УЛК 544.6.018

ВЛИЯНИЕ НАНОЧАСТИЦ ТІО₂ И "ЖИДКОФАЗНОЙ ТЕРАПИИ" НА СОПРОТИВЛЕНИЕ МЕЖФАЗНОЙ ГРАНИЦЫ ЛИТИЙ / ПОЛИМЕРНЫЙ ЭЛЕКТРОЛИТ С ВВЕДЕНИЕМ ИОННОЙ ЖИЛКОСТИ¹

© 2024 г. Г. Р. Баймуратова a,* , А. В. Юдина a , К.Г. Хатмуллина a,b , А. А. Слесаренко a , О. В. Ярмоленко a,**

^а ФИЦ проблем химической физики и медицинской химии РАН, Черноголовка, Россия ^b Национальный исследовательский университет "Московский энергетический институт", Москва, Россия

> *e-mail: guzalia.rb@yandex.ru **e-mail: oyarm@icp.ac.ru Поступила в редакцию 01.03.2024 г. После доработки 10.04.2024 г. Принята к публикации 19.04.2024 г.

Изучено влияние обработки 1 M раствором $LiN(CF_3SO_2)_2$ в смеси диоксолан/диметоксиэтан (2:1) поверхности металлического лития на сопротивление границы литий/полимерный и литий/нано-композитный электролит на основе ионной жидкости тетрафторбората 1-этил-3-метилимидазолия. Показано, что "жидкофазная терапия" уменьшает сопротивление на границе Li/электролит в 2.5 раза при комнатной температуре и расширяет диапазон рабочих температур до $-30^{\circ}C$. Введение наночастиц TiO_2 в состав полимерного электролита наряду с "жидкофазной терапией" как катода, так Li-анода обеспечивает высокую и стабильную разрядную емкость Li/ $LiFePO_4$ -аккумулятора в течение 100 циклов заряда-разряда.

Ключевые слова: литиевый анод, LiFePO₄-катод, полимерный электролит, тетрафторборат 1-этил-3-метилимидазолия, наночастицы ${\rm TiO_2}$, электрохимический импеданс, заряд-разрядные характеристики

DOI: 10.31857/S0424857024100042, **EDN:** OHMEBT

THE EFFECT OF TiO₂ NANOPARTICLES AND THE "LIQUID PHASE THERAPY" ON THE RESISTANCE OF THE INTERPHASE LITHIUM/POLYMER ELECTROLYTE WITH THE INTRODUCTION OF IONIC LIQUID²

© 2024 G. R. Baymuratova^a,*, A. V. Yudina^a, K. G. Khatmullina^a, b, A. A. Slesarenko^a, O. V. Yarmolenko^a,**

^aFRC of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia

^bNational Research University "Moscow Energy Institute", Moscow, Russia

*e-mail: guzalia.rb@yandex.ru

**e-mail: oyarm@icp.ac.ru

The effect of treating a metal lithium surface with 1 M LiN(CF_3SO_2)₂ solution in 1,3-dioxolane/1,2-dimethoxyethane (2:1) mixture on the resistance of the lithium/polymer and lithium/nanocomposite electrolyte based on the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate was studied. It has been shown that

¹ Статья представлена участником Всероссийской конференции "Электрохимия-2023", состоявшейся с 23 по 26 октября 2023 года в Москве на базе ИФХЭ РАН.

² The article was presented by a participant in the All-Russian Conference "Electrochemistry-2023", held from October 23 to October 26, 2023 in Moscow at the Institute of Physical Chemistry and Electrochemistry named after A.N. Frumkin RAS.

"liquid-phase therapy" reduces the resistance at the Li/electrolyte interface by 2.5 times at room temperature and expands the operating temperature range to -30° C. The introduction of TiO₂ nanoparticles into the polymer electrolyte, along with "liquid-phase therapy" of both the cathode and the Li-anode, provides a high and stable discharge capacity of the Li//LiFePO₄ battery for 100 charge-discharge cycles.

Keywords: lithium anode, LiFePO₄ cathode, polymer electrolyte, 1-ethyl-3-methylimidazolium tetrafluoroborate, TiO₂ nanoparticles, electrochemical impedance, charge-discharge characteristics

ВВЕДЕНИЕ

Ионные жидкости (**ИЖ**) при комнатной температуре представляют собой расплавленные соли и имеют такие привлекательные свойства, как термостабильность, незначительная летучесть, низкая горючесть и высокая ионная проводимость [1, 2]. Благодаря этим свойствам они нашли свое применение в качестве компонентов электролитов для различных электрохимических устройств [3—5].

