ТЕОРИЯ УПРАВЛЕНИЯ

УДК 517.977

О СВОЙСТВАХ МНОЖЕСТВА РАЗРЕШИМОСТИ ДЛЯ ЛИНЕЙНОЙ СИСТЕМЫ С НЕОПРЕДЕЛЁННОСТЬЮ

© 2024 г. А. А. Мельникова¹, П. А. Точилин², А. Н. Дарьин³

 $^{1-3}$ Московский государственный университет имени М.В. Ломоносова 2 Институт проблем управления имени В.А. Трапезникова РАН, г. Москва e-mail: 1 nastya.a.melnikova@gmail.com, 2 tochilin@cs.msu.ru, 3 daryin@mail.ru

Поступила в редакцию 28.05.2024 г., после доработки 23.08.2024 г.; принята к публикации 03.10.2024 г.

Исследована задача верификации попадания на целевое множество на конечном отрезке времени состояния линейной управляемой системы дифференциальных уравнений, включающей неопределённость (помеху), на которую наложено геометрическое, поточечное выпуклое ограничение. В случае с двумерным фазовым пространством предложен способ построения множества разрешимости без операции овыпукления, необходимой для вычисления опорной функции геометрической разности множеств. Получено уравнение типа Гамильтона—Якоби—Беллмана, которому удовлетворяет функция расстояния до множества разрешимости.

Ключевые слова: динамическое программирование, функция цены, множество разрешимости, альтернированный интеграл, уравнение Гамильтона–Якоби–Беллмана, задача верификации

DOI: 10.31857/S0374064124110054, EDN: JEGHXR

ВВЕДЕНИЕ

Рассматривается задача попадания на целевое множество за заданный конечный промежуток времени для линейной системы дифференциальных уравнений, включающей управляющие параметры и неопределённость с жёсткими выпуклыми ограничениями, из заданного начального положения. Подобная постановка задачи восходит к работам [1, 2]. Для решения задачи о переводе на целевое множество можно использовать множество разрешимости, которое строится в форме альтернированного интеграла [3]. Наибольшую вычислительную сложность при его построении представляет вычисление геометрической разности целевого множества и множества, определяемого помехой. Другой подход к решению задачи подобного типа состоит в применении методов динамического программирования, согласно которому множество разрешимости может быть найдено как множество уровня для специально сконструированной функции цены [4, с. 375–377], определяемой как решение краевой задачи для уравнения Гамильтона–Якоби–Беллмана–Айзекса [5, с. 382–384].

В настоящей работе рассматривается система, на которую действует только неопределённость (отсутствуют управляющие параметры). Известно, что для линейной системы без помехи функция цены, построенная для множества разрешимости, совпадает с расстоянием от точки до множества разрешимости. При наличии помехи (неопределённости) значение функции цены может не совпадать с расстоянием до множества разрешимости во всех точках. Так, в работе [6] рассмотрен пример системы, для которой выведено выражение для функции цены и приведены точки, в которых значение этой функции не совпадает с расстоянием до множества разрешимости. Таким образом, представляется интересным вывод

уравнения, решением которого является расстояние до множества разрешимости. В случае когда в системе есть как управление, так и помеха, ситуация будет ещё более сложной.

1. ПОСТАНОВКА ЗАДАЧИ. ОСНОВНЫЕ СВЕДЕНИЯ

Рассматривается линейная система

$$\dot{x}(\tau) = A(\tau)x(\tau) + C(\tau)\tilde{v}, \quad \tau \in [t_0, t_1], \quad x \in \mathbb{R}^n, \tag{1}$$

с непрерывными матричными коэффициентами $A(\tau)$, $C(\tau)$, $\tilde{v}(\tau) \in Q(\tau)$ — помеха, где $Q(\tau)$ — непрерывное в смысле метрики Хаусдорфа многозначное отображение, принимающее значения во множестве выпуклых компактов.

Пусть $X(t_1,\tau)$ — фундаментальная матрица Коши для системы линейных дифференциальных уравнений с матрицей $A(\tau)$. Тогда с помощью преобразования $z(\tau) = X(t_1,\tau)x(\tau)$ система (1) может быть сведена к более простой линейно-выпуклой системе (см. [7, с. 2–3]) следующего вида:

$$\dot{x}(\tau) = v, \quad \tau \in [t_0, t_1], \tag{2}$$

где на новую помеху $v(\tau) = X^{-1}(\tau, t_1)C(\tau)\tilde{v}(\tau)$ наложены поточечные ограничения

$$v(\tau) \in \mathcal{Q}(\tau),\tag{3}$$

 $Q(\tau) = X^{-1}(\tau, t_1)C(\tau)Q(\tau)$. Для упрощения выкладок сначала будем считать, что выпуклый компакт Q не зависит от времени (случай когда Q зависит от времени рассмотрен в п. 3). Будем также считать, что $0 \in Q$.

Необходимо выяснить, попадёт ли состояние системы (2) в целевое множество M в конечный момент времени t_1 , несмотря на действие помехи (3). Предполагается, что M — непустое выпуклое компактное множество в пространстве \mathbb{R}^n .

Определение 1. Множество разрешимости $\mathbf{W}[\tau, t_1, M]$ в момент времени τ системы (2) с ограничением (3) состоит из всех точек x_{τ} , для которых решения системы, выпущенные из этих точек, достигают в момент времени t_1 множества M для любой помехи (3).

Множество разрешимости $\mathbf{W}[\tau, t_1, M]$ в момент времени τ далее обозначается $\mathbf{W}[\tau]$.

Определение 2. Геометрическая разность множеств $A\ u\ B$ пространства \mathbb{R}^n определяется как

$$A \dot{-} B = \{c \colon c + B \subseteq A\}.$$

Также геометрическая разность множеств может быть записана в виде [8, с. 23]

$$A \dot{-} B = \bigcap_{b \in B} (A - b).$$

Отсюда, в частности, следует, что геометрическая разность двух выпуклых компактных множеств также является выпуклым компактным множеством.

Возьмём временной интервал $t\leqslant \tau\leqslant t_1$ и рассмотрим разбиение $\Sigma_k=\{\sigma_1,\ldots,\sigma_k\},\ t=\vartheta_k,$ $\vartheta_{k-1},\ \ldots,\ \vartheta_1,\ \vartheta_0=t_1,\ \sigma_i>0,\ \vartheta_j=t_1-\sum_{i=1}^j\sigma_i.$

Далее будем вычислять множество разрешимости в дискретные моменты времени ϑ_j :

$$\mathbf{W}[\vartheta_{k}] = \mathbf{W}[\vartheta_{k-1}] \dot{-} \int_{\vartheta_{k}}^{\vartheta_{k-1}} \mathcal{Q}(\tau) d\tau =$$

$$= \left(\left(M \dot{-} \int_{\vartheta_{1}}^{t_{1}} \mathcal{Q}(\tau) d\tau \right) \dot{-} \dots \right) \dot{-} \int_{\vartheta_{k}}^{\vartheta_{k-1}} \mathcal{Q}(\tau) d\tau = M \dot{-} \int_{t}^{t_{1}} \mathcal{Q}(\tau) d\tau.$$

$$(4)$$

Если множество $Q(\tau)$ не зависит от τ , то формула (4) преобразуется как

$$\mathbf{W}[t] = \mathbf{W}[\vartheta_k] = M - (t_1 - t)\mathcal{Q}. \tag{5}$$

Если добавить в систему (2) управление $u = u(\tau) \in \mathcal{P}(\tau)$, то для полученной системы

$$\dot{x}(\tau) = u + v, \quad \tau \in [t_0, t_1],$$

множество разрешимости (альтернированная сумма с коррекциями управления в моменты времени ϑ_k) выглядит более сложным, но схожим образом (см. [3]):

$$\mathbf{W}[\vartheta_k] = \mathbf{W}(\vartheta_k, \vartheta_{k-1}, \mathbf{W}[\vartheta_{k-1}]) =$$

$$= \left(\left(\left(M + \int_{\vartheta_1}^{t_1} - \mathcal{P}(\tau) \, d\tau \right) - \int_{\vartheta_1}^{t_1} \mathcal{Q}(\tau) \, d\tau \right) \dots + \int_{\vartheta_k}^{\vartheta_{k-1}} - \mathcal{P}(\tau) \, d\tau \right) - \int_{\vartheta_k}^{\vartheta_{k-1}} \mathcal{Q}(\tau) \, d\tau.$$

Здесь $\mathcal{P}(\tau)$ – задающее поточечные ограничения на управление многозначное отображение, непрерывное по $\tau \in [t_0, t_1]$, принимающее выпуклые компактные значения.

