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Синтезированы монофазные порошки кубической модификации номинального состава 
Li6.4Al0.2La3Zr2O12 (Al–LLZO) и Li6.52Al0.08La3Zr1.75Ta0.25O12 (Ta–LLZO), из которых методом искро-
вого плазменного спекания получены плотные (~97–98%) керамические образцы твердого элек-
тролита с повышенной устойчивостью на воздухе. Достигнуты высокие показатели Li-ионной про-
водимости (4–6×10–4 См/см), соответствующие мировому уровню.
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Monophase powders of cubic modification with nominal composition Li6.4Al0.2La3Zr2O12 (Al–LLZ) and 
Li6.52Al0.08La3Zr1.75Ta0.25O12 (Ta–LLZ) were synthesized. Dense (~97–98%) ceramic samples of solid elec-
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ВВЕДЕНИЕ
В  последнее десятилетие интенсивно изу-

чаются неорганические твердые электролиты 
с высокой проводимостью по иону Li+ с целью 
1	По материалам доклада на 17-м Международном 

Совещании “Фундаментальные и прикладные проблемы 
ионики твердого тела”, Черноголовка, 16–23 июня 2024 г.

2	Based on the materials of the lecture at the 17th International 
Meeting “Fundamental and Applied Problems of Solid State 
Ionics”, Chernogolovka, June 16–23, 2024.

использования их в  качестве мембран, компо-
зитных электродов и  электролитов в  твердо-
тельных электрохимических устройствах [1, 2]. 
Твердые электролиты обладают рядом преиму-
ществ по сравнению с жидкими и полимерными 
материалами, так как характеризуются высокой 
механической прочностью, химической и  тер-
мической устойчивостью. Использование твер-
дых электролитов может существенно повысить 
безопасность литий-ионных аккумуляторов 
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(ЛИА) [3]. Перспективными с точки зрения ве-
личины ионной проводимости и  стабильности 
считаются замещенные титанофосфаты и  гер-
манофосфаты лития со структурой NASICON, 
твердые растворы на основе титанатов лити-
я-лантана со структурой перовскита и  пред-
ставители нового семейства литийпроводящих 
твердых электролитов со структурой граната со-
става Li7–3хAlxLa3Zr2O12 [4].

Структура граната Li7La3Zr2O12 имеет две кри-
сталлические модификации: тетрагональную 
и  кубическую. Тетрагональный Li7La3Zr2O12 со-
держит полностью упорядоченное распределение 
Li+ и кристаллизуется в пространственной груп-
пе I41/acd. Кубический Li7La3Zr2O12 кристалли-
зуется в пространственной группе Ia3d и демон-
стрирует неупорядоченное распределение ионов 
лития и вакансии, вызванные дефицитом лития. 
Литий-ионная проводимость тетрагональной 
модификации на два порядка ниже, чем у куби-
ческой. Кубическая модификация может быть 
стабилизирована частичным катионным заме-
щением, для этого проводят легирование твер-
дого электролита Li7La3Zr2O12 ионами Al3+, Ga3+, 
Nb5+, Ta5+ и  др. Наибольшее число исследова-
ний посвящено частичной замене Li+ на Al3+, 
который является недорогой легирующей добав-
кой, а  также может быть непреднамеренно вве-
ден в структуру граната при отжиге в корундовых 
тиглях. Однако ион Al3+ блокирует позиции ли-
тия, что приводит к снижению концентрации Li+ 
и  замедлению диффузии Li+ (в  отличие от Ta5+, 
который используется для замены Zr4+, чтобы из-
бежать уменьшения содержания Li+).

Нами были синтезированы порошки Al-за-
мещенного Li7La3Zr2O12 (A–LLZO) кубической 
модификации методом плавления шихты с  по-
следующим твердофазным отжигом, который 
заключается во взаимодействии компонентов 
шихты, состоящей из низкоплавких кристал-
логидратов ZrO(NO3)2∙2H2O, La(NO3)3∙6H2O 
и Al(NO3)3∙9H2O [5–7]. Порошки прессовали в та-
блетки без связующих компонентов в пресс-фор-
ме диаметром 12 мм усилием 100 МПа и спекали 
на воздухе при температуре 1100–1150°С в муфе-
ле МИМП‑3 с  программным управлением под 
маточным порошком того же состава. Для по-
следующего практического использования не-
обходимо получить из этих порошков образцы 
с  максимальной плотностью. Как отмечалось 
в  указанных работах, классическим методом 
высокотемпературного 2-стадийного спекания 
с  продолжительной выдержкой получить плот-
ные образцы не удалось (табл. 1).