ИЖ, введенные в различные полимерные матрицы, могут образовывать гель-электролиты за счет пластификации полимера, образуя электролит с улучшенными термическими и механическими свойствами, но с низким значением числа переноса по Li⁺ из-за конкурентного ионного транспорта катионов [6–8]. Одним из решений данной проблемы является введение наночастиц (SiO₂, TiO₂, и т. д.), поверхность которых участвует в координации ионов [9, 10].

Ранее в работах [11, 12] нами было начато исследование новых нанокомпозитных полимерных электролитов ($H\Pi \Theta$) на основе диакрилата полиэтиленгликоля (ДАк-ПЭГ), соли LiBF₄, этиленкарбоната (ЭК) и ионной жидкости тетрафторборат 1-этил-3-метилимидазолия (**EMIBF**₄) с введением SiO_2 [11] и TiO_2 [12]. Присутствие ИЖ повышало термостабильность пленок до 350°C, но для сборки твердотельных аккумуляторов с такими НПЭ возникла проблема высокого сопротивления на границе электрод/электролит. Одним из подходов к решению этой проблемы является "жидкофазная терапия", которая заключается во введении жидких органических электролитов на межфазную границу электрод/НПЭ для увеличения обратимости электродной реакции за счет пропитки пористых катодов. Данный подход был использован нами в работе по разработке электролитной системы ДАк-ПЭ Γ – SiO_2 – $LiBF_4$ – γ -бутиролактон [13], где поверхность LiFePO₄ смачивали 1 M LiTFSI в диоксолане/диметоксиэтане (2:1 об.), а поверхность Li-анода оставалась "сухой". При использовании данного подхода к НПЭ на основе ЕМІВГ, циклирование твердотельного аккумулятора Li/HПЭ/LiFePO₄ осуществить не удалось. Тогда была добавлена обработка жидким электролитом поверхности Li-анода, что позволило испытать твердотельный аккумулятор. В литературе известны подходы для образования переходного слоя на границе твердого электролита с литием, но авторы использовали карбонатные электролиты в качестве пленкообразующих добавок для образования слоя solid electrolyte interphase (SEI) на литии [14, 15]. Известны и способы создания SEI путем предобработки Li-анода жидкими электролитами на основе ионных жидкостей [16, 17].

Таким образом, создание переходного слоя за счет введения некарбонатных растворителей (1,3-диоксолан и 1,2-диметоксиэтан) на границе лития и НПЭ на основе 50 мас.% ионной жидкости, обладающей конкурентным транспортом, требует дальнейшего изучения, что и явилось целью данной работы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве полимерной матрицы использовали диакрилат полиэтиленгликоля (ДАк-ПЭГ) (Aldrich), $M_{\rm n}=700$, который сшивался по связям—С=С— под действием перекиси бензоила. Ионная жидкость EMIBF₄, Aldrich, чистота \geq 98%. Порошок TiO₂ AEROXIDE® P25 с $S_{\rm yg}$ до 65 м²/г (БЭТ), размер частиц 21 нм, $T_{\rm nn}=1850$ °C имел комбинацию кристаллической структуры анатаза и рутила.

Синтез образцов НПЭ проводили по ступенчатому режиму: $60^{\circ}\text{C} - 3 \text{ ч}$, $70^{\circ}\text{C} - 1 \text{ ч}$, $80^{\circ}\text{C} - 1 \text{ ч}$. При этом получались пленки толщиной ~0.3 мм. Подробная методика описана в работе [12]. Поверхность электрода обрабатывали 1 М LiN(CF₃SO₂)₂ (**LiTFSI**) в смеси диоксолан/диметоксиэтан (ДОЛ/ДМЭ) (2:1 об.) (~5 мкл). В качестве анодов использовали литиевые диски толщиной 1 мм и площадью 2 см². Катод LiFePO₄/сажа/ПВДФ = 75/20/5 мас. % готовили, как описано в [12].