Пусть A, B, C — произвольные множества пространства \mathbb{R}^n . Рассмотрим некоторые свойства геометрической разности, которые можно вывести непосредственно из определений алгебраической суммы и геометрической разности множеств.

- 1. Если $B \subseteq C$ и $B \doteq A \neq \emptyset$, то $C \doteq A \neq \emptyset$ и $B \doteq A \subseteq C \doteq A$.
- 2. Если $A \subseteq B$ и $C B \neq \emptyset$, то $C A \neq \emptyset$ и $C B \subseteq C A$.
- 3. $A \subseteq (A+B) B$.

Для доказательства достаточно заметить, что для любого $a \in A$ выполняется $a+B \subseteq A+B$ и далее воспользоваться определением геометрической разности множеств.

- 4. Если $A \doteq B \neq \emptyset$, то $(A \doteq B) + B \subseteq A$.
- 5. Если $A \doteq B \neq \emptyset$, то $B \subseteq A \doteq (A \doteq B)$.

Из свойств 1 и 4 имеем

$$((A - B) + B) - (A - B) \subseteq A - (A - B).$$

Из свойства 3 получаем $B \subseteq A \div (A \div B)$.

6. При условиях $A \dot{-} B \neq \emptyset$, $A \dot{-} (A \dot{-} B) \neq \emptyset$, $A \dot{-} (A \dot{-} (A \dot{-} B)) \neq \emptyset$ выполняется равенство

$$A \dot{-} (A \dot{-} (A \dot{-} B)) = A \dot{-} B.$$

С одной стороны, из свойства 5 получаем, что $A \doteq (A \doteq (A \doteq B)) \supseteq A \doteq B$, а с другой — из свойства 5 с применением свойства 2 имеем

$$B \subseteq A - (A - B) \implies A - B \supseteq A - (A - (A - B)).$$

7.
$$(A - B) - C = A - (B + C)$$
 (cm. [8, c. 23]).

Выпуклое компактное множество разрешимости $\mathbf{W}[\vartheta_j]$ может быть задано при помощи своей опорной функции $\rho(l|\mathbf{W}[\vartheta_j]),\ l\in\mathbb{R}^n$. Известно [9, с. 45–46], что опорная функция геометрической разности множеств A и B вычисляется следующим образом:

$$\rho(l|A - B) = \operatorname{conv}(\rho(l|A) - \rho(l|B)),$$

где conv — операция овыпукления (построения выпуклой оболочки) функции [10, с. 53].

Будем далее считать выполненным следующее предположение, обычно используемое при построении альтернированных интегралов (см. подробнее в [3]).

Предположение. Существует непрерывная функция r(t) > 0, $t \in [t_0, t_1]$, для которой при любом рассматриваемом разбиении Σ выполнено условие

$$\mathbf{W}(\vartheta_j) \dot{-} \mathcal{B}_{r(\vartheta_j)}(0) \neq \emptyset, \quad j = 0, 1, \dots, k.$$

 $Отсюда, в частности, следует, что множества разрешимости <math>\mathbf{W}(\vartheta_i)$ не пусты.

Здесь $\mathcal{B}_r(0)$ — замкнутый шар радиуса r с нулевым центром, построенный с использованием евклидовой нормы в пространстве \mathbb{R}^n .

При подсчёте опорной функции множеств $\mathbf{W}[\vartheta_k]$ из (4) требуется вычисление опорной функции геометрической разности выпуклых компактов, для чего необходимо овыпукление разности опорных функций. Данная операция является достаточно затратной с точки зрения вычислений.

Введём функцию цены

$$\mathcal{V}(t,x) = \max_{x(\cdot)} \{ d(x(t_1), M) \colon x(\cdot) \in \mathcal{X}(\cdot) \},$$

где $\mathcal{X}(\cdot)$ — множество решений задачи $\dot{x} \in \mathcal{Q}(\tau)$, $x(t_0) = x$, $\tau \in [t_0, t_1]$; d(x, M) — евклидово расстояние от точки x до множества M. В точках дифференцируемости $\mathcal{V}(t, x)$ удовлетворяет уравнению Гамильтона—Якоби—Беллмана (см. [5, с. 11–13])

$$\frac{\partial \mathcal{V}}{\partial t} + \max_{v \in \mathcal{Q}(\tau)} \left\langle \frac{\partial \mathcal{V}}{\partial x}, v \right\rangle = 0$$

и краевому условию

$$\mathcal{V}(t_1, x) = d(x, M).$$

Рассмотрим также функцию $V(t,x) = d(x,\mathbf{W}[t])$. В работе [6] показано, что уравнение Гамильтона–Якоби–Беллмана для V(t,x) не выполнено даже в точках дифференцируемости этой функции.

2. МОДИФИКАЦИЯ ЗАДАЧИ

Рассмотрим вспомогательные конструкции, которые (при дополнительных предположениях) позволяют описать множества разрешимости $\mathbf{W}[\vartheta_j]$ без использования операции овыпукления разности опорных функций.

Определение 3 [8, с. 324]. Пусть M — выпуклое замкнутое множество в пространстве \mathbb{R}^n . Множество M называется *порожедающим*, если для любого непустого множества A, представимого в виде

$$A = \bigcap_{x \in X} (M+x) \tag{6}$$

для некоторого множества сдвигов $X \subset \mathbb{R}^n$, существует выпуклое замкнутое множество B такое, что $\overline{A+B}=M$. Всякое непустое множество A из этого определения называется M-сильно выпуклым множеством.

Для порождающего множества M верно равенство

$$(M \dot{-} Y) + (M \dot{-} (M \dot{-} Y)) = M,$$

где Y = -X из (6).

Определение 4. Пусть $M \subseteq \mathbb{R}^n$ — выпуклое замкнутое множество, Q — такое множество, что $M \doteq Q \neq \emptyset$. Множество $\mathrm{str} \, \mathrm{co}_M \, Q = M \doteq (M \doteq Q)$ называется M-сильно выпуклой оболочкой множества Q.

Определение 5. *Хаусдорфово расстояние* между компактными множествами A и B пространства \mathbb{R}^n определяется по формуле

$$h(A,B) = \inf_{r>0} \{ A \subseteq B + \mathcal{B}_r(0), B \subseteq A + \mathcal{B}_r(0) \}.$$

Определение 6. Пусть M — выпуклый компакт в пространстве \mathbb{R}^n , Q — произвольное множество. Выпуклый компакт \hat{Q} называется *предельной М-сильно выпуклой оболочкой Q*, если

$$\lim_{\sigma \to +0} h(\hat{Q}, \sigma^{-1} \operatorname{str} \operatorname{co}_M \sigma Q) = 0.$$

Предельную M-сильно выпуклую оболочку множества Q обозначим $\limsup \operatorname{co}_M Q$.

Для дальнейшего рассмотрения нам потребуются свойства, позволяющие сравнивать между собой несколько сильно выпуклых оболочек множеств.

Теорема 1. 1. Пусть M_1 , M_2 , Q- выпуклые замкнутые множества, удовлетворяющие следующим условиям: int dom $\rho(l \mid M_1) \neq \emptyset$, $M_1 + (M_2 - M_1) = M_2$, $M_1 - Q \neq \emptyset$. Тогда

$$Q \subseteq \operatorname{str} \operatorname{co}_{M_2} Q \subseteq \operatorname{str} \operatorname{co}_{M_1} Q.$$

2. Пусть M_1 , M_2 — порождающие множества, M_1+M_2 — замкнутое множество, Q_1 , Q_2 — такие множества, что $M_i \dot{-} Q_i \neq \emptyset$, i=1,2. Тогда

$$\operatorname{str} \operatorname{co}_{M_1+M_2}(Q_1+Q_2) \subseteq \operatorname{str} \operatorname{co}_{M_1} Q_1 + \operatorname{str} \operatorname{co}_{M_2} Q_2.$$

Доказательство теоремы см. в [8, с. 355–356].