Максимальная плотность не превышала 80% 
(даже с  применением предварительной механо-
активации порошков на центробежно-плане-
тарной мельнице АГО‑2С). В то же время только 
плотная керамика Al–LLZO повышает общую 
ионную проводимость и предотвращает проник-
новение дендритов лития через поры при цикли-
ровании, что может привести к  короткому за-
мыканию или разрушению образца [8, 9]. Кроме 
того, керамические образцы Al–LLZO с невысо-
кой плотностью неустойчивы при хранении на 
воздухе в обычных условиях [10–13]. В этой связи 
необходимо получение образцов с максимальной 
плотностью.

Таблица 1. Режимы твердофазного спекания таблеток Al–LLZO

I стадия (скорость нагрева 
10 град/мин) II стадия (скорость нагрева 2 град/мин)

Суммарное время 
термообработки, ч ρ, %

t, ˚С Время нагрева, 
мин t, ˚С Время нагрева, 

мин Выдержка, ч

20–1100 110 1100–1150 25
4 6 75

6 8 76–78

20–1050 105
1050–1100 25 8 10 72
1050–1150 50 6 8.5 79
1050–1150 50 8 10.5 76–77

20–1000 100 1000–1100 50
8 10.5 74–79
12 14.5 76–77

20–1200 180 1200 7 10 80

20–900 90
900–1150 125 8 11.5 74
900–1200 150 8 12 73–74
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Для повышения плотности твердых электро-
литов методом твердофазного спекания исполь-
зуются различные спекающие добавки (Li2CO3, 
Li3PO4, LiBO2, LiOH, LiCl, LiF, Li2B4O7), кото-
рые способствуют уплотнению образцов, улуч-
шают микроструктуру, что приводит к снижению 
зернограничного сопротивления и  повышению 
ионной проводимости [14]. Однако спекающие 
добавки частично индуцируют образование не-
больших количеств аморфных фаз в областях гра-
ниц зерен. Образование вторичных фаз ограни-
чивает ионную проводимость материала [15].

Перспективным для получения твердых элек-
тролитов с максимальной плотностью может ока-
заться инновационный метод искрового плаз-
менного спекания (ИПС), который заключается 
в  высокоскоростной консолидации дисперсных 
материалов различного химического и  фракци-
онного состава за счет электроимпульсного на-
грева при механическом сдавливании [16, 17]. 
Отсутствие спекающих добавок и  пластифика-
торов, а  также короткое время цикла односта-
дийного спекания (минуты) для достижения 
максимальной плотности материала (до 100% от 
теоретической) являются преимуществами ме-
тода ИПС перед традиционными технологиями 
спекания. Несмотря на то что метод ИПС пред-
ставляет собой высокотехнологичный подход 
в новом поколении синтеза керамики и является 
мировым трендом в области создания современ-
ных керамических материалов функционального 
назначения, для консолидации твердых электро-
литов он используется нечасто [18–22].

Положительный опыт применения мето-
да ИПС для получения твердого электролита со 
структурой NASICON состава Li1.3Al0.3Ti1.7(PO4)3 
мы продемонстрировали в  работе [23]. Из по-
рошков Li1.3Al0.3Ti1.7(PO4)3 (LATP) с  узким гра-
нулометрическим составом методом ИПС была 
получена высокоплотная литий-проводящая ке-
рамика (~97–98%) при оптимальном техноло-
гическом режиме (температура спекания 900°C, 
давление прессования 50 МПа, продолжитель-
ность спекания 5 мин). В процессе ИПС не про-
исходило изменения в фазовом составе образцов 
LATP. Использование метода ИПС позволило 
существенно сократить время консолидации, 
снизить температуру спекания и  достичь повы-
шения значений плотности и  ионной проводи-
мости керамики LATP. Максимальная ионная 
проводимость (σ total = 2.9×10–4 См/см и σ bulk = 
=  1.6×10–3  См/см) достигается для монофаз-
ных образцов LATP в сочетании с максимальной 

плотностью (97–98%). Это значительно выше ре-
зультатов, представленных авторами [24].

