равна нулю, и это свойство автоматически выполняется и в следующих формулах (интегрирование в них тоже проводится по всему пространству):

$$P_{\alpha}(\mathbf{r}_{1}) = \int \chi_{\alpha\beta}(\mathbf{r}_{1}, \mathbf{r}_{2}) E_{\beta}(\mathbf{r}_{2}) d\mathbf{r}_{2},$$

$$E_{\alpha}(\mathbf{r}_{1}) = \int \varepsilon_{\alpha\beta}^{-1}(\mathbf{r}_{1}, \mathbf{r}_{2}) D_{\beta}(\mathbf{r}_{2}) d\mathbf{r}_{2},$$

$$P_{\alpha}(\mathbf{r}_{1}) = \int \chi_{\alpha\beta}^{(D)}(\mathbf{r}_{1}, \mathbf{r}_{2}) D_{\beta}(\mathbf{r}_{2}) d\mathbf{r}_{2},$$

где восприимчивость среды $\chi_{\alpha\beta}^{(D)}(\pmb{r}_1,\pmb{r}_2)$ определяется соотношением:

$$\chi_{\alpha\beta}^{(D)}(\mathbf{r}_{1}-\mathbf{r}_{2}) = (4\pi)^{-1} \left[\delta_{\alpha\beta} \delta(\mathbf{r}_{1}-\mathbf{r}_{2}) - \varepsilon_{\alpha\beta}^{-1} (\mathbf{r}_{1}-\mathbf{r}_{2}) \right]. \quad (A1)$$

Тогда соотношение (A.2) дает окончательный ответ для распределения электрического поля внутри пространственной области V, занятой средой с обратной диэлектрической функцией $\varepsilon_{\alpha\beta}^{-1}(\textbf{\textit{r}}_1,\textbf{\textit{r}}_2)$:

$$E_{\alpha}(\mathbf{r}_{1}) = \int_{V} \varepsilon_{\alpha\beta}^{-1}(\mathbf{r}_{1}, \mathbf{r}_{2}) (G_{\text{vac}})_{\beta}(\mathbf{r}_{2}) d\mathbf{r}_{2}, \quad (A2)$$

где поле в вакууме, естественно, зависит только от распределения внешних зарядов, но не зависит ни от формы границы раздела, ни от диэлектрических свойств среды. Потенциал поля $\varphi(r)$ определяется согласно формуле (5), т.е. интегрированием выражения для электрического поля.

Аналогично, соотношение (А3) дает выражение для распределения поляризации среды внутри той же области V:

$$P_{\alpha}(\mathbf{r}_{1}) = \int_{V} \chi_{\alpha\beta}^{(D)}(\mathbf{r}_{1}, \mathbf{r}_{2}) (G_{\text{vac}})_{\beta}(\mathbf{r}_{2}) d\mathbf{r}_{2}.$$
 (A3)

Заметим, что для любого распределения $G_{\text{vac}}(r)$, удовлетворяющего условию симметрии системы, существует соответствующее распределение плотности внешних зарядов. Поэтому формулу (А3) можно рассматривать как линейный отклик поляризации диэлектрической среды на произвольное внешнее поле. Тогда флуктуационно-диссипационная теорема выражает ядро $\chi_{\alpha\beta}^{(D)}(r_1,r_2)$ в формуле (А3) через коррелятор флуктуаций поляризации в отсутствие внешних полей $\langle P_{\alpha}(r_1,t_1) \ P_{\beta}(r_2,t_2) \rangle$, который отражает пространственно-временную структуру полярной среды [21, 43].

Если предположить, что эта структура среды остается неизменной вплоть до ее границ, то восприимчивость среды $\chi_{\alpha\beta}^{(D)}(\pmb{r}_1,\pmb{r}_2)$, однородной и изотропной вдали от ее границ, сохраняет этот вид во всей пространственной области, занятой средой, т.е. зависит только от расстояния между аргументами функции: $\chi_{\alpha\beta}^{(D)}(|\pmb{r}_1,\pmb{r}_2|)$. Согласно со-