Теорема 2 (теорема существования). Пусть M и Q — выпуклые компакты в пространстве \mathbb{R}^n и $0 \in Q$. Пусть существует такое число $\sigma_0 > 0$, что $M \dot{-} \sigma_0 Q \neq \emptyset$. Тогда существует предельная M-сильно выпуклая оболочка Q. При этом выполняются вложения

$$Q \subseteq \lim \operatorname{str} \operatorname{co}_M Q \subseteq \sigma^{-1} \operatorname{str} \operatorname{co}_M \sigma Q$$
 для любого $\sigma \in (0, \sigma_0]$.

Заметим, что если $0 \in Q$, то для любого $\sigma \in (0, \sigma_0)$ справедливо $\sigma Q \subset \sigma_0 Q$, и значит, согласно свойству 2 из п. 1, $M \dot{-} \sigma Q \neq \emptyset$.

Из п. 1 теоремы 1 следует, что для любого $\sigma \in (0, \sigma_0)$ $Q \subseteq \sigma^{-1} \operatorname{str} \operatorname{co}_M \sigma Q$.

Далее справедливость утверждения теоремы 2 следует из двух следующих лемм.

Лемма 1. Многозначное отображение $G(\sigma) = \sigma^{-1} \operatorname{str} \operatorname{co}_M \sigma Q$ при $\sigma \in (0, \sigma_0]$ имеет непустые выпуклые компактные значения и является неубывающим по вложению, т.е. $G(\sigma_1) \subseteq G(\sigma_2)$ при $0 < \sigma_1 < \sigma_2 \leqslant \sigma_0$.

Доказательство. По определению М-сильно выпуклой оболочки

$$G(\sigma) = \sigma^{-1} \operatorname{str} \operatorname{co}_M \sigma Q = \operatorname{str} \operatorname{co}_{\sigma^{-1}M} Q.$$

Из свойства 4 геометрической разности множеств следует, что

$$(\sigma_1^{-1}M \dot{-} \sigma_2^{-1}M) + \sigma_2^{-1}M \subseteq \sigma_1^{-1}M.$$

Из выпуклости M следует, что для любых $x,y\in M$ $(1-\sigma_1(\sigma_2)^{-1})x+\sigma_1(\sigma_2)^{-1}y\in M,$ а значит, $(\sigma_1^{-1}-\sigma_2^{-1})x+(\sigma_2^{-1})y\in\sigma_1^{-1}M.$ Отсюда вытекает, что $(\sigma_1^{-1}-\sigma_2^{-1})x+(\sigma_2^{-1})M\subseteq\sigma_1^{-1}M,$ и потому $(\sigma_1^{-1}-\sigma_2^{-1})x\in\sigma_1^{-1}M\dot-(\sigma_2^{-1})M.$ Тем более выполнено включение

$$\sigma_1^{-1}M \subseteq (\sigma_1^{-1}M - \sigma_2^{-1}M) + \sigma_2^{-1}M.$$

Объединяя полученные вложения, получаем равенство

$$\sigma_1^{-1}M = (\sigma_1^{-1}M \div \sigma_2^{-1}M) + \sigma_2^{-1}M.$$

Отсюда в силу п. 1 теоремы 1 получаем утверждение леммы.

Лемма 2. Пусть $\{A_n\}_{n=1}^{\infty}$ — последовательность непустых выпуклых компактов в пространстве \mathbb{R}^n , невозрастающая по включению: $A_{n+1} \subseteq A_n$, $n \in \mathbb{N}$. Тогда множество $\bar{A} = \bigcap_{n=1}^{\infty} A_n$ является непустым выпуклым компактом и совпадает с хаусдорфовым пределом последовательности A_n :

$$\lim_{n\to\infty} h(\bar{A}, A_n) = 0.$$

Доказательство. Покажем, что \bar{A} является непустым множеством. Возьмём последовательность векторов $x_n \in A_n$. В силу компактности множества A_1 из этой последовательности можно выделить сходящуюся подпоследовательность $\{\bar{x}_n\}_{n=1}^{\infty}$ с предельной точкой \bar{x} . По построению \bar{x} принадлежит всем множествам $A_n, n \in \mathbb{N}$. Таким образом, $\bar{x} \in \bar{A}$.

Расстояние $h_n = h(\bar{A}, A_n)$ убывает с ростом n в силу монотонности последовательности A_n . Пусть предел h_n отличен от нуля, т.е. $h(\bar{A}, A_n) \geqslant \varepsilon > 0$, $n \in \mathbb{N}$. Тогда существует последовательность векторов $x_n \in A_n$, для которых $d(x_n, \bar{A}) \geqslant \varepsilon$ ($d(x_n, \bar{A})$ – евклидово расстояние от точки x_n до множества \bar{A}). В силу компактности множества A_1 у последовательности $\{x_n\}_{n=1}^{\infty}$ существует предельная точка \bar{x} , которая должна принадлежать любому из множеств A_n . Следовательно, $\bar{x} \in \bar{A}$, но при этом из непрерывности расстояния имеем $d(\bar{x}, \bar{A}) \geqslant \varepsilon > 0$. Полученное противоречие означает, что $\lim_{n\to\infty} h(\bar{A}, A_n) = 0$. Лемма доказана.

Ниже будет показано, что исходная задача нахождения множества разрешимости для системы (2) с ограничением (3) в случае фазового пространства \mathbb{R}^2 может быть сведена к задаче с модифицированным множеством-помехой

$$\hat{\mathcal{Q}}(\tau) = \lim \operatorname{str} \operatorname{co}_{M - \tau \mathcal{Q}} \mathcal{Q}, \quad \tau \in [0, t], \tag{7}$$

причём множество разрешимости этой задачи совпадает с $\mathbf{W}[t]$ из (4). Основные результаты сформулированы далее в виде теорем 3, 5, 6, для доказательства которых потребуются вспомогательные леммы.

Лемма 3. Пусть $M \doteq Q \neq \emptyset$. Тогда

- 1) str co_M $Q Q = \{0\};$
- 2) $\operatorname{str} \operatorname{co}_{\operatorname{str} \operatorname{co}_M Q} Q = \operatorname{str} \operatorname{co}_M Q$.

Доказательство. 1. Из определения M-сильно выпуклой оболочки множества Q получаем

$$(\operatorname{str} \operatorname{co}_M Q) \dot{-} Q = (M \dot{-} (M \dot{-} Q)) \dot{-} Q = M \dot{-} ((M \dot{-} Q) + Q) = (M \dot{-} Q) \dot{-} (M \dot{-} Q) = \{0\}.$$

Здесь дважды использовано свойство 7 геометрической разности множеств.

2. Также из определения M-сильно выпуклой оболочки имеем

$$\operatorname{str} \operatorname{co}_{\operatorname{str} \operatorname{co}_M Q} \, Q = \operatorname{str} \operatorname{co}_M Q \, \dot{-} \, (\operatorname{str} \operatorname{co}_M Q \, \dot{-} \, Q) = (\operatorname{str} \operatorname{co}_M Q) \, \dot{-} \, \{0\} = \operatorname{str} \operatorname{co}_M Q.$$

Лемма 4. Пусть M- порождающее множество в пространстве \mathbb{R}^n , Q_1 , Q_2- такие множества, что $M \dot{-} Q_1 \neq \emptyset$, $(M \dot{-} Q_1) \dot{-} Q_2 \neq \emptyset$. Тогда

$$\operatorname{str} \operatorname{co}_{M}(Q_{1} + Q_{2}) = \operatorname{str} \operatorname{co}_{M} Q_{1} + \operatorname{str} \operatorname{co}_{M - Q_{1}} Q_{2}. \tag{8}$$

Доказательство. Из определения порождающего множества получаем, что для множества Q_1 такого, что $M \,\dot{-}\, Q_1 \neq \emptyset$, выполнено равенство

$$M = (M - Q_1) + \operatorname{str} \operatorname{co}_M Q_1$$
.