Цель настоящей работы заключалась в  раз-
работке способа получения плотных образцов 
Al- и  Ta-легированного твердого электролита 
Li7La3Zr2O12 с  высокой ионной проводимостью 
методом ИПС для использования в литиевых ак-
кумуляторах нового поколения (полностью твер-
дотельные, литий-серные и  литий-воздушные 
аккумуляторы).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение порошков Al–LLZO и Ta–LLZO
Монофазные порошки Al-замещенного твер-

дого электролита Li7La3Zr2O12 номинального со-
става Li6.4Al0.2La3Zr2O12 (Al–LLZO) были приго-
товлены, как описано в  [5]. Механоактивацию 
(МА) после отжига порошков после 900°C в  те-
чение 4 ч проводили в  планетарной мельнице 
АГО‑2С в  режиме 4×1 мин при центробежном 
факторе 20g в  барабанах, внутренняя поверх-
ность которых изготовлена из диоксида цирко-
ния, с использованием шаров из этого же матери-
ала [25]. Массовое соотношение шары: загрузка 
= 20:1. С целью обеспечения макрооднородности 
порошков через каждую 1 мин МА мельницу вы-
ключали и перемешивали содержимое барабанов 
шпателем. Далее механоактивированный поро-
шок прокаливали при температуре 1000°C (ско-
рость нагрева 10 град/мин) в течение 4 ч.

Монофазные порошки Ta-замещенного твер-
дого электролита Li7La3Zr2O12 номинального со-
става Li6.52Al0.08La3Zr1.75Ta0.25O12 (Ta–LLZO) бы-
ли приготовлены, как описано в [26]. Поскольку 
замещение ионами Ta обеспечивает переход те-
трагональной модификации в  кубическую при 
более мягких условиях, чем при замещении ио-
нами Al, механоактивацию порошков Ta–LLZO 
не проводили. Авторы [27] все эксперименты по 
исследованию химической и  термической ста-
бильности Ta–LLZO после ИПС проводили с ис-
пользованием коммерческого Li6.4La3Zr1.4Ta0.6O12 
[28].

Консолидация порошков Al–LLZO 
и Ta–LLZO методом ИПС

Консолидацию приготовленных порошков 
Al–LLZO и  Ta–LLZO методом ИПС проводи-
ли на установке Spark Plasma Sintering System 
SPS‑515S (Dr. Sinter·LABTM, Япония) по схеме: 
1.5  г порошка LLZO помещали в  графитовую 
пресс-форму (рабочий диаметр 1.25 мм), подпрес-
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совывали (давление 20.7 МПа), далее заготовку 
помещали в вакуумную камеру (10–5 атм) и спе-
кали. Для предотвращения припекания консо-
лидируемого порошка к пресс-форме и плунже-
рам, а также для беспрепятственного извлечения 
полученного образца использовали графитовую 
фольгу толщиной 200 мкм. ИПС-консолидацию 
порошков LLZO проводили давлением 50 МПа 
со скоростью нагрева 50°C/мин в диапазоне 900–
1100°C с выдержкой в течение 5–15 мин.

Синтезированные твердые электролиты Al–
LLZO и  Ta–LLZO характеризовали методами 
рентгенофазового анализа (РФА), энергодиспер-
сионной рентгеновской спектроскопии (ЭДС), 
импедансной спектроскопии. Фазовый анализ 
проводили с  использованием дифрактометра 
XRD‑6000 и  Rigaku MiniFlex‑600, CuKα-излуче-
ние, интервал углов рассеяния 2q = 10–70°. Об-
работку данных методом Ритвельда (уточнение 
параметров решетки) выполняли с помощью ПО 
“SmartLab Studio II”, входящего в  комплект по-
ставки дифрактометра Rigaku MiniFlex‑600. Для 
расшифровки дифрактограмм применяли меж-
дународную базу данных ICDD PDF‑4.