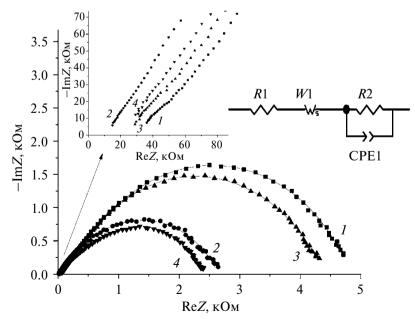
Электрохимический импеданс измеряли в дисковых Li//Li-ячейках CR2032 на импедансметре Z-2000 (Elins, Россия) (интервал частот $1 \Gamma \mu - 600 \ \mathrm{k} \Gamma \mu$) с амплитудой сигнала $10 \ \mathrm{mB}$. Параметры эквивалентных схем рассчитывали по

программе ZView2. Для температурных измерений использовали криотермостат марки TX-TC-01 (Россия). Тестирование ячеек $Li//LiFePO_4$ проводили на приборе BTS-5V10mA (Neware Technology, LTD, Китай) в гальваностатическом режиме C/10 (17 мA/r) в диапазоне 2.6-3.8 B. Расчет удельной емкости проводили на массу активного вещества ($LiFePO_4$).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Реакцией радикальной полимеризации получены полимерный электролит (Π 9) состава ДАк- Π 9 Γ -LiBF₄- EMIBF₄-ЭК (1:1:6:4 моль) и Н Π 9 на основе состава Π 9 + 2 мас. % TiO₂. Основной компонент электролитов — ионная жидкость (~50 мас. %). Проводимость пленок при 20°С, измеренная в ячейках с электродами из нержавеющей стали, составила 3 и 4 мСм/см соответственно.

Собраны и изучены 4 вида ячеек Li//Li без и с обработкой поверхности лития электролитом 1M LiTFSI в ДОЛ/ДМЭ. Годографы импеданса ячеек при 20° С и соответствующая им эквивалентная схема приведены на рис. 1, где R1- со-


противление электролита, R2 — сопротивление границы электрод/электролит, CPE1 — элемент постоянного угла сдвига фаз, W1 — закрытый элемент Варбурга, который характеризует сопротивление диффузии конечной длины с пропускающей границей. Результаты расчета параметров эквивалентной схемы для всех ячеек приведены в табл. 1.

Из рис. 1 и табл. 1 видно, что "жидкофазная терапия" поверхности лития уменьшает сопротивления R1, R2 и W1-R. Это может быть связано не с образованием SEI, а наоборот, с присутствием жидкой фазы между двумя твердыми поверхностями для лучшей диффузии и растворения лития в органических электролитах. Тогда как ионная жидкость EMIBF₄, наоборот, способствует ассоциации катиона лития с двумя противоионами [18].

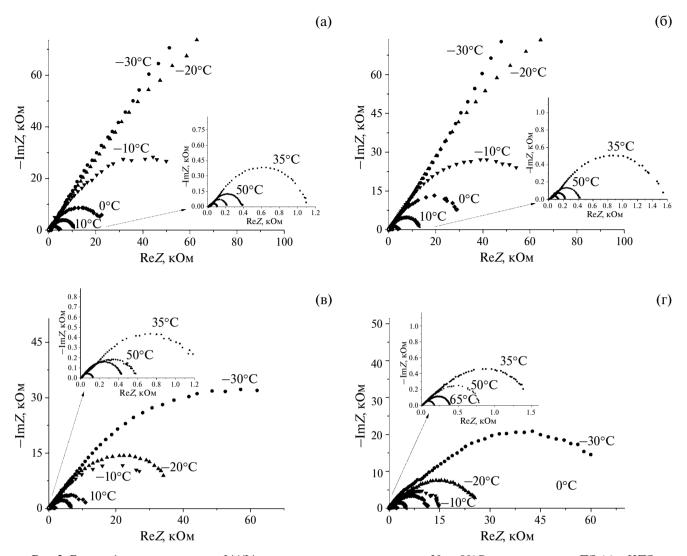
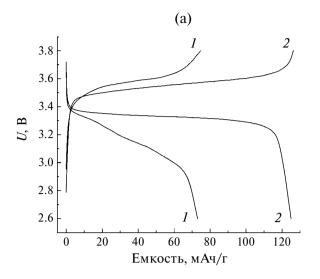

Для понимания полученного эффекта измерена зависимость импеданса ячеек от температуры в интервале от -30 до 80° С. Результаты приведены на рис. 2. Результаты расчета параметров эквивалентной схемы для всех ячеек приведены в табл. 2.