Тогда в силу п. 2 теоремы 1 и п. 2) леммы 3 имеем

$$\operatorname{str} \operatorname{co}_{M}(Q_{1} + Q_{2}) \subseteq \operatorname{str} \operatorname{co}_{\operatorname{str} \operatorname{co}_{M} Q_{1}} Q_{1} + \operatorname{str} \operatorname{co}_{M - Q_{1}} Q_{2} = \operatorname{str} \operatorname{co}_{M} Q_{1} + \operatorname{str} \operatorname{co}_{M - Q_{1}} Q_{2}. \tag{9}$$

С другой стороны,

$$(\operatorname{str} \operatorname{co}_{M}(Q_{1} + Q_{2})) \dot{-} \operatorname{str} \operatorname{co}_{M} Q_{1} = (M \dot{-} (M \dot{-} (Q_{1} + Q_{2}))) \dot{-} \operatorname{str} \operatorname{co}_{M} Q_{1} =$$

$$= (M \dot{-} \operatorname{str} \operatorname{co}_{M} Q_{1}) \dot{-} (M \dot{-} (Q_{1} + Q_{2})) = (M \dot{-} Q_{1}) \dot{-} ((M \dot{-} Q_{1}) \dot{-} Q_{2}) = \operatorname{str} \operatorname{co}_{M \dot{-} Q_{1}} Q_{2}.$$

Здесь было дважды использовано свойство 7 геометрической разности множеств — аналогично доказательству п. 1) леммы 3. Используем теперь свойство 4 геометрической разности множеств:

$$\operatorname{str} \operatorname{co}_{M}(Q_{1}+Q_{2}) \supseteq (\operatorname{str} \operatorname{co}_{M}(Q_{1}+Q_{2})) - \operatorname{str} \operatorname{co}_{M} Q_{1} + \operatorname{str} \operatorname{co}_{M} Q_{1} = \operatorname{str} \operatorname{co}_{M-Q_{1}} Q_{2} + \operatorname{str} \operatorname{co}_{M} Q_{1}.$$
(10)

Объединяя (9) и (10), получаем требуемое равенство (8). Лемма доказана.

Лемма 5. Пусть M- выпуклое компактное множество в пространстве \mathbb{R}^n , множество $Q \in \mathbb{R}^n$ такое, что $M \doteq \sigma_0 Q \neq \emptyset$, $\sigma_0 > 0$. Тогда

$$h(\operatorname{str} \operatorname{co}_M \sigma Q, \sigma \operatorname{lim} \operatorname{str} \operatorname{co}_M Q) = \bar{o}(\sigma), \quad \sigma \to +0.$$

Доказательство. Из определения предельной сильно выпуклой оболочки имеем

$$\lim_{\sigma \to 0} h(\limsup \operatorname{co}_M Q, \, \sigma^{-1} \operatorname{str} \operatorname{co}_M \sigma Q) = 0.$$

Воспользовавшись свойством расстояния Хаусдорфа [8, с. 35]

$$h(\alpha A, \alpha B) \leqslant \alpha h(A, B)$$
 для любого $\alpha > 0$.

получаем, что

$$h(\operatorname{str} \operatorname{co}_M \sigma Q, \, \sigma \operatorname{lim} \operatorname{str} \operatorname{co}_M Q) \leqslant \sigma h(\sigma^{-1} \operatorname{str} \operatorname{co}_M \sigma Q, \operatorname{lim} \operatorname{str} \operatorname{co}_M Q) = \bar{o}(\sigma).$$

Лемма доказана.

Теорема 3. Пусть для любого $\tau \in [0,t]$ множество $M \div (t-\tau) \mathcal{Q}$ является порождающим и существует предельная M-сильно выпуклая оболочка $\hat{\mathcal{Q}}_t(\tau) = \limsup \operatorname{com}_{t-\tau} \mathcal{Q} \mathcal{Q}$. Тогда отображение $\hat{\mathcal{Q}}_t(\tau) \colon [0,t] \to \operatorname{conv} \mathbb{R}^n$ полунепрерывно сверху и интегрируемо, а его интеграл по указанному отрезку является выпуклым компактом.

Доказательство. Из лемм 1 и 2 следует, что для каждого фиксированного $\tau \in [0,t]$ множество $\hat{\mathcal{Q}}_t(\tau)$ является выпуклым компактом (как пересечение семейства выпуклых компактов).

По аналогии с леммой 1 введём следующее обозначение:

$$G(\sigma, \tau) = \sigma^{-1} \operatorname{str} \operatorname{co}_{M \dot{-} (t - \tau) \mathcal{Q}} \sigma \mathcal{Q}.$$

Заметим, что так как множество $M \dot{-} (t-\tau)Q$ порождающее, то для любого $l \in \mathbb{R}^n$

$$\begin{split} \rho(l|\operatorname{str}\operatorname{co}_{M\dot{-}(t-\tau)\mathcal{Q}}\sigma\mathcal{Q}) &= \rho(l|M\dot{-}(t-\tau)\mathcal{Q}) - \rho(l|(M\dot{-}(t-\tau)\mathcal{Q})\dot{-}\sigma\mathcal{Q}) = \\ &= \rho(l|M\dot{-}(t-\tau)\mathcal{Q}) - \rho(l|M\dot{-}(t-\tau+\sigma)\mathcal{Q}). \end{split}$$

При любых фиксированных $\sigma > 0$, $\tau, \tau + \Delta \tau \in [0, t]$ справедлива оценка

$$\begin{split} h(G(\sigma,\tau+\Delta\tau),G(\sigma,\tau)) &\leqslant \sigma^{-1}h(\operatorname{str}\operatorname{co}_{M \dot{-}(t-\tau+\Delta\tau)\mathcal{Q}}\sigma\mathcal{Q},\operatorname{str}\operatorname{co}_{M \dot{-}(t-\tau)\mathcal{Q}}\sigma\mathcal{Q}) = \\ &= \sigma^{-1}\sup_{\|l\| \leqslant 1} |\rho(l|\operatorname{str}\operatorname{co}_{M \dot{-}(t-\tau+\Delta\tau)\mathcal{Q}}\sigma\mathcal{Q}) - \rho(l|\operatorname{str}\operatorname{co}_{M \dot{-}(t-\tau)\mathcal{Q}}\sigma\mathcal{Q})| = \\ &= \sigma^{-1}\sup_{\|l\| \leqslant 1} |\rho(l|M \dot{-}(t-\tau+\Delta\tau)\mathcal{Q}) - \rho(l|M \dot{-}(t-\tau+\Delta\tau+\sigma)\mathcal{Q}) - \\ &- \rho(l|M \dot{-}(t-\tau)\mathcal{Q}) + \rho(l|M \dot{-}(t-\tau+\sigma)\mathcal{Q})| \leqslant \\ &\leqslant \sigma^{-1}\sup_{\|l\| \leqslant 1} |\rho(l|M \dot{-}(t-\tau+\Delta\tau)\mathcal{Q}) - \rho(l|M \dot{-}(t-\tau)\mathcal{Q})| + \\ &+ \sigma^{-1}\sup_{\|l\| \leqslant 1} |\rho(l|M \dot{-}(t-\tau+\sigma)\mathcal{Q}) - \rho(l|M \dot{-}(t-\tau+\Delta\tau+\sigma)\mathcal{Q})| = \\ &= \sigma^{-1}h(M \dot{-}(t-\tau+\Delta\tau)\mathcal{Q}, M \dot{-}(t-\tau)\mathcal{Q}) + \sigma^{-1}h(M \dot{-}(t-\tau+\sigma)\mathcal{Q}, M \dot{-}(t-\tau+\Delta\tau+\sigma)\mathcal{Q}). \end{split}$$

С учётом теоремы 4.4.4 из [8, с. 358] имеем

$$\begin{split} h(M \,\dot{-}\, (t - \tau + \Delta \tau) \mathcal{Q}, M \,\dot{-}\, (t - \tau) \mathcal{Q}) \leqslant Lh((t - \tau + \Delta \tau) \mathcal{Q}, (t - \tau) \mathcal{Q}) \leqslant \tilde{L} |\Delta \tau|, \\ h(M \,\dot{-}\, (t - \tau + \sigma) \mathcal{Q}, M \,\dot{-}\, (t - \tau + \Delta \tau + \sigma) \mathcal{Q}) \leqslant Lh((t - \tau + \sigma + \Delta \tau) \mathcal{Q}, (t - \tau + \sigma) \mathcal{Q}) \leqslant \tilde{L} |\Delta \tau|. \end{split}$$

Здесь $L=1+{\rm diam}(M) \left({\rm min}_{t\in[t_0,t_1]} \, r(t) \right)^{-1}>0$, $\tilde{L}=L\,{\rm diam}(\mathcal{Q})$, а функция r(t) была определена в сформулированном выше предположении. Объединяя полученные неравенства, получаем, что многозначное отображение $G(\sigma,\tau)$ непрерывно в смысле метрики Хаусдорфа (h-непрерывно) по переменной τ при любом фиксированном значении параметра $\sigma>0$.

