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We use the permittivity ε(ω) for both metal plates in the form of the Drude expression
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where �� is the plasma frequency, �(�) = ��
2�(�)/4� is the relaxation frequency of

electrons, and �(�) is the metal resistivity. Figure S1 shows the dependencies �(�)
corresponding to the Bloch–Grüneisen (BG) model [30] (dashed line in Fig. S1), modified
Bloch–Grüneisen model (MBG) (circles in Fig. S1) and the model with a linear
dependence of resistance on temperature (LR) (straight line). In BG model (��=175 K , ��=
9.03 eV ),

Fig. S1.(Color online). Resistivity of gold as a function of temperature (the data have been
kindly supplied by C. Henkel).
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In addition, we also used a truncated BG model

�(�, �0) = �(�), � > �0; �(�) = �(�0), � ≤ �0. ( S3)

In MBG model, the residual resistance of gold is �0 = 2.3 ∙ 10−10 � ∙m . To obtain the
resistivity in Gaussian units, one should use the relation Ω ∙ m = 1 9 10−9s−1.

Because � � ≫ 1 for good conductors like gold, and the inequality gets stronger as � →
0, the second terms in in (7)-(9), corresponding to electromagnetic � modes are negligible
compared to the first terms with �1,2, corresponding to the � modes. This is all the more true
for the near-field range of distances a between the plates. Therefore, the contributions of P
modes in the numerical calculations were neglected.

To compute the integrals in (7)–(9), a change of variable � = �� �1, �2 � is performed,
with �� �1, �2 = max (�1 �1 , �2 �2 ) and �� �� being the relaxation frequencies of plates
1 and 2 depending on their temperatures �1 and �2 (� = 1,2) . The 2D wave-vector modulus
(in polar coordinates (�, �) of the plane (��, ��)) is written as � = ( �� � ) �2 + ��

2 �2 in
the evanescent sector � > �/� and � = �� � ��

2 �2 − �2 in the radiation sector � < �/� .



Additional parameters are �� = �� �� , �� = ћ �� �� , �� = �� �� , � = ��� � , � =
( � �)��

−1 and � = ℏ��
2 �� � 4/�3. For � > �/� , formulas (7)–(9) take the form
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For � < �/� , expressions (S10), (S11) should be used by replacing � → i ∙ � , and
substituting ��� for ∞ in the integrals over � in (S4)–(S6).

Figure S2 shows the velocity dependencies of �1 and �2 calculated using the
truncated BG model (S3) at �0= 7 K , fixed ∆� = 3 K and a constant ratio �1 �2=2 . Note
that �1,2 < 0 corresponds to cooling. Increasing the speed of the moving plate changes the
"normal" direction of heat transfer from the hot plate to the cold one (cf. two upper curves
marked as (6,3) and (3,6)). The numerical values indicate the temperatures of plate 1 and
plate 2. For the two lower curves, the heat flow direction is “normal”: plates 1 and 2 heat up
at a lower temperature, and heat exchange occurs faster with increasing velocity of plate 2.



Fig. S2. (Color online). Heat transfer rates of gold plates under Casimir-Lifshitz friction as
functions of velocity of plate 2. The truncated BG model (S3) is used with �0 = 7 K. The
temperature values and their order in the brackets correspond to plates 1 and 2.