отношению (A1) такое свойство имеет и обратная диэлектрическая функция $\varepsilon_{\alpha\beta}^{-1}(\mathbf{r}_1-\mathbf{r}_2)$, которая в этом случае связана с фурье-образом диэлектрической функции $\varepsilon(k)$ [20, 21] (интегрирование во втором равенстве (A4) по всему \mathbf{k} пространству):

$$\varepsilon_{\alpha\beta}^{-1}(\mathbf{r}_{1} - \mathbf{r}_{2}) \equiv \delta_{\alpha\beta}\varepsilon^{-1}(|\mathbf{r}_{1} - \mathbf{r}_{2}|) =
= \delta_{\alpha\beta}(2\pi)^{-3} \int [\varepsilon(k)]^{1} \exp[i\mathbf{k}(\mathbf{r}_{1} - \mathbf{r}_{2})] d\mathbf{k} = (A4)
= \delta_{\alpha\beta}(2\pi^{2}|\mathbf{r}_{1} - \mathbf{r}_{2}|)^{-1} \int_{0}^{\infty} [\varepsilon(k)^{-1}k\sin[k|\mathbf{r}_{1} - \mathbf{r}_{2}|]] d\mathbf{k}.$$

Таким образом, задание геометрии системы (в частности, пространственной области V, занятой полярной средой), фурье-образа ее диэлектрической функции в отсутствие границ $\varepsilon(k)$ и распределение электрического поля внешних зарядов в отсутствие диэлектрических сред G(r) внутри этой пространственной области V позволяют найти распределение электрического поля в присутствии диэлектрических сред E(r) по формулам (A2) и (A4).

Практически для систем, перечисленных выше (для которых индукция D(r) совпадает с полем в вакууме), решение сводится к однократным интегралам по соответствующей переменной. Поэтому это вычисление может быть легко проведено численно для любого функционального вида диэлек*трической функции*, т.е. $\varepsilon(k)$. Эта особенность данного подхода дает ему огромное преимущество по сравнению с широко используемым альтернативным методом, основанным на "диэлектрическом приближении" (DA), в котором аналогичное предположение делается относительно диэлектрической функции среды $\varepsilon_{\alpha\beta}(\pmb{r}_1,\pmb{r}_2)$ в соотношении (3), что приводит к необходимости решать интегральное уравнение для нахождения обратной диэлектрической функции в ограниченной области, где формула (А4) уже не применима.

ПРИЛОЖЕНИЕ 2

Список обозначений

Сокращения в тексте:

NE нелокальная электростатика
LE локальная электростатика
DA диэлектрическая аппроксимация
IDA обратная диэлектрическая аппроксимация

 $\Delta W(\Delta W \le 0)$ изменение энергии сольватации иона при его переходе из свободного раствора в центр водной полости ($\Delta G = -\Delta W$: работа по переносу иона из раствора внутрь полости)

13.4		LT		
1M	одномодовая модель диэлектрической функции воды	kT	по оси абсцисс на рисунках отложено изменение свободной энергии, делен-	
3M	трехмодовая модель диэлектрической функции воды		ное на kT , где k — постоянная Больцмана, T — абсолютная температура	
Сокращения в индексах		P(r)	поляризация в точке r (математически выражается в виде нелокальной связи	
1 M	одномодовая модель диэлектрической	_	между величинами P и E : формула (3.1))	
3M	функции воды трехмодовая модель диэлектрической	R	радиус сферической водной полости, рис. 1a	
31 V1	функции воды	r , r	радиус-вектор, идущий из центра сфе-	
cav	полость (от английского "cavity")	,,,	рической водной полости в некоторую	
DA	диэлектрическая аппроксимация		точку внутри полости; $r = r $	
LE	локальная электростатика	V	область, заключенная между двумя	
Латинские			концентрическими сферами радиусов a и R , см. рис. 1a	
a B (B a)	радиус иона, рис. 1а	$W_{ m sol}$	энергия сольватации иона в свободном растворе	
$B_{\rm cav}(R, a)$	функция радиуса полости и радиуса иона, определяемая формулой (20.3)	$W_{\rm cav}$	энергия сольватации иона в центре	
	и используемая в формуле (23)	, cav	сферической водной полости	
$B_{i(\text{cav})}(R, a)$	функции радиуса полости и радиуса	ΔW	изменение энергии сольватации иона	
	иона, определяемые формулой (33) при $i = 1, 2, 3$ и используемые в фор-		при его переходе из свободного раствора в центр водной полости, форму-	
	муле (34)		ла (1.2)	
C_1, C_2, C_3	константы в формуле (27) для трехмо-	$W_{\rm 1M(cav)}(R,a)$	энергии сольватации иона радиуса <i>а</i>	
1, 2, 3	довой модели диэлектрической функ-	im(car)	в центре сферической водной полости	
	ции воды, связанные по формулам (26) с диэлектрическими константами		радиуса R в рамках одномодовой модели диэлектрической функции; форму-	
	воды, соответствующими трем модам		ла (23), выведенная на основе метода	
D(r)	индукция электрического поля в точке r (electric displacement). Нелокальное		обратного диэлектрического приближения работы [38]	
	выражение для индукции через рас-	$w_{1 \text{M(cav)}}(a)$	энергия сольватации иона радиуса <i>а</i>	
	пределение электрического поля для	111(641)	в неограниченном растворителе, но	
	среды, занимающей все пространство, дается формулой (3.2)		с параметрами такими же, как в полости малого размера, в рамках одномо-	
e	заряд моновалентного иона, равный		довой модели диэлектрической функ-	
	абсолютной величине заряда электрона		ции; формула (16)	
E(r)	напряженность электрического поля	$\Delta W_{ m 1M(cav)}$	изменение энергии сольватации при	
	в точке <i>r</i> . Для среды, занимающей все пространство, электрическое поле		переходе иона из свободного раствора в полость для одномодовой модели	
	пространство, электрическое поле связано с индукцией интегральным		диэлектрической функции; формула	
	соотношением (4)		(24), выведенная на основе метода	
f(y)	вспомогательная функция одного аргу-		обратного диэлектрического прибли- жения [38]	
	мента, определяемая формулой (19.4)	$w_{1M}(a)$	энергия сольватации иона радиуса а	
g(x, y)	вспомогательная функция двух аргу- ментов, определяемая формулой (19.3)	TIVI ()	в свободном растворе в рамках од-	
$\Delta G = -\Delta W$	изменение свободной энергии иона		номодовой модели диэлектрической функции; формула (17)	
	при его переходе из свободного рас-	$\Delta w_{\mathrm{DA}}(R)$	изменение энергии сольватации при	
	твора в центр сферической полости,	$\Delta m_{\mathrm{DA}}(\mathbf{R})$	переходе иона бесконечно малых раз-	
$G_{-}(v)$	формула (1.1)		меров из свободного раствора в по-	
$G_{\rm vac}(r)$	поле в вакууме, которое создается системой внешних зарядов $\rho(r)$. Исполь-		лость с неизменными параметрами для одномодовой модели диэлектрической	
	зуется в Приложении 1, см. формулы		функции, выведенной в рамках диэлек-	
• ()	(А2) и (А3)		трического приближения; формула (14)	
$j_1(x)$	сферические функции Бесселя; их определение, см. формулу (10.3)	$\Delta W_{ m DA}$	изменение энергии сольватации при переходе иона радиуса <i>а</i> из свободного	
k , k	волновой вектор и его модуль	раствора в полость для одномодовой		