Из леммы 1 следует, что

$$\hat{Q}_t(\tau) = \bigcap_{\sigma \in (0,\sigma_0)} G(\sigma,\tau).$$

Так как $G(\sigma,\tau)$ при любом фиксированном σ удовлетворяет условию Липшица по переменной τ с постоянной $2\sigma^{-1}\tilde{L}$, то существует число C>0 такое, что

$$\operatorname{diam}(\hat{\mathcal{Q}}(\tau)) \leqslant \operatorname{diam}(G(\sigma,\tau)) \leqslant C$$

для любого $\tau \in [0,t]$ и для некоторого фиксированного $\sigma \in (0,\sigma_0)$. Используя теперь теорему 2.3.4 из [11, с. 121–122] и следствие из неё, заключаем, что многозначное отображение $\hat{Q}_t(\tau)$ полунепрерывно сверху по τ , откуда следует его измеримость [11, с. 130]. Согласно теореме 1 из [12, с. 60] многозначное отображение $\hat{Q}_t(\tau)$ интегрируемо на отрезке [0, t]. Более того, из теоремы Ляпунова о векторных мерах [13] вытекает, что многозначный интеграл $\int_0^t \hat{Q}_t(\tau) d\tau$ является выпуклым компактным множеством.

Поскольку дальнейшие построения существенно опираются на требование, чтобы рассматриваемое множество M было порождающим, то необходимо упомянуть следующий важный результат относительно достаточно широкого класса таких множеств. Справедлива

Теорема 4 [8, с. 336–339]. В пространстве \mathbb{R}^2 любое непустое выпуклое замкнутое множество является порождающим.

Следующая теорема позволяет перейти от задачи (2) с ограничением $v(\tau) \in \mathcal{Q}$ и множеством разрешимости (4) к эквивалентному классу задач (см. теорему 6).

Теорема 5. Пусть выполнены условия теоремы 3 для некоторого значения t > 0, для которого $M - tQ \neq \emptyset$. Тогда выполняется равенство

$$\operatorname{str} \operatorname{co}_{M} t \mathcal{Q} = \int_{0}^{t} \lim \operatorname{str} \operatorname{co}_{M - \tau \mathcal{Q}} \mathcal{Q} d\tau.$$

Доказательство. Разобьём отрезок [0,t] на N частей с шагом дискретизации $\xi = t/N$. Используя лемму 4, представим множество $\operatorname{str} \operatorname{co}_M t \mathcal{Q}$ в виде суммы сильно выпуклых оболочек:

$$\operatorname{str} \operatorname{co}_{M} t \mathcal{Q} = \operatorname{str} \operatorname{co}_{M} N \xi \mathcal{Q} = \operatorname{str} \operatorname{co}_{M} \xi \mathcal{Q} + \operatorname{str} \operatorname{co}_{M - \xi \mathcal{Q}} (N - 1) \xi \mathcal{Q} =$$

$$=\operatorname{str}\operatorname{co}_{M}\xi\mathcal{Q}+\operatorname{str}\operatorname{co}_{M-\xi\mathcal{Q}}\xi\mathcal{Q}+\operatorname{str}\operatorname{co}_{M-2\xi\mathcal{Q}}(N-2)\xi\mathcal{Q}=\sum_{n=0}^{N-1}\operatorname{str}\operatorname{co}_{M-n\xi\mathcal{Q}}\xi\mathcal{Q}.$$

В последнем выражении перейдём к сумме предельных сильно выпуклых оболочек с помощью леммы 5:

$$\sum_{n=0}^{N-1} \operatorname{str} \operatorname{co}_{M \dot{-} n \xi \mathcal{Q}} \xi \mathcal{Q} = \sum_{n=0}^{N-1} \xi \lim \operatorname{str} \operatorname{co}_{M \dot{-} n \xi \mathcal{Q}} \mathcal{Q} + \bar{o}(N\xi) \underset{\xi \to 0}{\to} \int_{0}^{t} \lim \operatorname{str} \operatorname{co}_{M \dot{-} \tau \mathcal{Q}} \mathcal{Q} d\tau.$$

Существование интеграла следует из теоремы 3. Теорема доказана.

Следствие 1. Пусть M- компактное порождающее множество, Q- такое множество, что существует t>0, для которого $M \div t Q \neq \emptyset$. Тогда

$$M - tQ = M - \int_{0}^{t} \lim \operatorname{str} \operatorname{co}_{M - \tau Q} Q d\tau.$$

Для опорных функций справедливо соотношение

$$\rho(l \mid M - tQ) = \rho(l \mid M) - \int_{0}^{t} \rho(l \mid \limsup \operatorname{co}_{M - \tau Q} Q) d\tau.$$

Доказательство. Используем теорему 5 и определение М-сильно выпуклой оболочки:

$$M \doteq \int\limits_0^t \lim \operatorname{str} \operatorname{co}_{M \,\dot{-}\, \tau \,\mathcal{Q}} \,\mathcal{Q} \,d\tau = M \,\dot{-}\, \operatorname{str} \operatorname{co}_M t \,\mathcal{Q} = M \,\dot{-}\, \big(M \,\dot{-}\, \big(M \,\dot{-}\, t \,\mathcal{Q}\big)\big).$$

Выражение в правой части равно M - tQ (свойство 6 геометрической разности множеств). Так как множество M порождающее, то $(M - tQ) + \operatorname{str} \operatorname{co}_M tQ = M$. Значит, для опорных функций выполняется следующее равенство:

$$\rho(l\mid M) - \rho(l\mid \operatorname{str}\operatorname{co}_M t\mathcal{Q}) = \rho(l\mid M \div t\mathcal{Q}),$$

причём по теореме 5

$$\rho(l \mid \operatorname{str} \operatorname{co}_M t \mathcal{Q}) = \int_0^t \rho(l \mid \lim \operatorname{str} \operatorname{co}_{M - \tau \mathcal{Q}} \mathcal{Q}) d\tau.$$

Замечание 1. Результаты теоремы 5 и следствия 1 останутся справедливыми, если заменить отрезок [0,t] на $[t,t_1]$. В этом случае

$$\operatorname{str}\operatorname{co}_{M}(t_{1}-t)\mathcal{Q}=\int_{t}^{t_{1}}\operatorname{lim}\operatorname{str}\operatorname{co}_{M\dot{-}(t_{1}-\tau)\mathcal{Q}}\mathcal{Q}d\tau,$$

$$M\dot{-}(t_{1}-t)\mathcal{Q}=M\dot{-}\int_{t}^{t_{1}}\operatorname{lim}\operatorname{str}\operatorname{co}_{M\dot{-}(t_{1}-\tau)\mathcal{Q}}\mathcal{Q}d\tau,$$

$$\rho(l\mid M\dot{-}(t_{1}-t)\mathcal{Q})=\rho(l\mid M)-\int_{t}^{t_{1}}\rho(l\mid \operatorname{lim}\operatorname{str}\operatorname{co}_{M\dot{-}(t_{1}-\tau)\mathcal{Q}}\mathcal{Q})d\tau.$$

Теорема 6. Пусть M, Q — выпуклые компактные множества в \mathbb{R}^2 . Предположим, что на временном отрезке $\tau \in [t, t_1]$ определена предельная сильно выпуклая оболочка $\hat{Q}_{t_1}(\tau)$. Тогда множество разрешимости в момент времени t может быть найдено по формуле

$$\mathbf{W}[t] = M - \int_{t}^{t_1} \lim \operatorname{str} \operatorname{co}_{M - (t_1 - \tau) \mathcal{Q}} \mathcal{Q} d\tau.$$

Для опорной функции множества разрешимости верно следующее выражение:

$$\rho(l|\mathbf{W}[t]) = \rho(l|M) - \rho\left(l \mid \int_{t}^{t_1} \lim \operatorname{str} \operatorname{co}_{M - (t_1 - \tau)Q} Q \, d\tau\right). \tag{11}$$

Доказательство. Из теоремы 4 следует, что множество M является порождающим. Далее необходимо воспользоваться формулой (5), теоремой 5 и следствием 1 (замечанием 1).