Плотность образцов определяли методом ги-
дростатического взвешивания (на  электронных 
весах ЛВ‑210А с  точностью 0.001 г) с  исполь-
зованием CCl4 в  качестве иммерсионной жид-
кости. Теоретическая (рентгенографическая) 
плотность для Al–LLZO составляла 5.1 г/см3 
(ICDD01–080–7219), а для Ta–LLZO – ​5.26 г/см3 
(IСDD04–023–7624).

Ионную проводимость (s) изучали методом 
спектроскопии электрохимического импеданса 
[29] с амплитудой переменного сигнала 0.1 В им-
педансметром Z‑2000 (Elins). Измерения проводи-
ли по двухэлектродной схеме в экранированной 
ячейке зажимной конструкции с  графитовыми 
электродами. Частотный интервал измерений со-
ставил 102–2×106 Гц. Удельную ионную проводи-
мость (stotal) рассчитывали с учетом геометриче-
ских размеров по формуле

	 σ =
π
h

R d

4
,total 2 	 (1)

где R – ​сопротивление таблетки, определенное на 
основе анализа спектра импеданса, h и d – ​высота 
и диаметр таблетки соответственно.

Электронную проводимость определяли ме-
тодом потенциостатической хроноамперометрии 
(ПХА), регистрируя плотность тока как функ-
цию времени после включения поляризующего 
потенциала [9] с использованием потенциостата 
P‑8 (Elins, Россия). Значение электронной про-
водимости Ta–LLZO рассчитывали по формуле

	 σ =
I h
US

,e
ст 	 (2)

где Iст – ​ток стабилизации, U – ​приложенное по-
стоянное напряжение, h и S – ​высота и площадь 
поперечного сечения таблетки соответственно.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
По результатам РФА установлено (рис. 1а), что 

после 1-й стадии синтеза Al–LLZO в  результате 
отжига при 900°C в течение 4 ч происходило обра-
зование продукта со структурой граната, не содер-
жащего исходных непрореагировавших веществ 
и  непроводящих примесных фаз (La2O3, ZrO2, 
La2Zr2O7). Образцы представляют собой хорошо 
окристаллизованные порошки индивидуального 
Al–LLZO в виде смеси 2 модификаций: тетраго-
нальной (ICDD PDF 01–080–6140) и кубической 
(ICDD PDF 01–080–7219) в соизмеримых коли-
чествах. Повышение температуры (до  1100°C) 
и продолжительности отжига порошков (до 6 ч) 
не обеспечивало получение чистой кубической 
модификации Al–LLZO, на рентгенограмме так-
же присутствовала смесь тетрагональной и куби-
ческой модификации (рис. 1б).

Для консолидации методом ИПС первона-
чально использовали порошки Al–LLZO, по-
лученные после отжига при 900°С. По данным 
РФА, при различных режимах ИПС (температу-
ра спекания 900–1000°C, давление прессования 

6050403020
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t‒LLZO

c‒LLZO

Рис.  1. Дифрактограммы порошка Al–LLZO после 
твердофазного отжига при 900°C (а) и 1100°C (б) и по-
сле ИПС при 1000°C в течение 10 мин (в).
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50 МПа, продолжительность спекания 5–10 мин) 
были получены таблетки Al–LLZO также в  ви-
де смеси 2 модификаций (рис.  2). В  этой свя-
зи ионная проводимость, измеренная методом 
спектроскопии электрохимического импедан-
са, была незначительной (находилась на уровне 
1×10–5 См/см). По-видимому, кратковременный 
процесс ИПС не обеспечивает полную транс-
формацию низкопроводящей тетрагональной 
модификации Al–LLZO в  кубическую. При ис-
пользовании тетрагональной модификации ав-
торам [21] потребовалась дополнительная тер-
мообработка в течение 12 ч при 1175°C образцов 
LLZO, подвергнутых ИПС, поскольку общая 
ионная проводимость образцов LLZO после 
ИПС составляла лишь 7×10–6 См/см.