Таблица 1. Расчет параметров эквивалентной схемы для ячеек Li//Li при 20°C

Электролит	<i>R</i> 1, Ом	<i>W</i> 1- <i>R</i> , O _M	<i>W</i> 1- <i>T</i> , c	W1-P	<i>R</i> 2, Ом	CPE1- <i>T</i> , c	CPE1-P
ЕП	29	1860	0.017	0.45	2900	$7 \cdot 10^{-6}$	0.75
ПЭ*	10	752	0.006	0.48	1786	$4 \cdot 10^{-6}$	0.71
НПЭ	21	1750	0.008	0.46	2600	$8 \cdot 10^{-6}$	0.73
НПЭ*	19	600	0.003	0.52	1820	$6 \cdot 10^{-6}$	0.60


Рис. 1. Годографы импеданса ячеек Li//Li при 20° C с электролитами ПЭ (I), ПЭ* (I), НПЭ (I) и НПЭ* (I), где * – обработанные 1M LiTFSI в ДОЛ/ДМЭ, и соответствующая им эквивалентная схема.

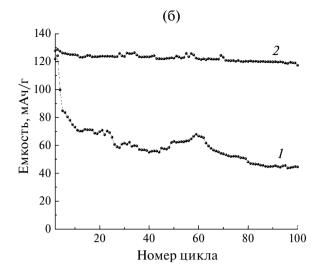


Рис. 2. Годографы импеданса ячеек Li//Li в температурном интервале от -30 до 80° C с электролитами Π 9 (a) и Н Π 9 (б) без обработки, с Π 9* (в) и Н Π 9* (г), обработанные 1M LiTFSI в ДОЛ/ДМЭ.

Таблица 2. Расчет параметров эквивалентной схемы, отвечающих за сопротивления (R, O_M) для ячеек Li//Li при разных температурах

T, °C ☐	ПЭ			ПЭ*			НПЭ			НПЭ*		
	<i>R</i> 1, Ом	<i>R</i> 2, Ом	<i>W-R</i> , Ом	<i>R</i> 1, Ом	<i>R</i> 2, Ом	<i>W-R</i> , Ом	<i>R</i> 1, Ом	<i>R</i> 2, Ом	<i>W</i> – <i>R</i> , Ом	<i>R</i> 1, Ом	<i>R</i> 2, Ом	<i>W</i> – <i>R</i> , Ом
-30	800	>10 ¹⁰	>106	100	60800	31970	480	>10 ¹⁰	>106	90	14340	41000
-20	370	>10 ¹⁰	31190	32	26000	17100	220	>10 ¹⁰	54230	60	7170	16240
-10	116	86600	20040	30	11000	9200	130	64050	22580	50	3880	8220
0	75	18720	6880	14	5090	4080	83	31920	8830	40	3100	5060
10	48	7670	3580	15	2550	3680	41	9190	4830	23	3510	1465
20	29	2900	1860	10	1786	752	21	2600	1750	19	1820	600
35	24	1105	910	10	980	700	30	640	570	15	780	500
50	19	120	240	11	220	260	20	48	350	10	270	390
65	13	115	90	7	125	230	15	49	160	7	88	295
80	10	30	60	5	70	55	13	18	100	6	60	196

Рис. 3. Характеристики ячеек Li//LiFePO₄ с $\Pi \ni^* (I)$ и $H\Pi \ni^* (2)$, где (a) профили заряда —разряда для 5-го цикла, (б) зависимость разрядной емкости катода для ячеек с $\Pi \ni^* (I)$ и $H\Pi \ni^* (2)$ от номера цикла при плотности тока 17 мА/г в области 2.6—3.8 В.

Из рис. 2 видно, что для ячеек с жидкофазной обработкой годограф при -30° С аналогичен годографам ячеек с ПЭ и НПЭ при -10° С. Таким образом, можно сказать, что присутствие жидкого электролита увеличивает область рабочих температур до -30° С. В высокотемпературном интервале 35, 50, 65 и 80° С (рис. 2, врезки) виды годографов импеданса для разных ячеек не отличаются.

Из табл. 2 видно, что все сопротивления уменьшаются с ростом температуры. Для ячеек с ПЭ и НПЭ без "жидкофазной терапии" значения $R2 > 10^{10}$ Ом при -30 и -20° С, что намного больше, чем у электролитов с жидкой фазой.