Таким образом, для линейной системы (2) с ограничением $v \in \mathcal{Q}$ выведен эквивалентный класс задач с той же трубкой разрешимости $\mathbf{W}[t]$, $t \in [t_0, t_1]$. При построении последней не требуется прибегать к операции овыпукления геометрической разности множеств. Описаны свойства множеств этого класса задач.

3. МОДИФИКАЦИЯ ЗАДАЧИ ДЛЯ СЛУЧАЯ ПОМЕХИ ИЗ МНОЖЕСТВА Q(t)

Пусть теперь множество Q(t), задающее поточечные ограничения для помехи v(t), зависит от t. Более того, будем предполагать, что при любом фиксированном векторе $l \in \mathbb{R}^n$ опорная функция $\rho(l|Q(t))$ липшицева по t с некоторой константой $\hat{L} > 0$, причём \hat{L} не зависит от l и $t \in [t_0, t_1]$. Тогда

$$h(\mathcal{Q}(t+\Delta t), \mathcal{Q}(t)) \leqslant \hat{L}\Delta t,$$

многозначное отображение Q(t) интегрируемо на отрезке $[t_0, t_1]$ и

$$h\left(\sigma \mathcal{Q}(t), \int_{t}^{t+\sigma} \mathcal{Q}(\tau) d\tau\right) \leqslant \frac{\hat{L}\sigma^2}{2} = O(\sigma^2).$$

Используя теорему 4.4.4 из $[8,\ c.\ 358]$ и предположение, получаем следующую оценку:

$$h\left(\operatorname{str}\operatorname{co}_{M}\int_{t}^{t+\sigma}\mathcal{Q}(\tau)\,d\tau,\sigma^{-1}\operatorname{str}\operatorname{co}_{M}\sigma\mathcal{Q}(t)\right)\leqslant L\,h\left(\int_{t}^{t+\sigma}\mathcal{Q}(\tau)\,d\tau,\sigma\mathcal{Q}(t)\right)=O(\sigma^{2}),\tag{12}$$

где постоянная L>0 та же, что была ранее введена при доказательстве теоремы 3.

Теорема 7. Предположим, что для любого $\tau \in [0,t]$ множество $M \doteq \int_{\tau}^{t} \mathcal{Q}(s) ds$ является порожедающим и существует предельная M-сильно выпуклая оболочка

$$\hat{\mathcal{Q}}_t(\tau) = \lim \operatorname{str} \operatorname{co}_{M - \int_{-}^t \mathcal{Q}(s) \, ds} \mathcal{Q}(\tau).$$

Тогда отображение $\hat{\mathcal{Q}}_t(\tau)$: $[0,t] \to \operatorname{conv} \mathbb{R}^n$ является полунепрерывным сверху, интегрируемым, а его интеграл по указанному отрезку будет выпуклым компактом.

Доказательство. Как и в теореме 3, получаем, что для каждого фиксированного $\tau \in [0, t]$ множество $\hat{\mathcal{Q}}_t(\tau)$ является выпуклым компактом. Введём следующее обозначение:

$$G(\sigma, \tau) = \sigma^{-1} \operatorname{str} \operatorname{co}_{M - \int_{\tau}^{t} \mathcal{Q}(s) ds} \sigma \mathcal{Q}(\tau).$$

Так как множество $M \doteq \int_{\tau}^{t} \mathcal{Q}(s) ds$ является порождающим, то для любого $l \in \mathbb{R}^{n}$

$$\rho(l \mid \operatorname{str} \operatorname{co}_{M \,\dot{-}\, \int_{\tau}^{t} \, \mathcal{Q}(s) \, ds} \, \sigma \, \mathcal{Q}(\tau)) = \rho\bigg(l \, \bigg| \, M \,\dot{-}\, \int\limits_{\tau}^{t} \, \mathcal{Q}(s) \, ds \bigg) \, - \, \rho\bigg(l \, \bigg| \, M \,\dot{-}\, \bigg(\int\limits_{\tau}^{t} \, \mathcal{Q}(s) \, ds \, + \, \sigma \, \mathcal{Q}(\tau)\bigg)\bigg)\bigg).$$

При любых фиксированных $\sigma > 0, \ \tau, \tau + \Delta \tau \in [0,t]$ справедлива оценка

$$\begin{split} h(G(\sigma,\tau+\Delta\tau),G(\sigma,\tau)) &\leqslant \sigma^{-1}h\left(\operatorname{str}\operatorname{co}_{M \doteq \int_{\tau+\Delta\tau}^t \mathcal{Q}(s)\,ds}\sigma\mathcal{Q}(\tau+\Delta\tau),\operatorname{str}\operatorname{co}_{M \doteq \int_{\tau}^t \mathcal{Q}(s)\,ds}\sigma\mathcal{Q}(\tau)\right) = \\ &= \sigma^{-1}\sup_{\|l\|\leqslant 1}\left|\rho\left(l\right|\operatorname{str}\operatorname{co}_{M \doteq \int_{\tau+\Delta\tau}^t \mathcal{Q}(s)\,ds}\sigma\mathcal{Q}(\tau+\Delta\tau)\right) - \rho\left(l\right|\operatorname{str}\operatorname{co}_{M \doteq \int_{\tau}^t \mathcal{Q}(s)\,ds}\sigma\mathcal{Q}(\tau)\right)\right| = \\ &= \sigma^{-1}\sup_{\|l\|\leqslant 1}\left|\rho\left(l\right|M \doteq \int_{\tau+\Delta\tau}^t \mathcal{Q}(s)\,ds\right) - \rho\left(l\right|M \doteq \left(\int_{\tau+\Delta\tau}^t \tau\mathcal{Q}(s)\,ds + \sigma\mathcal{Q}(\tau+\Delta\tau)\right)\right) - \\ &- \rho\left(l\left|M \doteq \int_{\tau}^t \mathcal{Q}(s)\,ds\right) + \rho\left(l\left|M \doteq \left(\int_{\tau}^t \mathcal{Q}(s)\,ds + \sigma\mathcal{Q}(\tau)\right)\right)\right)\right| \leqslant \\ &\leqslant \sigma^{-1}h\left(M \doteq \int_{\tau+\Delta\tau}^t \mathcal{Q}(s)\,ds, M \doteq \int_{\tau}^t \mathcal{Q}(s)\,ds\right) + \\ &+ \sigma^{-1}h\left(M \doteq \left(\int_{\tau+\Delta\tau}^t \mathcal{Q}(s)\,ds + \sigma\mathcal{Q}(\tau+\Delta\tau)\right), M \doteq \left(\int_{\tau}^t \mathcal{Q}(s)\,ds + \sigma\mathcal{Q}(\tau)\right)\right) \leqslant \\ \leqslant \sigma^{-1}Lh\left(\int_{\tau+\Delta\tau}^t \mathcal{Q}(s)\,ds, \int_{\tau}^t \mathcal{Q}(s)\,ds\right) + \sigma^{-1}Lh\left(\int_{\tau+\Delta\tau}^t \mathcal{Q}(s)\,ds + \sigma\mathcal{Q}(\tau+\Delta\tau), \int_{\tau}^t \mathcal{Q}(s)\,ds + \sigma\mathcal{Q}(\tau)\right) \leqslant \\ \leqslant \sigma^{-1}\tilde{L}\Delta\tau + L\hat{L}\Delta\tau. \end{split}$$

Здесь $\tilde{L} = L \max_{\tau \in [0,t]} \operatorname{diam}(\mathcal{Q}(\tau))$, а постоянная L была определена в доказательстве теоремы 3. Таким образом удалось доказать, что функция $G(\sigma,\tau)$ удовлетворяет условию Липшица по переменной τ с константой $2\sigma^{-1}\tilde{L} + L\hat{L}$. Дальнейшее доказательство теоремы полностью совпадает с доказательством теоремы 3.

