or their basis vectors f, g, a, c) we get for them a system of molecular field equations  

σα = (hα/hα)Bs(hα/kBT) ,    (S6) 
 
where the effective fields at the four positions α of Gd ions are equal  
 
               hα = nα

f hf + nα
c hc + nα

g hg + nα
a ha  ,      (S7) 

in which  
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represent the symmetrized components defining the corresponding basis vectors of Gd 
subsystem, and nα

f=(1,1,1,1), nα
с=(1,1,-1,-1), nα

g=(1,-1,1,-1), nα
с=(1,1,-1,-1), nα

a=(1,-1,-1,1) 
specify combinations of these components in specific positions. In the above expressions 

 /
~

adxzxz  ,  /
~

adzxzx  , )1(~   , where  /0aM  determines a small 

renormalization of the Gd3+magnetic moment (also depending on G) due to the isotropic Gd-Fe 
exchange,  /22aN  gives a similar correction to the parameters of the Gd-Gd interaction.  

Taking into account that in the magnetic configuration Γ5(gxay), Gd spins lie practically along 
the a-axis according to [4, 5] and our data in Fig.1a, meaning that the main Gd order parameter is 
the basic vector g, i.e. its gx component, while ay does not manifest itself in any way, we will 
further neglect the vector a, which is determined by the non-diagonal components of the Gd-Gd 
interaction ga

xy . 

For H||c the system has a Γ4(GxFz) magnetic configuration for Fe and Γ45(fzgxay) for Gd 
subsystems, respectively. At Gd antiferromagnetic ordering the fz и gx order parameters 
according to Eq.(S6), are determined by the equations: 
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Where 0  satisfies the equation )/(B 0S0 TkB
gg
xx  . In this phase the Gd fz ferromagnetic component 

linearly depends on the external and exchange xzxG~  fields with a constant, i.e. temperature-

independent, slope, like transverse susceptibility in antiferromagnets. The region of existence of 
this phase is limited by the magnitude of the Gd spin-flip transition field Hz

s-flip(T), at which gx 
vanishes in (S9) xzx
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0z   and which becomes zero at the Neel point (a small 

shift due to a small exchange field is omitted here). At low temperatures for T→0, the field  
)0(z

flipsH   can be estimated from the magnetization curve along the c-axis (Fig. 2a) as the 
intersection point of the linear part of the magnetization curve and its saturation value, which 
gives a field ~3.4 T, being noticeably higher than that we observed at 1.85 K.  
In fields above the spin-flip transition, the remaining fz component is determined by the equation 
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ff
zzxzxzS    , in which Hz  makes the main contribution to the effective field and 

the magnetic moment of gadolinium is saturated. The direction of the Gd-Fe exchange field 
below the compensation point coincides with the external field, i.e. 0

~
xzxG  . In this case, the 

spontaneous weakly ferromagnetic Fe moment due to the Dzyaloshinsky-Moriya interaction, is 
m0

FeGx≡-M0(d/Λ)Gx <0, i.e. it lies against the external field and its Zeeman contribution 
m0

FeGxHz  to the thermodynamic potential increases linearly with increasing Hz. Since an energy 
of the Gd moment in the exchange Gd-Fe field is saturated in large fields, this leads to the 
change sign of Gx dependent part of the thermodynamic potential  
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at some field )/),(
~

0
Fe

zzzxrevz mTHfNHH  , where fz→1, when T→0. This causes a 

reorientation (sign change) of Gx → -Gx, accompanied by a change in the spontaneous canting of 
the Fe sublattices from the direction against field to the direction along one and an increase in the 
magnetic moment at low temperatures by ~2|m0

Fe|. In this case, the Gd-Fe exchange coupling, 

determined by the term zxzx fGN~  in (S10), increases, i.e. the energetically preferable mutual 

orientation (coupling) of the Gd and Fe moments are violated. The temperature dependence of 
the transition field between these states can be represented as (for a small exchange Gd-Fe 
interaction zx

~ , true in our case) 
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where Fe
zx

o
z mNH 0/

~  is the transition field at T=0. As the temperature increases, the magnitude 

of the transition field decreases and vanishes at the compensation point 
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related to Hz
0and the paramagnetic Curie temperature of the Gd subsystem 

GdGd
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zzcB SSk 3/)1(
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  . According to our data (Fig.2a), the value of Hz

0=3.5-3.8 T and gives a 

value of Tcomp close to the observed one. Thus, at the H||c axis, the phase H-T diagram includes 
the spin-flip transition line in the Gd subsystem Hz

s-flip(T) and the Hrev(T) line corresponding to 
reversal of spontaneous Fe weak ferromagnetic moment.   

Let us now turn to electrical polarization and dielectric constant. Polarization Pz=-∂Φ/∂Ez = 
[λ1Gx + λ1ʹfz + λ1ʺHz]gx exists only below antiferromagnetic Gd ordering and is determined 
mainly by the temperature and field dependence of the main order parameter gx(T, Hz).  
The electrical susceptibility χz

E (or dielectric constant εz = 1+4πχz
E ) is determined, in addition to 

the usual lattice contribution (χz
E)lat, also by magnetoelectric contributions from the Gd order 

parameters dgx/dEz and dfz/dEz, depending on Ez  
 ,  zzfEzxgEEEzz

E
z dEdfdEdgdEdP

zzxzzz
///      (S12) 

where 22 / zEE E
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 /2  etc. are partial derivatives of the total nonequilibrium 

potential Φ, where the magnetoelectric part (1) and the lattice part are added. The values dgx/dEz 
and dfz/dEz are determined by differentiating by Ez the equations ∂Φ/∂gx=0 and ∂Φ/∂fz=0 for the 
equilibrium values of the order parameters gx and fz corresponding to the minimum Φ. As a 
result, one gets for χz
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where value 2

zxzzxx fgffgg
 ≥ 0 determines the stability of the Gd magnetic configurations, 

respectively, Γ45(fz gxay) at T<TN(Hz) and Γ4(fz) at T>TN(Hz). At the phase transition, when Δ→0, 
the electrical susceptibility increases. In the Γ4(fz) phase, where gx =0, the susceptibility is 
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where the displacement of the Neel point in the field is taken into account, and 
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zzxzxzSz    is determined by the molecular field equation obtained from (S6). 