Для всех ячеек была рассчитана эффективная энергия активации проводимости ($E_{\ni \varphi}^{\rm a}$) электролита (по данным R1). Для ПЭ и НПЭ без жидкофазной обработки она составила 25.6 и 23.8 кДж/моль, с обработкой 17.1 и 14.9 кДж/моль соответственно. Видно, что $E_{\ni \varphi}^{\rm a}$ уменьшается в 1.5 раза при введении жидкой фазы.

Собраны и испытаны $\text{Li}/\text{LiFePO}_4$ -аккумуляторы с $\Pi \mathfrak{I}^*$ и $H\Pi \mathfrak{I}^*$, где была проведена жидкофазная обработка как анода, так и катода. Результаты испытаний приведены на рис. 3.

Из рис. За видно, что разница между плато разряда и заряда для НПЭ* намного меньше, чем для ПЭ*, что говорит о меньшем сопротивлении. Ресурсные испытания в течение 100 циклов свидетельствуют о положительном вкладе наночастиц TiO_2 в стабильность и величину разрядной емкости в ячейке $Li//LiFePO_4$. Это также может быть связано с высоким коэффициентом самодиффу-

зии лития (4.6· 10^{-11} м²/с) в НПЭ по сравнению с ПЭ (2.0· 10^{-12} м²/с), что было показано нами ранее в [12] методом ЯМР с импульсным градиентом магнитного поля на ядрах ⁷Li.

ЗАКЛЮЧЕНИЕ

В работе показана необходимость "жидкофазной обработки" 1 М LiTFSI в смеси ДОЛ/ДМЭ (2:1 об.) не только пористых катодов, но и поверхности металлического лития в случае присутствия в полимерном электролите большого количества (50 мас. %) ионной жидкости EMIBF₄ с конкурентным ионным транспортом. Показано, что "жидкофазная терапия" уменьшает сопротивление на границе Li/электролит в 2.5 раза при комнатной температуре и расширяет диапазон рабочих температуре и расширяет диапазон рабочих температур до -30°C. Ресурсные испытания Li//LiFePO₄-аккумуляторов показали преимущества нанокомпозитного полимерного электролита, имеющего более высокое значение коэффициента самодиффузии ⁷Li [12].

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования и РФ, номер гос. регистрации 124013000743-3 (FFSG-2024-0008).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pei, Y., Zhang, Y., Ma, J., Fan, M., Zhang, S., and Wang, J., Ionic Liquids for Advanced Materials, *Mater. Today Nano*, 2022, vol. 17, p. 100159.
- Dong, K., Liu, X., Dong, H., Zhang, X., and Zhang, S., Multiscale Studies on Ionic Liquids, *Chem. Rev.*, 2017, vol. 117, p. 6636.
- 3. Chen, N., Zhang, H., Li, L., Chen, R., and Guo, S., Ionogel Electrolytes for High-Performance Lithium Batteries: A Review, *Adv. Energy Mater.*, 2018, vol. 8, p. 1702675.
- 4. Watanabe, M., Thomas, M.L., Zhang, S., Ueno, K., Yasuda, T., and Dokko, K., Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices, *Chem. Rev.*, 2017, vol. 117, p. 7190.
- 5. Yu, L. and Chen, G.Z., Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery, *Front. Chem.*, 2019, vol. 7, p. 272.
- Tripathi, A.K., Ionic Liquid—Based Solid Electrolytes (Ionogels) for Application in Rechargeable Lithium Battery, *Mater. Today Energy*, 2021, vol. 20, p. 100643.
- Correia, D.M., Fernandes, L.C., Martins, P.M., García-Astrain, C., Costa, C.M., Reguera, J., and Lanceros-Méndez, S., Ionic Liquid—Polymer Composites: A New Platform for Multifunctional Applications, *Adv. Funct. Mater.*, 2020, vol. 30, p. 1909736.
- 8. Qiu, C., Li, Z., Pan, J., Hong, Y., Li, J., Lin, Y., Shi, K., and Liu, Q., Designing Stable Electrode Interfaces from a Pyrrolidine-Based Electrolyte for Improving LiNi_{0.8} Co _{0.1}Mn_{0.1} O ₂ Batteries, *Ind. Eng. Chem. Res.*, 2022, vol. 61, p. 14173.
- del Bosque, A., Muñoz, B.K., Sánchez, M., and Ureña, A., Thermomechanically Robust Ceramic/ Polymer Nanocomposites Modified with Ionic Liquid for Hybrid Polymer Electrolyte Applications, ACS Appl. Energy Mater., 2022, vol. 5, p. 4247.
- Li, M., Liao, Y., Liu, Q., Xu, J., Sun, P., Shi, H., and Li, W., Application of the Imidazolium Ionic Liquid Based Nano-Particle Decorated Gel Polymer Electrolyte for High Safety Lithium Ion Battery, *Electrochim. Acta*, 2018, vol. 284, p. 188.
- Khatmullina, K.G., Slesarenko, N.A., Chernyak, A.V., Baymuratova, G.R., Yudina, A.V., Berezin, M.P., Tulibaeva, G.Z., Slesarenko, A.A., Shestakov, A.F., and Yarmolenko, O.V., New Network Polymer Electrolytes Based on Ionic Liquid and SiO₂ Nanoparticles for Energy Storage Systems, *Membranes*, 2023, vol. 13, p. 548.