Многие столкнулись с  проблемой образова-
ния непроводящей примесной фазы La2Zr2O7 
после консолидации твердого электролита LLZO 
методом ИПС [18–22]. В этой связи кажутся про-
тиворечивыми данные, полученные в  недавней 
работе [22], где авторы заявляют о высокой ион-
ной проводимости при содержании в  образце 
кубической модификации LLZO на уровне 84% 
и  непроводящей примесной фазы La2Zr2O7 на 
уровне 13%. Очевидно, что для метода ИПС в ка-
честве исходного порошка LLZO нужно синтези-
ровать порошки чисто кубической модификации, 
как это делают авторы [19], которые измельчали 
в  шаровой мельнице с  изопропиловым спиртом 
исходные LiOH·H2O, La2O3, ZrO2 и Ta2O5 в тече-
ние 12  ч. После высушивания порошок прока-
ливали при 900°C в течение 6 ч, затем измельча-
ли, сушили при тех же условиях и нагревали при 
1100°C в течение 12 ч во 2-й стадии. Затем поро-
шок повторно измельчали, прессовали в таблетки 
и спекали при 1130 и 1230°C в течение 36 ч для по-
лучения электролита кубической структуры [19]. 
Перечисленные технологические операции дли-
тельные, трудоемкие и энергозатратные.

Мы осуществили оптимизацию перехода те-
трагональной модификации в кубическую с при-
менением механоактивации. В  результате МА 
повышается дисперсность и реакционная способ-
ность порошков и происходит полная трансфор-
мация тетрагональной модификации Al–LLZO 
в кубическую после отжига при 1000°C (рис. 3а).

Последующая консолидация методом ИПС 
порошков Al–LLZO и  Ta–LLZO чисто кубиче-
ской модификации (полученных согласно табл. 2) 
привела к  формированию таблеток плотностью 
~96–98% от теоретической. При этом структу-
ра кубической модификации (пространственная 
группа Ia3d) сохранялась и значительно возросла 
интенсивность пиков, что свидетельствует о по-
вышении кристалличности образцов после ИПС 
(рис. 3б). Следует подчеркнуть, что методом мно-
гостадийного классического твердофазного спе-
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Рис. 2. Дифрактограммы порошка Al–LLZO после ИПС при 1000°C в течение 10 мин.
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рошка Al–LLZO кубической модификации (а) после 
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кания порошков с продолжительной выдержкой 
получить образцы указанной плотности не удава-
лось, особенно для Ta–LLZO [26].

Для монофазных порошков Al–LLZO, полу-
ченных после отжига при 1000°С, а также образ-
цов Al–LLZO, подвергнутых ИПС, был выполнен 
анализ по методу Ритвельда. Параметры решетки 
кубического Al–LLZO были рассчитаны мето-
дом полнопрофильного анализа рентгенограмм 
WPPF (Whole Powder Pattern Fitting). Критериями 

R-фактора были значения профильных R-фак-
торов Rp и  Rwp, рассчитанные по стандартным 
формулам (табл. 3). Значения параметров WPPF, 
обычно используемых для оценки качества под-
гонки профиля, подтверждают хорошее качество 
полученных результатов. Уточнение WPPF пока-
зало, что структура образцов соответствует куби-
ческой фазе с пространственной группой Ia3d.

На рис.  4 представлен спектр электрохимиче-
ского импеданса таблетки Ta–LLZO, подвергну-
той ИПС. Годографы импеданса образцов Ta–
LLZO и Al–LLZO, построенные на комплексной 
плоскости Z" = f(Z'), идентичны и  согласуются 
с результатами авторов [20, 31–33], которые дела-
ют заключение о том, что импеданс границ зерен 
пренебрежимо мал по сравнению с  импедансом 
зерен, вероятно, из-за почти полного отсутствия 
зернограничного сопротивления. Величину про-
водимости рассчитывали экстраполяцией высо-
кочастотного участка годографа на ось активных 
сопротивлений. Значение удельной общей ион-
ной проводимости (σtotal) таблеток Ta–LLZO при 
20°C, рассчитанное по формуле (1), составило 
6×10–4 См/см и в 6 раз превысило значение, изме-
ренное на таблетках Ta–LLZO с невысокой плот-
ностью (69%), полученных ранее методом твердо-
фазного спекания [26]. Значение общей ионной 
проводимости таблеток Al–LLZO при комнатной 
температуре составляло 4×10–4  См/см, что соот-
ветствует максимальным значениям, приводимым 
большинством исследователей [34] и в 2 раза вы-
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Рис.  4. Спектр электрохимического импеданса  
Ta–LLZO после ИПС в  интервале 103–106 Гц. На 
вставке высокочастотный участок (105–106 Гц).