For small fields, it is reduced to the expression  
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clearly demonstrating the divergence of electrical susceptibility at the Neel point. In Fig. 4a, b 
are the calculated temperature and field dependences of the dielectric constant and polarization, 
which are generally consistent with the experiment.  

 In the H||b field, which, like H||c, suppresses the antiferromagnetic ordering of Gd and 
does not change the orientation of the vector G, electric polarization and permittivity behave 
similarly to the case of H||c. This indicates that the magnetoelectric contributions λ1ʹgxfz and 
λ1ʺgxHz in Eq.(1) associated with the magnetization of Gd along the c axis are apparently small. 

Let us now consider the case of the H||a axis, when the magnetic field induces a spin-flop 
transition in the Gd subsystem Г45(gxfz) → Г27(gzfxcy) at low temperatures accompanied by a spin 
reorientation in the Fe subsystem. To analyze the behavior of the magnetic structure, we specify 
the thermodynamic potential. In fields small compared to the spin-flip transition field in the Gd 
subsystem, when the ferromagnetic, f and antiferromagnetic, c order parameters are small 
compared to g, the nonequilibrium thermodynamic potential can be minimized with respect to f 
and c and represented as a function only of g and G orientation in the xz plane (ac): 
 



 zx
Fe

zx
Fe

acz
Gd
acc

Gd
f

Gd
f

Gd GHmGHKgKHggHHgG 0
22

2
12

2
12

2
122

2
12

2
1 )(/)(),(   


  (S16) 

 
where ),0,( x

eff
zz

eff
xxf GHGHHH 


 , )0,,0( z

eff
yc GHH 


 are the effective fields on Gd ions magnetizing 

them by f or c type,  ~/
~

,, zxxz
eff

zxH  ,  ~/yz
eff
yH  ; 0)(  gg

zz
gg
xx

Gd
ac NK   is the anisotropy energy of the 

Gd subsystem; )/(2 ffggGd N    and ])/[()( 2
|| TkgBB BS

ffgg
S

ffggGdGd     are Gd transverse and 

longitudinal susceptibility, respectively, while GdGdGd
||    is their difference, and  /2

0MFe   

is the transverse susceptibility of the Fe subsystem. The Eq.(S16), where the terms dependent on 
g2 were omitted, describes two exchange coupled antiferromagnetic subsystems in the magnetic 
field Hx. As the analysis shows, the stable state is Gx≈gx≈±1 for small fields , while with Hx 
increasing (but remaining Hx <<Hs-flip) a spin–flop phase gz≈1 for Gd ions and an angular 
structure 0<Gz<1 (Г24) in the Fe subsystem become stable. With further Hx growth the G vector 
turns to the c-axis until it completely switches to the Г2(GzFx) state. The first order phase 
transition occurs between the phases at the field satisfying of equality of their free energy 
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ferromagnetic moment. The orientation of the Fe spins in the angular Г24 phase is characterized 
approximately the projection )
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growth and approaches unity at the end of the reorientation. Another scenario of field-induced 
spin reorientation suggests a spin-flop transition simultaneously in Gd (gzfx→fx) and Fe (Gx→Gz) 
subsystems at threshold field   
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where )(
222 eff
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ac HHHKKK    is the effective anisotropy energy in the ac plane. Using 

the known data for the parameters of the Gd-Fe interaction [3], as well as our magnetization data 
to determine Gd

 , Gd
acK  , we simulated the temperature dependences of the threshold fields of spin-

reorientation and spin-flip transitions (Fig.6) for Gd
 =4.6 10-3 cm3/g, Fe

 =0.9 10-4 cm3/g, Gd
acK =0.8 

105erg/g, Fe
acK =1.3 105erg/g, Fem0 =1.2 emu/g, eff

xH =1 kOe, eff
yH =4 kOe, eff

zH =-0.5 kOe, a=-180 kOe, 

λf =-12.5 K. The calculated threshold fields are consistent with the experiment above and below 
the Neel point (Fig.6), including data from [3], and indicate that the spin reorientation can occur 
either through an angular phase in the Fe subsystem or directly to the Г2(GzFx) phase. The both 
scenario are discussed in the main text of the paper.  

In the fields above the spin-flop, there is a small break in the magnetization curves (and its 
derivative) during the spin-flip transition to Gd (gzfx→fx), and a peak is observed in the field 
dependence of the dielectric constant εz(Hx) when gz is suppressed of approximately the same 
magnitude as in the field along a- and b-axes which suppress gx-component. This indicates that 
the magnetoelectric constants λ1 and λ2 in (1) are approximately the same magnitude. This is also 
confirmed by the small dielectric anomaly during the spin-flop transition on the lower branch 1 
of the curve εz(Hx) (Fig.5a). 
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