Теорема 8. Пусть выполнены условия теоремы 7 для некоторого значения t > 0, для которого $M oddot \int_0^t Q(s) ds \neq \emptyset$. Тогда

$$\operatorname{str} \operatorname{co}_{M} \int_{0}^{t} \mathcal{Q}(\tau) d\tau = \int_{0}^{t} \lim \operatorname{str} \operatorname{co}_{M - \int_{\zeta}^{t} \mathcal{Q}(\tau) d\tau} \mathcal{Q}(\zeta) d\zeta.$$

Доказательство. Разобьём отрезок [0,t] на N частей длины $\xi=t/N$. Аналогично доказательству теоремы 5, воспользовавшись леммами 4 и 5, а также оценкой (12), получим соотношение

$$\operatorname{str}\operatorname{co}_{M}\int_{0}^{t}\mathcal{Q}(\tau)d\tau = \operatorname{str}\operatorname{co}_{M}\int_{t-\xi}^{t}\mathcal{Q}(\tau)\,d\tau + \operatorname{str}\operatorname{co}_{M-\int_{t-\xi}^{t}\mathcal{Q}(\tau)\,d\tau}\int_{0}^{t-\xi}\mathcal{Q}(\tau)\,d\tau =$$

$$= \operatorname{str}\operatorname{co}_{M}\int_{t-\xi}^{t}\mathcal{Q}(\tau)\,d\tau + \operatorname{str}\operatorname{co}_{M-\int_{t-\xi}^{t}\mathcal{Q}(\tau)\,d\tau}\int_{t-2\xi}^{t-\xi}\mathcal{Q}(\tau)\,d\tau + \operatorname{str}\operatorname{co}_{M-\int_{t-2\xi}^{t}\mathcal{Q}(\tau)\,d\tau}\int_{t-3\xi}^{t-2\xi}\mathcal{Q}(\tau)\,d\tau + \dots$$

$$\dots + \operatorname{str}\operatorname{co}_{M-\int_{t-(N-1)\xi}^{t}\mathcal{Q}(\tau)\,d\tau}\int_{t-N\xi}^{t-(N-1)\xi}\mathcal{Q}(\tau)\,d\tau = \sum_{n=0}^{N-1}\operatorname{str}\operatorname{co}_{M-\int_{t-n\xi}^{t}\mathcal{Q}(\tau)\,d\tau}\int_{t-(n+1)\xi}^{t-n\xi}\mathcal{Q}(\tau)\,d\tau =$$

$$= \sum_{n=0}^{N-1}\operatorname{str}\operatorname{co}_{M-\int_{t-n\xi}^{t}\mathcal{Q}(\tau)\,d\tau}(\xi\,\mathcal{Q}(t-(n+1)\xi) + O(\xi^{2})) =$$

$$= \sum_{n=0}^{N-1}\xi\operatorname{lim}\operatorname{str}\operatorname{co}_{M-\int_{t-n\xi}^{t}\mathcal{Q}(\tau)\,d\tau}(\mathcal{Q}(t-(n+1)\xi) + O(\xi)) + \bar{o}(N\xi)\underset{\xi\to 0}{\to}$$

$$\xrightarrow{\xi\to 0}\int_{0}^{t}\operatorname{lim}\operatorname{str}\operatorname{co}_{M-\int_{t-s}^{t}\mathcal{Q}(\tau)\,d\tau}\mathcal{Q}(t-s)\,ds = \int_{0}^{t}\operatorname{lim}\operatorname{str}\operatorname{co}_{M-\int_{\xi}^{t}\mathcal{Q}(\tau)\,d\tau}\mathcal{Q}(\xi)\,d\zeta.$$

Теорема доказана.

Следствие 2. Пусть M — компактное порождающее множество, $Q(\tau)$ — многозначное отображение со значениями во множестве выпуклых компактов, опорная функция $\rho(l|Q(\tau))$ которого липшицева по τ . При условии непустоты геометрической разности M и интеграла от отображения на временном отрезке [0,t] справедливо соотношение

$$M - \int_{0}^{t} \mathcal{Q}(\tau) d\tau = M - \int_{0}^{t} \lim \operatorname{str} \operatorname{co}_{M - \int_{\zeta}^{t} \mathcal{Q}(\tau) d\tau} \mathcal{Q}(\zeta) d\zeta.$$

Для опорных функций верно равенство

$$\rho\left(l \mid M \doteq \int_{0}^{t} \mathcal{Q}(\tau)d\tau\right) = \rho(l \mid M) - \int_{0}^{t} \rho\left(l \mid \limsup_{M \doteq \int_{\zeta}^{t} \mathcal{Q}(\tau) d\tau} \mathcal{Q}(\zeta)\right) d\zeta.$$

Доказательство аналогично доказательству следствия 1 к теореме 5.

Замечание 2. Результаты теоремы 8 и следствия 2 останутся справедливыми, если заменить отрезок [0,t] на $[t,t_1]$. В этом случае

$$\begin{split} \operatorname{str}\operatorname{co}_{M} \int_{t}^{t_{1}} \mathcal{Q}(\tau) \, d\tau &= \int_{t}^{t_{1}} \lim \operatorname{str}\operatorname{co}_{M - \int_{s}^{t_{1}} \mathcal{Q}(\tau) \, d\tau} \mathcal{Q}(s) \, ds, \\ M - \int_{t}^{t_{1}} \mathcal{Q}(\tau) \, d\tau &= M - \int_{t}^{t_{1}} \lim \operatorname{str}\operatorname{co}_{M - \int_{s}^{t_{1}} \mathcal{Q}(\tau) \, d\tau} \mathcal{Q}(s) \, ds, \\ \rho \bigg(l \, \bigg| \, M - \int_{t}^{t_{1}} \mathcal{Q}(\tau) \, d\tau \bigg) &= \rho(l \, | \, M) - \int_{t}^{t_{1}} \rho \bigg(l \, \bigg| \, \lim \operatorname{str}\operatorname{co}_{M - \int_{s}^{t_{1}} \mathcal{Q}(\tau) \, d\tau} \mathcal{Q}(s) \bigg) \, ds. \end{split}$$

Теорема 9. Для линейной системы с неопределённостью (2) и ограничением (3) множество разрешимости $\mathbf{W}[t]$ может быть найдено из соотношения

$$\mathbf{W}[t] = M - \int_{t}^{t_1} \lim \operatorname{str} \operatorname{co}_{M - \int_{s}^{t_1} \mathcal{Q}(\tau) d\tau} \mathcal{Q}(s) ds.$$

Для опорной функции этого множества верно следующее выражение:

$$\rho(l \mid \mathbf{W}[t]) = \rho(l \mid M) - \int_{t}^{t_1} \rho\left(l \mid \limsup_{t \to \infty} \operatorname{co}_{M - \int_{s}^{t_1} \mathcal{Q}(\tau) d\tau} \mathcal{Q}(s)\right) ds. \tag{13}$$

Доказательство следует из теоремы 8 и следствия 2.

4. УРАВНЕНИЕ ДЛЯ ФУНКЦИИ ЦЕНЫ В МОДИФИЦИРОВАННОЙ ЗАДАЧЕ

Для системы (2) с ограничением (3) рассмотрим следующую функцию цены:

$$\hat{\mathcal{V}}(t,x) = \max_{v \in \hat{\mathcal{Q}}_{t_1}(\cdot)} d(x(t_1), M).$$

Здесь $d(x(t_1), M)$ — евклидово расстояние до целевого множества в момент времени t_1 , и в каждый момент времени $\tau \in [t, t_1]$ $v(\tau) \in \hat{\mathcal{Q}}_{t_1}(\tau)$. Тогда

$$d(x, M) = \max_{\|l\| \le 1} \{ \langle l, x \rangle - \rho(l|M) \},$$

и, использовав выражение для положения системы в момент времени t, имеем

$$\hat{\mathcal{V}}(t,x) = \max_{v \in \hat{\mathcal{Q}}_{t_1}(\cdot)} \max_{\|l\| \leqslant 1} \left\{ \left\langle l, x + \int_t^{t_1} v(\tau) \, d\tau \right\rangle - \rho(l|M) \right\}.$$

Проводя максимизацию по помехе из расширенного множества $\hat{\mathcal{Q}}_{t_1}(\cdot)$, получаем

$$\begin{split} \hat{\mathcal{V}}(t,x) &= \max_{\|l\| \leqslant 1} \bigg\{ \langle l,x \rangle + \int\limits_{t}^{t_{1}} \rho(l \mid \hat{\mathcal{Q}}_{t_{1}}(\tau)) \, d\tau - \rho(l \mid M) \bigg\} = \\ &= \max_{\|l\| \leqslant 1} \bigg\{ \langle l,x \rangle - \bigg(\rho(l \mid M) - \int\limits_{t}^{t_{1}} \rho(l \mid \hat{\mathcal{Q}}_{t_{1}}(\tau)) \, d\tau \bigg) \bigg\} = \\ &= \max_{\|l\| \leqslant 1} \bigg\{ \langle l,x \rangle - \rho \bigg(l \mid M \dot{-} \int\limits_{t}^{t_{1}} \hat{\mathcal{Q}}_{t_{1}}(\tau) \, d\tau \bigg) \bigg\} = d \bigg(x, M \dot{-} \int\limits_{t}^{t_{1}} \hat{\mathcal{Q}}_{t_{1}}(\tau) \, d\tau \bigg) = d(x, \mathbf{W}[t]). \end{split}$$

Переход от разности опорных функций целевого множества и интеграла от множества $\hat{Q}_{t_1}(\tau)$ к опорной функции геометрической разности множеств выполняется в силу (11), (13). Получаем, что при замене в исходной задаче множества Q(t) на $\hat{Q}_{t_1}(t)$ функция цены равна расстоянию до множества разрешимости в момент времени t.