	модели диэлектрической функции, выведенной в рамках диэлектрического приближения; формула (15)	$\varepsilon_{2(\text{cav})}$	диэлектрическая проницаемость воды, соответствующая колебательной моде в полости ($\varepsilon_{2(\text{cav})} = \varepsilon_2 = 4.9$)
$W_{\rm 3M(cav)}(R,a)$	энергия сольватации иона радиуса a в центре сферической водной полости радиуса R для трехмодовой модели диэлектрической функции; формула	$\varepsilon_{3(\text{cav})}$	диэлектрическая проницаемость воды, соответствующая дебаевской (ориентационной) моде в полости $4.9 < \epsilon_{3(cav)} < 80$
	(34), выведенная на основе метода обратного диэлектрического приближения работы [38]	$\varepsilon_{\alpha\beta}(\boldsymbol{r}_1,\boldsymbol{r}_2)$	(тензорная и нелокальная) диэлектрическая функция системы; формула (3.3)
$w_{3M(cav)}(a)$	энергия сольватации иона радиуса <i>а</i> в неограниченном растворителе, но с параметрами такими же, как в поло-	$\varepsilon_{\alpha\beta(\text{cav})}(\boldsymbol{r}_1,\boldsymbol{r}_2)$	(тензорная и нелокальная) диэлектрическая функция системы в полости (см. формулу (6.1))
	сти малого размера, в рамках трехмодовой модели диэлектрической функции; формула (35)	$\varepsilon_{\alpha\beta}^{-1}(\boldsymbol{r}_1,\boldsymbol{r}_2)$	обратная (тензорная и нелокальная) диэлектрическая функция системы, связанная интегральным соотношени-
$w_{3M}(a)$	энергия сольватации иона радиуса <i>а</i> в свободном растворе в рамках трехмодовой модели диэлектрической функтуру в дероктор (26)	$\varepsilon_{\alpha\beta(\text{cav})}^{-1}(\boldsymbol{r}_1-\boldsymbol{r}_2)$	диэлектрическая функция в полости,
$\Delta W_{3 \text{M(cav)}}(R, a)$	переходе иона из свободного раство-		связанная с фурье-образом диэлектрической функции воды внутри полости $\varepsilon_{\rm cav}(k)$ (формула (8))
	ра в центр сферической полости для трехмодовой модели $\varepsilon(k)$; формула	$\varepsilon(k)$	диэлектрическая функция неограниченной нелокальной среды
	(37), выведенная на основе метода обратного диэлектрического прибли-	$\varepsilon_{\rm cav}(k)$	диэлектрическая функция водной фа- зы внутри полости
Греческие	жения работы [38]	$\varepsilon_{1M}(k)$	диэлектрическая функция неограниченной нелокальной среды для одномодовой модели; формулы (2.2)—(2.3)
ε	диэлектрическая постоянная воды $(\varepsilon = \varepsilon_3 = 80)$	$\varepsilon_{1 \text{M(cav)}}(k)$	диэлектрическая функция водной фазы внутри полости для одномодовой
$\epsilon_{ m o}$	диэлектрическая постоянная воды в зоне прозрачности, разделяющей де-	$\varepsilon_{3M}(k)$	модели; формула (18) диэлектрическая функция неограни-
	баевские и инфракрасные моды $(\varepsilon_0 = \varepsilon_2 = 4.9)$	-31/1(-7)	ченной нелокальной среды для трех- модовой модели; формула (25)
$\epsilon_{ m sol}$	диэлектрическая постоянная воды в объеме свободного раствора $(\varepsilon_{\text{sol}} = \varepsilon = 80)$	$\varepsilon_{3M(cav)}(k)$	диэлектрическая функция водной фазы внутри полости для трехмодовой модели; формула (27)
$\epsilon_{ m cav}$	диэлектрическая постоянная воды внутри полости ($\varepsilon_{\text{cav}} = \varepsilon_{3(\text{cav})}$)	$\varepsilon_{l=1}^{-1}(\boldsymbol{r}_1,\boldsymbol{r}_2)$	коэффициент разложения обратной
$\varepsilon_{ m p}$	диэлектрическая проницаемость среды, окружающей сферическую полость		диэлектрической функции $\varepsilon_{\alpha\beta}^{-1}(\pmb{r}_1,\pmb{r}_2)$ по сферическим функциям \mathbf{Y}_{l0} для нижнего индекса $l=1$
ϵ_1	высокочастотная ("оптическая") ди- электрическая проницаемость воды в свободном растворе ($\varepsilon_1 = 1.8$)	λ_1	корреляционная длина воды, соответствующая электронной моде в свободном растворе ($\lambda_l=0.5 \mbox{Å}$)
ϵ_2	диэлектрическая проницаемость воды, соответствующая колебательной моде в свободном растворе ($\varepsilon_2 = \varepsilon_0 = 4.9$)	λ_2	корреляционная длина воды, соответствующая колебательной моде в свободном растворе ($\lambda_2 = 1 \text{Å}$)
ϵ_3	диэлектрическая проницаемость воды, соответствующая дебаевской (ориентационной) моде в свободном растворе ($\varepsilon_3 = \varepsilon = 80$)	λ_3	корреляционная длина воды, соответствующая дебаевской (ориентационной) моде в свободном растворе $(\lambda_3=5\text{Å})$
$\epsilon_{1(\text{cav})}$	высокочастотная ("оптическая") диэлектрическая проницаемость воды в полости ($\epsilon_{1(\text{cav})} = \epsilon_1 = 1.8$)	$\lambda_{1(cav)}$	корреляционная длина воды, соответствующая электронной моде в полости $(\lambda_{l(cav)} = 0.5 \text{Å})$