Таблица 2. Режимы подготовки исходных порошков кубической модификации Al–LLZO и Ta–LLZO и последу-
ющей консолидации методом ИПС

I стадия II стадия III стадия ИПС

t, °C τ, ч РФА t, °C τ, ч РФА МА t, °C τ, ч РФА t, °C τ, мин РФА ρ, г/см3 σ, См/см

Al-
LLZO

900 4 t–LLZO,
с–LLZO – – 1000 10 t–LLZO,

с–LLZO
89–
90% 1×10–5

900 4 t–LLZO,
с–LLZO 1000 4 t–LLZO, 

с–LLZO
4×1 
мин 1000 4 с-LLZO 1000 10 с–LLZO 4.9 

(96%) 4×10–4

Ta-
LLZO 900 4

t–LLZO,
с–LLZO,

La2O3, 
ZrO2, 
Ta2O5

1000 4 t–LLZO, 
с–LLZO – 1100 6 с-LLZO 1100 15 с-LLZO 5.18 

(98%) 6×10–4

Таблица 3. Параметры решетки Al–LLZO, определенные методом Ритвельда

Образец а = b = c, Å Rp, % Rwp, % χ2 V, Å³
Al–LLZO 12.9735 10.57 13.47 2.1449 2185

Al–LLZO после ИПС 12.96052 3.04 4.13 2.1934 2177
Al–LLZO [30] 12.96529 2.895 4.105 2.099 2179
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ше значения ионной проводимости таблеток Al–
LLZO плотностью 75–85%, полученных нами ра-
нее методом твердофазного спекания [6–7]. Это 
подтверждает заключение, что основными фак-
торами, влияющими на ионную проводимость 
Al–LLZO и Ta–LLZO, являются отсутствие при-
месных фаз, высокопроводящая кубическая моди-
фикация и максимальная плотность образца [35].

Как отмечалось [5], образцы LLZO неустойчи-
вы при хранении на воздухе в  обычных услови-
ях из-за образования непроводящих фаз: Li2CO3 
(на поверхности таблеток) и La2Zr2O7 (в объеме) 
вследствие реакции с  H2O и  CO2. Кинетика ги-
дратации и  карбонизации порошков Ta–LLZO 
недавно изучена в  работе [36]. Установлено, что 
скорость реакции гидратации и  карбонизации 
сильно зависит от размера частиц и, следователь-
но, от площади поверхности. Для таблеток Al–
LLZO с пористостью 17% было установлено, что 
самопроизвольное растрескивание и  снижение 
ионной проводимости на 3 порядка происходит 
спустя три недели хранения [13]. Процесс обра-
зования Li2CO3 является обратимым, так как при 
повторном отжиге таблетки LLZO при темпера-
туре 900°С значение проводимости практически 
возвращалось к исходному результату [5].

Отличительной особенностью таблеток Al–
LLZO и  Ta–LLZO, консолидированных мето-
дом ИПС (плотностью ~96–98%), является по-
вышенная устойчивость на воздухе. Как следует 
из рис.  5а, ионная проводимость образцов Ta–
LLZO оставалась практически неизменной после 

3000

2000

1000

0
200010000

Z', Ом Z', кОм

‒Z'', Ом ‒Z'', кОм

2 МГц

2 МГц

10 кГц

1 кГц

1 кГц

1 кГц

1

3

3

2

f

4

706050403020100

50

40

30

20

10

0

(а) (б)

Рис. 5. Годографы импеданса образцов Ta–LLZO после ИПС (а) и после твердофазного спекания (б). 1 – ​измерены 
непосредственно после синтеза, 2 – ​спустя 10 дней, 3 – ​спустя 1 мес., 4 – ​спустя 2 мес. хранения на воздухе.