- Slesarenko, N.A., Chernyak, A.V., Khatmullina, K.G., Baymuratova, G.R., Yudina, A.V., Tulibaeva, G.Z., Shestakov, A.F., Volkov, V.I., and Yarmolenko, O.V., Nanocomposite Polymer Gel Electrolyte Based on TiO₂ Nanoparticles for Lithium Batteries, *Membranes*, 2023, vol. 13, p. 776.
- 13. Баймуратова, Г.Р., Хатмуллина, К.Г., Юдина, А.В., Ярмоленко, О.В. Дизайн твердотельного литиевого аккумулятора с LiFePO₄-катодом и полимерным гель- электролитом с наночастицами диоксида кремния. Электрохимия. 2022. Т. 58. С. 188. [Baymuratova, G.R., Khatmullina, K.G., Yudina, A.V., and Yarmolenko, O.V., Design of a Solid-State Lithium Battery Based on LiFePO₄ Cathode and Polymer Gel Electrolyte with Silicon Dioxide Nanoparticles, Russ. J. Electrochem., 2022, vol. 58, p. 329.]
- 14. Wu, J.-Y., Ling, S.-G., Yang, Q., Li, H., Xu, X.-X., and Chen, L.-Q., Forming solid electrolyte interphase in situ in an ionic conducting Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ polypropylene (PP) based separator for Li-ion batteries, *Chin. Phys. B*, 2016, vol. 25, A. 078204.
- Gao, H., Xue, L., Xin, S., Park, K., and Goodenough, J.B., A plastic-crystal electrolyte interphase for all-solid-state sodium batteries, *Angew. Chem. Int. Ed.*, 2017, vol. 56, p. 5541.
- Basile, A., Bhatt, A., and O'Mullane, A., Stabilizing lithium metal using ionic liquids for long-lived batteries, *Nat. Commun.*, 2016, vol. 7, Article no. ncomms 11794.
- 17. Budi, A., Basile, A., Opletal, G., Hollenkamp, A.F., Best, A.S., Rees, R.J., Bhatt, A.I., O'Mullane, A.P., and Russo, S.P., Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide, *J. Phys. Chem. C*, 2012, vol. 116, p. 19789.
- 18. Ярмоленко, О.В., Юдина, А.В., Игнатова, А.А., Шувалова, Н.И., Мартыненко, В.М., Богданова, Л.М., Черняк, А.В., Забродин, В.А., Волков, В.И. Новые полимерные электролиты состава диакрилат полиэтиленгликоля LiBF₄ тетрафторборат 1-этил-3-метилимидазолия с введением алкиленкарбонатов. *Известия АН. Сер. хим.* 2015. Т. 64. С. 2505. [Yarmolenko, O.V., Yudina, A.V., Ignatova, A.A., Shuvalova, N.I., Martynenko, V.M., Bogdanova, L.M., Chernyak, A.V., Zabrodin, V.A., and Volkov, V.I., New polymer electrolytes based on polyethylene glycol diacrylate—LiBF₄—1-ethyl-3-methylimidazolium tetrafluoroborate with the introduction of alkylene carbonates, *Russ. Chem. Bull.* (*Int. Ed.*), 2015, vol. 64, p. 2505.]