$\lambda_{2(\text{cav})}$	корреляционная длина воды, соответствующая колебательной моде в поло-
	сти ($\lambda_{2(\text{cav})} = 1$ Å)
$\lambda_{3(\text{cav})}$	корреляционная длина, соответствующая дебаевской (ориентационной) моде в полости $(2\mathring{A} < \lambda_{3(cav)} < 5\mathring{A})$
۸	
Λ	максимальная из трех корреляционных длин воды в свободном растворе
	$(\Lambda = \lambda_3 = 5\text{Å})$
$\Lambda_{ m cav}$	максимальная из трех корреляционных длин воды в полости ($\Lambda_{cav} = \lambda_{3(cav)}$)
$\rho(r)$	плотность внешних зарядов
$\varphi(\mathbf{r})$	распределение потенциала электрического поля
$ \phi_{1\text{M(cav)}}(R,r) $	распределение потенциала вокруг иона в полости в рамках одномодовой модели диэлектрической функции, рассчитываемое по формуле (19.1) при $a \le r \le R$
$ \phi_{1M(cav)}(R, a) $	потенциал на границе борновской сферы иона для одномодовой модели диэлектрической функции, рассчитываемый по формуле (20.1)
$ \phi_{3M(cav)}(R,r) $	распределение потенциала вокруг иона в полости в рамках трехмодовой модели диэлектрической функции,

