ON THE LOWER BOUND OF THE HYPERSINGULAR OPERATOR IN PERIDYNAMICS PROBLEMS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a hypersingular integral operator of the Calderon–Zygmund type, related to peridynamics problems, a lower bound is obtained. Thus, it is established that the previously found upper bound is exact.

Sobre autores

Sh. Alimov

National University of Uzbekistan named after Mirzo Ulugbek; V.I. Romanovskiy Institute of Mathematics, Academy of Sciences of Uzbekistan

Email: sh_alimov@mail.ru
Tashkent, Uzbekistan; Tashkent

Sh. Sheraliev

Branch of Lomonosov Moscow State University

Email: shuhrat2500@mail.ru
Tashkent, Uzbekistan

Bibliografia

  1. Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces / S.A. Silling // J. Mech. Phys. Solids. — 2000. — V. 48, № 1. — P. 175–209.
  2. Calderon, A.P. On the existence of certain singular integrals / A.P. Calderon, A. Zygmund // Acta Math. — 1952. — V. 88. — P. 85–139.
  3. Alimov, S.A. On the problems of peridynamics with special convolution kernels / S.A. Alimov, Y. Cao, O.A. Ilhan // J. Integral Equat. Appl. — 2014. — V. 26, № 3. — P. 301–321.
  4. Alimov, Sh. On the solvability of the singular equation of peridynamics / Sh. Alimov, Sh. Sheraliev // Complex Variables and Elliptic Equat. — 2019. — V. 64, № 5. — P. 873–887.
  5. Алимов, Ш.А. О гиперсингулярных операторах, связанных с перидинамикой / Ш.А. Алимов, Ш.Н. Шералиев // Дифференц. уравнения. — 2023. — Т. 59, № 7. — С. 914–918.
  6. Alimov, Sh.A. and Sheraliev, Sh.N., On hypersingular operators associated with peridynamics, Differ. Equat., 2023, vol. 59, no. 7, pp. 914–918.
  7. Ильин, В.А. Спектральная теория дифференциальных операторов. Самосопряженные дифференциальные операторы / В.А. Ильин. — М. : Наука, 1991. — 366 с.
  8. Il’in, V.A., Spectral Theory of Differential Operators: Self-Adjoint Differential Operators, Springer, 1995.
  9. Гольдман, М.Л. Обобщённые ядра дробного порядка / М.Л. Гольдман // Дифференц. уравнения. — 1971. — Т. 7, № 12. — С. 2199–2210.
  10. Goldman, M.L., Generalized kernels of fractional order, Differ. Uravn., 1971, vol. 7, no. 12, pp. 2199–2210.
  11. Гольдман, М.Л. Об оптимальных вложениях обобщенных потенциалов Бесселя и Рисса / М.Л. Гольдман // Тр. Мат. ин-та им. В.А. Стеклова. — 2010. — Т. 269. — С. 91–111.
  12. Goldman, M.L., Optimal embeddings of generalized Bessel and Riesz potentials, Steklov Inst. Math., 2010, vol. 269, pp. 85–105.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).