3000200010000

Время, с

50 10000
Время, с

6000400020000

Время, с

100

80

60

40

20

300

200

100

0

20

15

10

5

0

Ток, нА

Ток, нА

I ст

Ток, нА

(а)

(б)

Рис.  6. Хроноамперометрические кривые для  
Ta–LLZO после твердофазного спекания (а) и после 
ИПС (б).



Электрохимия      том 61       № 1       2025

100	 КУНШИНА и др.	

длительного хранения в обычных условиях (в те-
чение 2 мес.). Для сравнения в результате хране-
ния таблеток Ta–LLZO (плотностью 68–70%) 
после твердофазного спекания в течение 1 меся-
ца происходило снижение ионной проводимости 
на 2 порядка и составляло 3×10–6 См/см (рис. 5б). 
Достижение хорошей стабильности при хране-
нии является важной предпосылкой для практи-
ческого использования твердых электролитов со 
структурой граната.

Идеальным твердым электролитом должен 
быть чисто ионный проводник, поскольку элек-
тронная проводимость вызывает электрическую 
утечку или короткое замыкание в  ЛИА. Высо-
кая электронная проводимость может быть от-
ветственна за образование дендритов в  твердых 
электролитах [9]. Критическим требованием для 
твердых электролитов считается высокая ионная 
проводимость >10–4 См/см. Низкая электрон-
ная проводимость должна быть еще одним кри-
терием для твердых электролитов относительно 
их практического использования [9]. Методом 
ПХА оценивали электронную проводимость Ta–
LLZO [37]. Постоянное напряжение 1 В от потен-
циостата прикладывали к  симметричной ячейке 
С/Ta–LLZO/С с  блокирующими графитовыми 
электродами. Стационарный ток устанавливался 
в  течение 1–2 ч. Поляризационные хроноампе-
рометрические кривые Ta–LLZO, полученного 
твердофазным спеканием и методом ИПС, пред-
ставлены на рис. 6.

Хроноамперометрические кривые идентичны 
и  значение электронной проводимости практи-
чески одинаково, поскольку электронная прово-
димость в меньшей степени зависит от плотности 
образца, а определяется главным образом откло-
нением от стехиометрии и наличием неконтроли-
руемых примесей в твердом электролите. Значе-
ние электронной проводимости σe Ta–LLZO не 
превышало 10–9 См/см, что на 5 порядков ниже 
величины ионной проводимости. Соотношение 
между ионной и  электронной проводимостью 
Ta–LLZO удовлетворяет требованиям, предъяв-
ляемым к материалам для разработки твердотель-
ных устройств на их основе.

ЗАКЛЮЧЕНИЕ
Показана возможность получения методом 

искрового плазменного спекания (ИПС) высо-
коплотных керамик (~97–98%) из порошков ку-
бической модификации твердых электролитов 
AlLLZO и  Ta–LLZO со структурой граната при 
оптимальном технологическом режиме (темпе-

ратура спекания 1000–1100°C, давление прессо-
вания 50 МПа, продолжительность спекания 10–
15  мин). Процесс ИПС является эффективной 
технологией для уплотнения кубической моди-
фикации Al- и Ta-замещенного Li7La3Zr2O12.

Установлено, что в  процессе ИПС не проис-
ходит изменения в фазовом составе образцов Al–
LLZO и Ta–LLZO и образования непроводящих 
примесных фаз.

Общая ионная проводимость (σtotal = 
=  4–6×10–4  См/см) и  электронная (на  уровне 
10–9  См/см) достигается для монофазных об-
разцов LLZO, не содержащих примесных фаз 
(La2O3, ZrO2, La2Zr2O7) с максимальной плотно-
стью (97–98%). Характеристики керамики Al–
LLZO и Ta–LLZO, консолидированной методом 
ИПС, соответствуют характеристикам продук-
ции лидирующих компаний в  области коммер-
циализации твердых электролитов [28].
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