 $\phi_{3\mathrm{M(cav)}}(R,a)$ потенциал на границе борновской сферы иона для трехмодовой модели диэлектрической функции, рассчитываемый по формуле (31) $\chi_{\alpha\beta}(\pmb{r}_1,\pmb{r}_2)$ тензор нелокальной (диэлектриче-

 $a \le r \le R$

рассчитываемое по формуле (29) при

 $\chi_{\alpha\beta}(\pmb{r}_1, \pmb{r}_2)$ тензор нелокальной (диэлектрической) восприимчивости

ФИНАНСИРОВАНИЕ РАБОТЫ

Номер госзадания 124022600337-0 (Рубашкин А.А., Вигонт В.А.); номер госзадания 122011300058 (Воротынцев М.А.).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Hille, B. *Ion Channels of Excitable Membrane*, Sunderland, MA: Sinauer, 3rd Ed., 2001. 814 p.
- 2. Roux, B. and MacKinnon, R., The cavity and pore helices in the KcsA K⁺ Channel: Electrostatic stabilization of monovalent cations, *Science*, 1999, vol. 285, p. 100.
- 3. Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo A., Gulbis, J.M., Cohen, S.L., Chait, B.T., and MacKin-

- non, R., The structure of the potassium channel: molecular basis of K⁺ conduction and selectivity, *Science*, 1998, vol. 280, p. 69.
- 4. Bichet, D., Grabe, M., Jan, Y.N., and Jan, L.Y., Electrostatic interactions in the channel cavity as an important determinant of potassium channel selectivity, *PNAS*, 2006, vol. 103, p. 14355.
- 5. Zhou, Y. and MacKinnon, R., Ion binding affinity in the cavity of the KcsA potassium channel, *Biochemistry*, 2004, vol. 43, p. 4978.
- 6. Kariev, A. and Green, M.E., Quantum calculations on water in the KcsA channel cavity with permeant and nonpermeant ions, *Biochim. Biophys. Acta Biomembranes*, 2009, vol. 1788, p. 1188.
- 7. Yao, Z., Qiao, B., and de la Cruz, M.O., Potassium ions in the cavity of a KcsA channel model, *Phys. Rev. E*, 2013, vol. 88, p. 062712.
- 8. Song, Z., Cao, X., Horng, T.-L., and Huang, H., Selectivity of the KcsA potassium channel: Analysis and computation, *Phys. Rev. E*, 2019, vol. 100, p. 022406.
- 9. Kariev, A.M. and Green, M.E., The pore of the KcsA channel, including the entire cavity up to the selectivity filter, participates in selectivity, rectification, and ion transport, *Biophys. J.*, 2023, vol. 122, SUPPLE-MENT 1, p. 525A.
- 10. Israelachvili, J.N. *Intermolecular and Surface Forces*, Academic Press, 3rd Ed., 2011. 674 p.
- 11. Israelachvili, J.N. and Pashley, R.M., Molecular layering of water at surfaces and origin of repulsive hydration forces, *Nature*, 1983, vol. 306, p. 249.
- Toney, M., Howard, J., Richer, J., Borges, G.L., Gordon, J., Melroy, O., Wiesler, D., Yee, D., and Sorensen, L., Voltage-Dependent Ordering of Water Molecules at an Electrode-Electrolyte Interface, *Nature*, 1994, vol. 368, p. 444.
- 13. Velasco-Velez, J.-J., Wu, C.H., Pascal, T.A., Wan, L.F., Guo, J., Prendergast, D., and Salmeron, M., The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy, *Science*, 2014, vol. 346, p. 831.
- 14. Fumagalli, L., Esfandiar, A., Fabregas, R., Hu, S., Ares, P., Janardanan, A., Yang, Q., Radha, B., Taniguchi, T., Watanabe, K., Gomila, G., Novoselov, K.S., and Geim, A. K., Anomalously low dielectric constant of confined water, *Science*, 2018, vol. 360, p. 1339.
- 15. Рубашкин, А.А., Исерович П. Новый подход к селективности ионных каналов. Нелокально электростатическое расмотрение. Докл. Акад. наук. 2007. Т. 417. С. 121. [Rubashkin, A.A. and Iserovich, P., A new approach to the selectivity of ion channels: Nonlocal electrostatic consideration, Dokl. Biochem. and Biophys., 2007, vol. 417, p. 302.]
- 16. Bardhan, J.P., Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins, *J. Chem. Phys.*, 2011, vol. 135, p. 104113–1.