КЛАССИФИКАЦИЯ КВАЗИЛИНЕЙНЫХ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И Е¨Е ПРИМЕНЕНИЕ ПРИ НОРМАЛИЗАЦИИ СИСТЕМ В КРИТИЧЕСКОМ СЛУЧАЕ БОГДАНОВА–ТАКЕНСА

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрена двумерная автономная система с квазиоднородным многочленом первой степени с весом (1, 2) в невозмущённой части. Проведена классификация невозмущённой части, согласно которой множество таких многочленов конструктивным образом разбито на восемь классов эквивалентности относительно квазиоднородных замен нулевой степени и в каждом классе выделена образующая, называемая канонической формой. Получены все структуры обобщённых нормальных форм для остававшейся неисследованной системы с одной из канонических форм в невозмущённой части. Методом резонансных уравнений и наборов осуществлена нормализация в системе с невозмущённой частью (𝑥2, 𝑎𝑥1𝑥2+𝑏𝑥31), что значительно усилило уже имеющиеся результаты исследований в одном из критических случаев классификации Богданова–Такенса.

Об авторах

В. В. Басов

Санкт-Петербургский государственный университет

Email: vlvlbasov@rambler.ru

Список литературы

  1. Басов, В.В. Обобщённая нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением. I / В.В. Басов, А.В. Скитович // Дифференц. уравнения. — 2003. — Т. 39, № 8. — С. 1016–1029.
  2. Basov, V.V. and Skitovich, A.V., A generalized normal form and formal equivalence of two-dimensional systems with quadratic zero approximation. I, Differ. Equat., 2003, vol. 39, no. 8, pp. 1067–1081.
  3. Басов, В.В. Обобщённая нормальная форма двумерных систем ОДУ с линейно-квадратичной невозмущенной частью // В.В. Басов, А.А. Федотов / Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2007. — Т. 1, № 1. — С. 13–33.
  4. Basov, V.V. and Fedotov, A.A., Generalized normal forms for two-demensional systems of ordinary differential equations with linear and quadratic unperturbed parts, Vestnik St. Petersburg Univ., Mathematics, 2007, vol. 40, no. 1, pp. 6–26.
  5. Басов, В.В. Обобщённая нормальная форма и формальная эквивалентность систем дифференциальных уравнений с нулевыми характеристическими числами / В.В. Басов // Дифференц. уравнения. — 2003. — Т. 39, № 2. — С. 154–170.
  6. Basov, V.V., Generalized normal forms and formal equivalence of systems of differential equations with zero eigenvalues, Differ. Equat., 2003, vol. 39, no. 2, pp. 154–170.
  7. Басов, В.В. Обобщённые нормальные формы систем ОДУ с линейно-кубической невозмущенной частью / В.В. Басов, Л.С. Михлин // Дифференц. уравнения и процессы управления. — 2012. — № 2. — C. 129–153.
  8. Basov, V.V. and Mikhlin, L.S., Generalized normal forms of systems of ODE with linear-cubic unperturbed part, Differ. Uravn. i Protsesy Upravlenia (Differential Equations and Control Processes), 2012, no. 2, pp. 129–153.
  9. Басов, В.В. Обобщённые нормальные формы систем ОДУ с невозмущенной частью (𝑥2,±𝑥2𝑛−1 1 ) / В.В. Басов, Л.С. Михлин // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2015. — Т. 2 (60), № 1. — С. 14–22.
  10. Basov, V.V. and Mikhlin, L.S., Generalized normal forms of ODE systems with unperturbed part (𝑥2,±𝑥2𝑛−1 1 ), Vestn. S.-Peterb. un-ta. Matematika. Mekhanika. Astronomiya, 2015, vol. 2 (60), no. 1, pp. 14–22.
  11. Басов, В.В. Обобщённые нормальные формы систем обыкновенных дифференциальных уравнений с квазиоднородным многочленом (𝛼𝑥21 +𝑥2, 𝑥1, 𝑥2) в невозмущенной части / В.В. Басов, А.В. Зефиров // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2021. — Т. 8 (66), № 1. — С. 12–28.
  12. Basov, V.V. and Zefirov, A.V., Generalized normal forms of the systems of ordinary differential equations with a quasi-homogeneous polynomial (𝑎𝑥21 +𝑥2, 𝑥1𝑥2) in the unperturbed part, Vestnik St. Petersburg Univ., Mathematics, 2021, vol. 54, no. 1, pp. 8–21.
  13. Kokubu, H. Linear grading function and further redaction of normal forms / H. Kokubu, H. Oka, D. Wang // J. Differ. Equat. — 1996. — V. 132, № 2. — P. 293–318.
  14. Басов, В.В. Двумерные однородные кубические системы: классификация и нормальные формы — I / В.В. Басов // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2016. — Т. 3 (61), № 2. — С. 181–195.
  15. Basov, V.V., Two-dimensional homogeneous cubic systems: classification and normal forms. I, Vestnik St. Petersburg Univ., Mathematics, 2016. vol. 49, no. 2, pp. 99–110.
  16. Baider, A. Further reduction of the Takens–Bogdanov normal form / A. Baider, J. Sanders // J. Differ. Equat. — 1992. — V. 99. — P. 205–244.
  17. Takens, F. Singularities of vector fields / F. Takens // IHES. — 1974. — V. 43, № 2. — P. 47–100.
  18. Богданов, Р.И. Версальная деформация особой точки векторного поля на плоскости в случае нулевых собственных чисел / Р.И. Богданов // Функц. анализ и его прил. — 1975. — Т. 9, № 2. — С. 37–65.
  19. Bogdanov, R.I., Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funktsional. Anal. i Prilozhen., 1975, vol. 9, no. 2, pp. 37–65.
  20. Басов, В.В. Двумерные однородные кубические системы: классификация и нормальные формы — II / В.В. Басов // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. — 2016. — Т. 3 (61), № 3. — С. 355–371.
  21. Basov, V.V., Two-dimensional homogeneous cubic systems: classification and normal forms. II, Vestn. St. Petersburg Univ., Mathematics, 2016. vol. 49, no. 3, pp. 204–218.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).