Следующая теорема даёт уравнение Гамильтона—Якоби—Беллмана с помехой (7), которому удовлетворяет функция расстояния до множества разрешимости.

Теорема 10. Для линейно выпуклой задачи с неопределённостью (2), $\tau \in [t, t_1]$, ограничением $v(\tau) \in \hat{\mathcal{Q}}_{t_1}(\tau)$ ($\hat{\mathcal{Q}}_{t_1}(\tau)$ — непустое компактное множество) в случае \mathbb{R}^2 функция цены

$$V(t,x) = d(x, \mathbf{W}[t])$$

в точках дифференцируемости является решением уравнения

$$\frac{\partial V}{\partial t}(\tau, x) + \max_{v \in \hat{\mathcal{Q}}_{t_1}(\tau)} \left\langle \frac{\partial V}{\partial x}(\tau, x), v \right\rangle = 0, \quad \tau \in [t, t_1],$$

c краевым условием $V(t_1,x)=d(x,M)$.

ЗАКЛЮЧЕНИЕ

Построена модификация задачи разрешимости для линейной системы с неопределённостью, для которой не требуется вычислительно сложная операция овыпукления геометрической разности. Изучен случай фазового пространства \mathbb{R}^2 . Найдены условия, при которых переход к указанной модификации возможен. Выведено уравнение типа Гамильтона–Якоби–Беллмана, которому удовлетворяет расстояние до множества разрешимости. В дальнейших исследованиях предполагается рассмотрение задачи с ненулевым управлением, а также обобщение полученных результатов на случай фазового пространства \mathbb{R}^n при n>2.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект 22-11-00042).

СПИСОК ЛИТЕРАТУРЫ

- 1. Понтрягин, Л.С. О линейных дифференциальных играх. II / Л.С. Понтрягин // Докл. АН СССР. 1967. Т. 175, № 4. С. 910—912.
- 2. Понтрягин, Л.С. Линейные дифференциальные игры преследования / Л.С. Понтрягин // Мат. сб. 1980. Т. 112 (154), N 3 (7). С. 307–330.
- 3. Куржанский, А.Б. Альтернированный интеграл Понтрягина в теории синтеза управлений / А.Б. Куржанский // Тр. Мат. ин-та им. В.А. Стеклова. 1999. Т. 224. С. 234—248.
- 4. Kurzhanski, A.B. Dynamics and Control of Trajectory Tubes / A.B. Kurzhanski, P. Varaiya. Basel : Birkhäuser, 2014. 445 p.
- 5. Fleming W.H. Controlled Markov Processes and Viscosity Solutions / W.H. Fleming, H.M. Soner. New York: Springer, 2006. 429 p.
- 6. Мельникова, А.А. Об одной задаче вычисления множества разрешимости для линейной системы с неопределённостью / А.А. Мельникова, П.А. Точилин // Дифференц. уравнения. 2023. Т. 59, № 11. С. 1533—1540.
- 7. Kurzhanski, A.B. Ellipsoidal Calculus for Estimation and Control / A.B. Kurzhanski, I. Vályi. Boston : Birkhäuser, 1997. 321 p.
- 8. Половинкин, Е.С. Элементы выпуклого и сильно выпуклого анализа / Е.С. Половинкин, М.В. Балашов. М. : Физматлит, 2007. 416 с.
- 9. Куржанский, А.Б. Управление и наблюдение в условиях неопределенности / А.Б. Куржанский. М. : Наука, 1977. 392 с.
- 10. Рокафеллар, Р. Выпуклый анализ / Р. Рокафеллар ; пер. с англ. А.Д. Иоффе ; под ред. В.М. Тихомирова. М. : Мир, 1973. 470 с.

- 11. Арутюнов, А.В. Лекции по выпуклому и многозначному анализу / А.В. Арутюнов. М. : Физматлит, 2014. 184 с.
- 12. Филиппов, А.Ф. Дифференциальные уравнения с разрывной правой частью / А.Ф. Филиппов. М. : Наука, 1985. 224 с.
- 13. Ляпунов, А.А. О вполне аддитивных вектор-функциях / А.А. Ляпунов // Изв. АН СССР. Сер. матем. 1940. № 6. С. 465–478.

ON THE PROPERTIES OF THE SOLVABILITY SET FOR A LINEAR SYSTEM WITH UNCERTAINTY

© 2024 / A. A. Melnikova¹, P. A. Tochilin², A. N. Daryin³

¹⁻³Lomonosov Moscow State University, Russia ²V.A. Trapeznikov Institute of Control Sciences of RAS, Moscow, Russia e-mail: ¹nastya.a.melnikova@gmail.com, ²tochilin@cs.msu.ru, ³daryin@mail.ru

The work is devoted to the problem of verifying that the state of a linear controlled system of differential equations will hit the target set over a finite time interval, despite the uncertainties (noise). Some geometric, pointwise convex constraints on uncertainties are imposed. In the case of a two-dimensional state space a method is proposed for constructing a solvability set without the calculation of the convex hulls of the functions necessary to construct a support function of the geometric difference of the sets. A Hamilton–Jacobi–Bellman type equation is obtained, which is satisfied by the distance function to the solvability set.

Keywords: dynamic programming, value function, solvability set, alternated integral, Hamilton–Jacobi–Bellman equation, verification problem

FUNDING

This work was carried out with financial support from the Russian Science Foundation (project no. 22-11-00042).

REFERENCES

- 1. Pontriagin, L.S., On linear differential games. II, Dokl. Akad. Nauk SSSR, 1967, vol. 175, no. 4, pp. 910-912.
- 2. Pontriagin, L.S., Linear differential games of pursuit, Math. USSR-Sb., 1981, vol. 40, no. 3, pp. 285–303.
- 3. Kurzhanski, A.B., Pontryagin's alternated integral in the theory of control synthesis, *Proc. Steklov Inst. Math.*, 1999, vol. 224, pp. 212–225.
- 4. Kurzhanski, A.B. and Varaiya, P., Dynamics and Control of Trajectory Tubes, Basel: Birkhäuser, 2014.
- 5. Fleming, W.H., Controlled Markov Processes and Viscosity Solutions, New York: Springer, 2006.
- 6. Melnikova, A.A. and Tochilin, P.A., On a problem of calculating the solvability set for a linear system with uncertainty, *Differ. Equat.*, 2023, vol. 59, no. 11, pp. 1538–1546.
- 7. Kurzhanski, A.B. and Vályi, I., Ellipsoidal Calculus for Estimation and Control, Boston: Birkhäuser, 1997.
- 8. Polovinkin, E.S. and Balashov, M.V., *Elementy vypuklogo i sil'no vypuklogo analiza* (Elements of Convex and Strongly Convex Analysis), Moscow: Fizmatlit, 2007.
- 9. Kurzhanski, A.B., *Upravlenie i nabl'udenie v usloviah neopedelennosti* (Control and Observation under Uncertainty Conditions), Moscow: Nauka, 1977.
- 10. Rockafellar, R.T., Convex Analysis, Princeton: Princeton Univ. Press, 1970.
- 11. Arutyunov, A.V., *Lekcii po vypuklomu i mnogoznachnomu analizu* (Lectures on Convex and Set-Valued Analysis), Moscow: Fizmatlit, 2014.
- 12. Filippov, A.F., Differential Equations with Discontinuous Righthand Sides, Springer, 1988.
- 13. Lyapunov, A.A., On countably additive set-functions, Izv. Akad. Nauk SSSR Ser. Mat., 1940, no. 6, pp. 465-478.